Determining the limiting contour of the quarry based on minimizing the volume of the near-contour ore zone

User Rating:  / 0
PoorBest 

Authors:


S.Moldabayev*, orcid.org/0000-0001-8913-9014, Mining and Metallurgical Institute named after O.A.Baikonurov, Almaty, the Republic of Kazakhstan, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

A.Adamchuk, orcid.org/0000-0002-8143-3697, Dnipro University of Technology, Dnipro, Ukraine

G.Assylkhanova, orcid.org/0000-0001-9533-7148, Satbayev University, Almaty, the Republic of Kazakhstan

N.Bakytzhanov, orcid.org/0000-0003-4150-4670, Satbayev University, Almaty, the Republic of Kazakhstan

A.Khairullayev, orcid.org/0000-0001-9521-1780, Satbayev University, Almaty, the Republic of Kazakhstan

M.Yeluzakh, orcid.org/0000-0001-6865-0817, Satbayev University, Almaty, the Republic of Kazakhstan

* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


повний текст / full article



Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2025, (2): 051 - 059

https://doi.org/10.33271/nvngu/2025-2/051



Abstract:



Purpose.
To develop a new method for determining the volumetric current and final quarry contours based on minimizing the volume of the near-contour ore zone at different stages of mining development.


Methodology.
An economic-mathematical model was constructed to determine the optimal horizon for the introduction of combined transport, considering the quarry parameters. The proposed algorithm allows for the identification of the horizon for the installation of a combined transport transshipment point.


Findings.
The experience of designing the ultimate contour of deep quarries in open-pit mining practice was analyzed. It was established that the methodology for determining optimal quarry contour parameters includes two approaches: comparison of stripping ratios (economic and technological ones) and calculating deposit value using the Lerch-Grossmann algorithm and its modifications. The shortcomings of existing design approaches were examined, and a new method for determining volumetric current and final quarry contours was proposed.


Originality.
The dependence of the near-contour zone volume on the parameters of quarry contour placement in the plan was established, contributing to the increased efficiency of deposit extraction by increasing the share of recovered valuable minerals. The proposed concept enables the precise determination of the final quarry contours and their spatial location relative to the ore body while allowing for the prompt adjustment of parameters in response to changing market conditions.


Practical value.
The developed method is based on the concept of staged contour formation, where the location of the first-stage quarry is determined by minimizing the volume of the near-contour zone. The obtained results make it possible to adjust quarry contours during operation, considering changes in market conditions.



Keywords:
deep quarries, ultimate contours, near-contour zone, first-stage quarry

References.


1. Kunarbekova, M., Yeszhan, Y., Zharylkan, S., Alipuly, M., Zhantikeyev, U., Beisebayeva, A., Kudaibergenov, A., …, & Azat, S. (2024). The state of the art of the mining and metallurgical industry in Kazakhstan and future perspectives: A systematic review. ES Materials & Manufacturing, 25, 1219. https://doi.org/10.30919/esmm1219

2. Aitzhanova, D., Begentayev, M., Mukhanova, G., Antoni, A., Csiszárik-Kocsir, Á., Orazymbetova, A., & Kiss, F. (2024). Success Factors of Youth Entrepreneurship Projects based on Fuzzy Analytic Hierarchy Method on the Example of Kazakhstan. Acta Polytechnica Hungarica, 21(11), 135-154.

3. Rysbekov, K., Toktarov, A., Kalybekov, T., Yessezhulov, T., & Bakhmagambetova, G. (2020). Mine planning subject to prepared ore reserves rationing. E3S Web of Conference, (168), 00016.
https://doi.org/10.1051/e3sconf/202016800016

4. Bazaluk, O., Anisimov, O., Saik, P., Lozynskyi, V., Akimov, O., Akimov, O., & Hrytsenko, L. (2023). Determining the Safe Distance for Mining Equipment Operation When Forming an Internal Dump in a Deep Open Pit. Sustainability, 15(7), 5912. https://doi.org/10.3390/su15075912

5. Tolovkhan, B., Smagulova, A., Khuangan, N., Asainov, S., Issagulov, S., Kaumetova, D., Khussan, B., & Sandibekov, M. (2023). Studying rock mass jointing to provide bench stability while Northern Katpar deposit developing in Kazakhstan. Mining of Mineral Deposits, 17(2), 99-111. https://doi.org/10.33271/mining17.02.099

6. Dryzhenko, A., Moldabayev, S., Shustov, A., Adamchuk, A., & Sarybayev, N. (2017). Open pit mining technology of steeply dipping mineral occurences by steeply inclined sublayers. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17(13), 599-606. https://doi.org/10.5593/sgem2017/13/s03.076

7. Nurpeisova, M. B., Umirbaeva, A. B., Fedorov, E. V., & Miletenko, N. A. (2021). Integrated monitoring-based assessment of deformation and radiation situation of territorial domains. Eurasian Mining, 35(1), 83-87. https://doi.org/10.17580/em.2021.01.17

8. Moldabayev, S., Adamchuk, A., Sarybayev, N., & Shustov, A. (2019). Improvement of open cleaning-up schemes of border mineral reserves. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 19, 331-338. https://doi.org/10.5593/sgem2019/1.3/S03.042

9. Bazaluk, O., Ashcheulova, O., Mamaikin, O., Khorolskyi, A., Lozynskyi, V., & Saik, P. (2022). Innovative activities in the sphere of mining process management. Frontiers in Environmental Science, (10), 878977. https://doi.org/10.3389/fenvs.2022.878977

10.      Alpysbay, M. A., Orynbassarova, E. O., Sydyk, N. K., Ade­biyet, B., & Kamza, A. T. (2024). Mining mapping and exploration using remote sensing data in Kazakhstan: a review. Engineering Journal of Satbayev University, 146(2), 37-46. https://doi.org/10.51301/ejsu.2024.i2.05

11.      Sobko, B. Y., Lozhnikov, O. V., Chebanov, M. O., & Kria­chek, V. P. (2024). Establishing the influence of the quarry depth on the indicators of cyclic flow technology during the development of non-ore deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 5-12. https://doi.org/10.33271/nvngu/2024-1/005

12.      Istekova, S. A., Tolybayeva, D. N., Issayeva, L. D., Ablessenova, Z. N., & Talassov, M. A. (2024). The effectiveness of the use of geophysical research in the underground development of ore deposits. Engineering Journal of Satbayev University, 146(4), 24-33. https://doi.org/10.51301/ejsu.2024.i4.04

13.      Utili, S., Agosti, A., Morales, N., Valderrama, C., Pell, R., & Albornoz, G. (2022). Optimal pitwall shapes to increase financial return and decrease carbon footprint of open pit mines. Mining, Metallurgy & Exploration, 39(2), 335-355. https://doi.org/10.1007/s42461-022-00546-8

14.      Mirzaei, M., Adib, A., Afzal, P., Rahemi, E., & Mohammadi, G. (2022). Separation of geological ore and gangues zones based on multivariate fractal modeling in Jalal Abad iron ore deposit, Central Iran. Advanced Applied Geology, 12(3), 573-588. https://doi.org/10.22055/aag.2022.39754.2272

15.      Ahmeti, H., & Maliqi, E. (2023). Geomechanical research into surface coal mining in terms of geotechnical safety substantiation. Mining of Mineral Deposits, 17(3), 22-31.

16.      Saik, P., Rysbekov, K., Kassymkanova, K.K., Lozynskyi, V., Kyrgizbayeva, G., Moldabayev, S., Babets, D., & Salkynov, A. (2024). Investigation of the rock mass state in the near-wall part of the quarry and its stability management. Frontiers in Earth Science, 12, 1395418. https://doi.org/10.3389/feart.2024.1395418

17.      Abdoldina, F., Nazirova, A., Dubovenko, Y., & Umirova, G. (2020). On the solution of the gravity direct problem for a sphere with a simulated annealing approach. International Multidisciplinary Scientific GeoConference: SGEM, 20(2.1), 239-245. https://doi.org/10.5593/sgem2020/2.1/s07.031

18.      Sdvyzhkova, O., Moldabayev, S., Babets, D., Bascetin, A., Asylkhanova, G., Nurmanova, A., & Prykhodko, V. (2024). Numerical modelling of the pit wall stability while optimizing its boundaries to ensure the ore mining completeness. Mining of Mineral Deposits, 18(2), 1-10. https://doi.org/10.33271/mining18.02.001

19.      Yussupov, K., Aben, E., Myrzakhmetov, S., Akhmetkanov, D., & Sarybayev, N. (2024). Increasing the Efficiency of Underground Block Leaching of Metal. Civil Engineering Journal, 10(10), 3339-3349. https://doi.org/10.28991/CEJ-2024-010-10-014

20.      Kubekova, S. N., Kapralova, V. I., Ibraimova, G. T., Raimbekova, A. S., & Ydyrysheva, S. K. (2022). Mechanically activated silicon-phosphorus fertilisers based on the natural and anthropogenic raw materials of Kazakhstan. Journal of Physics and Chemistry of Solids, (162), 110518. https://doi.org/10.1016/j.jpcs.2021.110518

21.      Raimbekova, A. S., Kapralova, V. I., Popova, A. K., & Kubekova, S. N. (2022). The study of manganese phosphate materials based on enrichment wastes. Journal of Chemical Technology and Metallurgy, 57(1), 176-183.

22.      Bazaluk, O., Slabyi, O., Vekeryk, V., Velychkovych, A., Ropyak, L., & Lozynskyi, V. (2021). A Technology of Hydrocarbon Fluid Production Intensification by Productive Stratum Drainage Zone Reaming. Energies, 14(12), 3514. https://doi.org/10.3390/en14123514

23.      Saik, P., Cherniaiev, O., Anisimov, O., & Dychkovskyi, R. (2023). Mining of non-metallic mineral deposits in the context of Ukraine’s reconstruction in the war and post-war periods. Mining of Mineral Deposits, 17(4), 91-102. https://doi.org/10.33271/mining17.04.091

24.      Saik, P., Cherniaiev, O., Anisimov, O., & Rysbekov, K. (2023). Substantiation of the Direction for Mining Operations That Develop under Conditions of Shear Processes Caused by Hydrostatic Pressure. Sustainability, 15(22), 15690. https://doi.org/10.3390/su152215690

25.      Lozhnikov, O., Shustov, O., Chebanov, M., & Perkova, T. (2022). Methodological principles of the selection of a resource-saving technology while developing water-bearing placer deposits. Mining of Mineral Deposits, 16(3), 115-122. https://doi.org/10.33271/mining16.03.115

26.      Rysbekov, K. B., Toktarov, A. A., & Kalybekov, T. (2021). Technique for Justifying the Amount of the Redundant Developed Reserves Considering the Content of Metal in the Mining Ore. IOP Conference Series: Earth and Environmental Science, 666(3), 032076. https://doi.org/10.1088/1755-1315/666/3/032076

27.      Moldabayev, S. K., Sultanbekova, Z. Z., Adamchuk, A. A., Sarybaev, N. O., & Nurmanova, A. N. (2022). Technology of an open pit refinement under limit stability of sides. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 5-10. https://doi.org/10.33271/nvngu/2022-6/005

28.      Shakenov, A., Kramsakov, D., & Stolpovskih, I. (2023). Mining haul truck operation failure analysis. Engineering Journal of Satbayev University, 145(4), 32-35. https://doi.org/10.51301/ejsu.2023.i4.05

29.      Sladkowski, A., Utegenova, A., Elemesov, K., & Stolpovskikh, I. (2017). Determining of the rational capacity of a bunker for cyclic-and-continuous technology in quarries. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 29-33.

30.      Adamchuk, A., & Shustov, O. (2023). Control of Dump Stability Loading Rock on its Edge. Inżynieria Mineralna, 1, 91-96. https://doi.org/10.29227/IM-2023-01-11.

 

Visitors

9666531
Today
This Month
All days
7971
805961
9666531

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.

Contacts

D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (066) 379 72 44.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home Authors and readers EngCat Archive 2025 Content №2 2025 Determining the limiting contour of the quarry based on minimizing the volume of the near-contour ore zone