Technogenic hazards coefficient of sand-resin mixtures in foundry manufacturing
- Details
- Category: Content №6 2024
- Last Updated on 28 December 2024
- Published on 30 November -0001
- Hits: 174
Authors:
L.I.Solonenko*, orcid.org/0000-0003-2092-8044, Odesа Polytechnic National University, Odesa, Ukraine, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
K.I.Uzlov, orcid.org/0000-0003-0744-9890, Ukrainian State University of Science and Technology, National Metallurgical Academy of Ukraine, Dnipro, Ukraine, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
S.I.Repiakh, orcid.org/0000-0003-0203-4135, Ukrainian State University of Science and Technology, National Metallurgical Academy of Ukraine, Dnipro, Ukraine, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
I.V.Prokopovich, orcid.org/0000-0002-8059-6507, Odesа Polytechnic National University, Odesa, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
O.Р.Bilyi, orcid.org/0000-0003-1234-5404, Ukrainian State University of Science and Technology, National Metallurgical Academy of Ukraine, Dnipro, Ukraine, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2024, (6): 094 - 100
https://doi.org/10.33271/nvngu/2024-6/094
Abstract:
Purpose. To carry out a comparative quantitative assessment of environmental and sanitary-hygienic hazards of utilizing synthetic resins for manufacturing molds and rods in foundry production.
Methodology. Quarry quartz sand brand 1K2O202, furan resin brand Permaset 839 and catalyst Permacat 128, aluminum alloy AL2, gray cast iron SCh200, carbon steel 30L, bronze BrА9Zh3L were used in the work. Chromel-alumel thermocouples completed with electronic potentiometer were used for thermography. Molds were made from quartz sand, furan resin and catalyst mixture. Casting mold heating depth determination from casting to temperatures above 400 °C was carried out by its thermogram graphical processing, which was obtained after casting mold pouring with aluminum alloy, bronze, gray cast iron and carbon steel.
Findings. Among those studied, the most dangerous are urea-phenol-formaldehyde, urea-formaldehyde and urea-furan resins, and the least dangerous are phenol-formaldehyde and phenol-formaldehyde-furan resins. Ecological and sanitary-hygienic hazard level when using resin mixtures increases with increasing resin amount in mixture, castings walls thickness, their surface area, as well as with increasing temperature of melt poured into the mold.
Originality. For the first time, in relation to foundry molds and rods in foundry production manufacturing, technogenic hazard coefficient (THC) has been developed and its value has been calculated. This, in fact, is air volume (m3) containing maximum permissible concentration of carcinogenic or poisonous substances released as a result of mold organic binder material destruction when pouring aluminum alloy, bronze, cast iron or steel.
Practical value. The use of the research results makes it possible to increase the level of predicting accuracy of technogenic (sanitary, hygienic and environmental) hazards, accuracy level of calculating ventilation systems capacities in foundries, taking into account the serial castings production, castings structural features, as well as binding materials nature for foundry molds and rods for such castings.
Keywords: coefficient of hazards, synthetic resins, foundry, casting, labor protection
References.
1. Karateev, A. M., Ponomarenko, O. I., Yevtushenko, N. S., & Yevtushenko, S. D. (2017). Advantages and prospects of using resin resin in foundry production. Bulletin of the Donbas State Machine-Building Academy, 2(41), 37-43.
2. Ponomarenko, O. I., Yevtushenko, N. S., & Berlyzeva, T. V. (2011). Ecology of HTS production in foundry production. Materials of the 3rd International Scientific and Technical Conference “Prospective Technologies, Materials and Equipment in Foundry Production” (Kramatorsk, September 12–14, 2011). Kramatorsk: DGMA, 143-145. Retrieved from http://www.dgma.donetsk.ua/docs/kafedry/tolp/publication/tolpkonf/%D1%82%D0%B5%D0%B7%D0%B8%D1%81%D1%8B2011.pdf.
3. Yevtushenko, N. S., Ponomarenko, O. I., Tverdokhliebova, N. Ye., Mezentseva, I. O., Semenov, Ye. O., & Yevtushenko, S. D. (2022). Ensuring safe working conditions for the prevention of occupational diseases of workers in the metallurgical and foundry industries. Metal and Casting of Ukraine, 3(330), 117-125. https://doi.org/10.15407/steelcast2022.03.116.
4. Kroyik, H. A., Demura, V. І., Vinokurtseva, О. М., & Azanova-Frolova, Т. D. (2011). Asess the toxicity and hazard class moldboard mine rocks western Donbass. Journal of Geology, Geography and Geoecology, 32, 1-5. https://doi.org/10.15421/111116.
5. Department of inspection activities in the Ternopil region of the South-Western interregional department of the State Labor Service. Industrial dust, its effect on the human body (2023). Retrieved from https://te.dsp.gov.ua/vyrobnychyj-pyl-jogo-diya-na-organizm-lyudyny/.
6. Stanovskiy, O., Prokopovich, I., Olekh, H., Kolecnikova, K., & Sorokina, L. (2018). Procedure forimpact assessing on he environmemt. Proceeding of Odessa Polythechnic Universit: Scientific, science and technology collected articles, 1(54), 99-107. https://doi.org/10.15276/opu.1.54.2018.14.
7. Gogunskyi, V. D., & Prokopovich, I. V. (2016). The impact of atmospheric air pollution on the health of the population. Technologes of informations are in education, science and production, 2(13), 241-251. Retrieved from https://sbornik.college.ks.ua/downloads/sbornik13/pdf/26.pdf.
8. Integrated Pollution Prevention and Control Reference Document on Best Available Technologies and Management Practices (CRD BATMP) in the Forging and Foundry Industry (2020). Retrieved from https://mepr.gov.ua/wp-content/uploads/2023/07/sf_bref_0505_1_ukr_ed_final.pdf.
9. Holtzer, M., & Kmita, A. (2020). Mold and Core Sands in Metalcasting: Chemistry and Ecology. https://doi.org/10.1007/978-3-030-53210-9_3.
10. Karateev, A. M., Ponomarenko, O. Y., Yevtushenko, N. S., & Yevtushenko, S. D. (2018). Obtaining environmentally friendly cold-hardening mixtures for casting molds and rods on oligofurfuryloxysiloxane binders. Equipment and instruments for professionals. Metalworking, 4, 54-56.
11. Popov, A. (2021). The latest Laempe technologies at the Inacore plant. Casting of Ukraine, 6, 2-7.
12. Vasenko, O. G., Rybalova, O. V., & Artemiev, S. R. (2015). Integral and complex assessments of the state of the natural environment: monograph. H.: NUGZU.
13. Ivanyuta, S. P., & Kachynskyi, A. B. (2013). Environmental safety of the regions of Ukraine: comparative assessments. Strategic priorities, 3(28), 157-164.
14. Malik, T. А., Diatel, O. O., & Diachenko, N. O. (2022). Assessment of the risk to the health of the population from atmospheric air pollution during open-pit of non-ore mineral minerals. Mining Geology & Geoecology, 2(5), 27-38. https://doi.org/10.59911/mgg.2786-7994.2022.2(5).276076.
15. Integrated Risk Information System (IRIS) (n.d.). U. S. Environmental Protection Agency (EPA). Retrieved from http://www.epa.gov/iris.
16. Rybalova, O. V., & Belan, S. V. (2014). A new approach to comprehensive risk assessment for public health in the case of environmental pollution. Current achievements of European science: theses of the X International scientific and practical conference. (June 17–25, 2014). Bulgaria, 2014, 76-82. Retrieved from http://repositsc.nuczu.edu.ua/handle/123456789/6579.
17. Rybalova, O. V., Belan, S. V., & Savichev, A. A. (2013). Assessment of the risk of environmental emergencies in the Luhansk region. Problems of emergency situations, 17, 152-163.
18. Rybalova, O. V., & Belan, S. V. (2014). Comprehensive assessment of environmental hazards of an industrial enterprise using the example of the Zmiiv TPP. Scientific Journal “ScienceRise”, 5/2(4), 43-49. https://doi.org/10.15587/2313-8416.2014.32102.
19. Rybalova, O. V., & Dyadchenko, A. V. (2016). Determining the level of danger of atmospheric air pollution taking into account the state of emergency situations in Ukraine. Ecology and industry, 2, 91-96.
20. Solonenko, L., Prokopovitch, I., Repyakh, S., Sukhoi, K., & Dmytrenko, D. (2019). System analysis of modern areas of increasing environmental and sanitary hygienic safety of using cold hardening mixtures in foundry. Proceedings of Odessa Polytechnic University: Scientific, science and technology collected articles, (57), 90-98. https://doi.org/10.15276/opu.1.57.2019.11.
Newer news items:
- Innovative approaches to evaluating energy efficiency potential at enterprises - 28/12/2024 02:02
- Assessment of the economic security of an industrial enterprise in the paradigm of the systemic and synergetic approach - 28/12/2024 02:02
- The impact of urbanization on socio-economic development: the experience of Poland, Spain and Ukraine - 28/12/2024 02:02
- Analytical studies on dynamic properties of indirect oil heaters - 28/12/2024 02:02
- Improving the efficiency of management of transport and energy resources of the logistics system of an industrial enterprise - 28/12/2024 02:02
- Enhancing the protection of automated ground robotic platforms in the conditions of radio electronic warfare - 28/12/2024 02:02
- Model for optimal control of charge loading parameters of metal-reducing plants - 28/12/2024 02:02
- Assessing Ukrainian education security in the context of artificial intelligence integration for accelerated post-war recovery - 28/12/2024 02:02
- Algorithm for assessing the model of the labor safety management in civil aviation of the Republic of Kazakhstan - 28/12/2024 02:02
- The relationship between the development of a safety culture and the implementation of safety requirements in organisations - 28/12/2024 02:02
Older news items:
- Ecological features of formation of landfill vegetation in Lviv Region (Ukraine) - 28/12/2024 02:02
- Apparent power place in the instantaneous power of a linear quadripole with a sinusoidal current - 28/12/2024 02:02
- Simulation of the operation modes of the catodic protection complex of pipelines in the approach of overhead power lines - 28/12/2024 02:02
- Improving the efficiency of street lighting electrical systems - 28/12/2024 02:02
- Active power regulation in wind turbines - 28/12/2024 02:02
- Technology optimization for processing of raw materials from heterogeneous carbonate deposits - 28/12/2024 02:02
- Analysis of the strength of the composite module of the body wagon-coal truck - 28/12/2024 02:02
- Quantum mechanical model of interaction of charges of metal atoms during creation of chrome coatings - 28/12/2024 02:02
- Crushed stone supply challenges for infrastructure development in Hungary - 28/12/2024 02:02
- Assessing the reliability of a surveying and geodetic network based on a Markov model - 28/12/2024 02:02