Predicted resource assessment of Central Kazakhsta ore districts based on airborne geophysical methods

User Rating:  / 0
PoorBest 

Authors:


Zh.Saurykov, orcid.org/0000-0002-7972-3740, Satbayev University, Almaty, the Republic of Kazakhstan

S.Istekova*, orcid.org/0000-0003-4298-7598, Satbayev University, Almaty, the Republic of Kazakhstan, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

A.Sirazhev, orcid.org/0000-0003-2067-4443, Satbayev University, Almaty, the Republic of Kazakhstan

Zh.Aidarbekov, orcid.org/0000-0002-4461-5256, Satbayev University, Almaty, the Republic of Kazakhstan

* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


повний текст / full article



Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2023, (5): 019 - 026

https://doi.org/10.33271/nvngu/2023-5/019



Abstract:



Purpose.
The research is aimed at creating a high-quality geophysical basis for the additional geological study of Central Kazakhstan in determining the geological structure of the study area, identifying promising areas for further geological exploration, as well as analyzing the anomalous distribution of various minerals.


Methodology.
The research uses the methods of aeromagnetic, airborne gamma-ray spectrometry and gravimetric (ground) surveys. The obtained new airborne geophysical data are used for additional study of the geological structure of the district and the creation of a model of the geological structure of the study area. Gamma-ray spectrometry data analysis is conducted for detailed mapping of intrusive complexes and study of their lithological heterogeneity.


Findings.
The processing and interpretation of the materials of the conducted field studies in combination with the results of the geological-geophysical data analysis made it possible to refine the geological structure and to present a model of ore-prospecting complexes in the study area. Areas with an anomalous distribution of potassium, uranium, and thorium have been identified, which make it possible to assess the structural heterogeneity of hidden magmatic massifs and to reveal a connection with gold, copper-polymetallic and rare-metal mineralization. Recommendations for further detailed geological exploration, including prospecting-exploration drilling, are given.


Originality.
Research has shown the high efficiency of airborne geophysical methods, such as aeromagnetic and airborne gamma-ray spectrometry surveys to study the geological structure of ore areas, and in combination with detailed gravimetric exploration to identify lithological heterogeneity of igneous and sedimentary rocks in the study area. New scientific-methodological techniques and the geological structure model based on them gave an opportunity to assess the prospect of the study area for ore mineralization.


Practical value.
The identified promising areas for mining of minerals are of interest for further research and exploration. The integrated use of geological-geophysical data will make it possible to determine more precisely the nature of radioactive anomalies and to reveal their relationship with ore-prospecting horizons. In general, the research results contribute to increasing the efficiency and reducing the geological survey costs.



Keywords:
airborne gamma-ray spectrometry survey, interpretation, mineral resources, geophysical surveys, zoning

References.


1. Jurza, P., Campbell, I., Robinson, P., Wackerle, R., Cunneen, P., & Pavlík, B. (2005). Use of 214Pb Photopeaks for Radon Removal: Utilising Current Airborne Gamma-Ray Spectrometer Technology and Data Processing. Exploration Geophysics, 36(3), 322-328. https://doi.org/10.1071/eg05322.

2. Qin, G., Xu, Y., Li, F., Zhou, W., Li, W., & Zhao, G. (2022). Calibration of an airborne γ-ray spectrometer based on an unmanned aerial vehicle using a point source. Annals of Nuclear Energy, (178), 109349. https://doi.org/10.1016/j.anucene.2022.109349.

3. El-Sadek, M. A. (2022). Using of airborne gamma-ray spectrometric data to the exposure of potassic alteration-recognition of alteration relates to gold mineralization. Applied Radiation and Isotopes, (190), 110511. https://doi.org/10.1016/j.apradiso.2022.110511.

4. Rakishev, B. M. (2022). About the metallogeny of Kazakhstan and its significance for the forecast of mineral deposits. Engineering Journal of Satbayev University, 144(4), 25-33. https://doi.org/10.51301/ejsu.2022.i4.04.

5. Mitran, T., Sreenivas, K., Janakirama Suresh, K. G., Sujatha, G., & Ravisankar, T. (2021). Spatial prediction of calcium carbonate and clay content in soils using airborne hyperspectral data. Journal of the Indian Society of Remote Sensing, (49), 2611-2622. https://doi.org/10.1007/s12524-021-01415-5.

6. Salikhov, T. K., Tulegenova, D. K., Berdenov, Zh. G., Sarsengaliyev, R. S., & Salikhova, T. S. (2022). Study of the soil cover of ecosystems of the Chingirlaus district of the Western Kazakhstan region on the basis of the application of GIS technologies. Series of geology and technical sciences, 3(453), 226-242. https://doi.org/10.32014/2022.2518-170x.192.

7. Yermolov, P., Khasen, B., Antonyuk, R., & Makat, D. (2019). Geodynamics and metallogeny of Tekturmas ophiolite belt (According to the records of the grant of the Science Fund of the Republic of Kazakhstan 2018–2020 “Depth prognosis, surveys, exploration of mineralization areas in Tekturmas ophiolite belt). News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(438), 235-245. https://doi.org/10.32014/2019.2518-170X.175.

8. Baibatsha, A.B., & Muszynski, A. (2020). Geological-geophysical prospecting indicators of the arganaty district predictive blocks (Eastern Balkhash). News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2(440), 31-39. https://doi.org/10.32014/2020.2518-170X.28.

9. Moldabayeva, G. Z., Suleimenova, R. T., Akhmetov, S. M., Shayakhmetova, Z. B., & Suyungariyev, G. E. (2021). The process of monitoring the current condition of oil recovery at the production fields in Western Kazakhstan. Journal of Applied Engineering Science, 19(4), 1099-1107. https://doi.org/10.5937/jaes0-30840.

10. Togizov, K., Muratkhanov, D., & Aksholakov, Y. (2020). Rare-earth element concentration conditions in the rare-metal deposits of the Karakamys ore district. Science and Technologies in Geology, Exploration and Mining, 271-278. https://doi.org/10.5593/sgem2020/1.1/s01.034.

11. Rakishev, B., Kenzhetaev, Z., Mataev, M., & Togizov, K. (2022). Improving the Efficiency of Downhole Uranium Production Using Oxygen as an Oxidizer. Minerals, 12(8), 1005. https://doi.org/10.3390/min12081005.

12. Stepanets, V. G., Levin, V. L., Savelyev, N. A., Khakimzhanov, M., & Makat, D. K. (2017). Evolution of picrite magmatism and ore formation in the Ulytau region of central Kazakhstan. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 1(421), 18-36.

13. Baibatsha, A., Arshamov, Y., Bekbotayeva, A., & Baratov, R. (2017). Geology of the main industrial types of copper ore deposits in Kazakhstan. International Multidisciplinary Scientific Geoconference SGEM, (11), 231-238. https://doi.org/10.5593/sgem2017/11/s01.029.

14. Issayeva, L., Togizov, K., Duczmal-Czernikiewicz, A., Kurmangazhina, M., & Muratkhanov, D. (2022). Ore-controlling factors as the basis for singling out the prospective areas within the Syrymbet rare-metal deposit, Northern Kazakhstan. Mining of Mineral Deposits, 16(2), 14-21. https://doi.org/10.33271/mining16.02.014.

15. Baibatsha, A. B., Bekbotayeva, A. A., & Bekbotayev, A. T. (2015). Ore minerals of Carboniferous copper sediment-hosted Zhezkazgan deposit (Central Kazakhstan). Surveying Geology and Mining Ecology Management, (1), 329-335.

16. D’yachkov, B. A., Mizernaya, M. A., Khromykh, S. V., Bissatova, A. Y., Oitseva, T. A., Miroshnikova, A. P., & Yeskaliyev, Y. T. (2022). Geological history of the Great Altai: Implications for mineral exploration. Minerals, 12(6), 744. https://doi.org/10.3390/min12060744.

17. Gornostayev, S. S., Crocket, J. H., Mochalov, A. G., & Laajoki, K. V. O. (2009). The platinum-group minerals of the Baimka placer deposits, Aluchin horst. Canadian Mineralogist, 37(5), 1117-1129.

18. Begalinov, A., Shautenov, M., Almenov, T., & Bektur, B. (2022). Leaching process intensification of gold-bearing raw materials. Mining of Mineral Deposits, 16(2), 42-48. https://doi.org/10.33271/mining16.02.042.

19. D’yachkov, B. A., Bissatova, A. Y., Mizernaya, M. A., Khromykh, S. V., Oitseva, T. A., Kuzmina, O. N., Zimanovskaya, N. A., & Aitbayeva, S. S. (2021). Mineralogical tracers of gold and rare-metal mineralization in Eastern Kazakhstan. Minerals, 11(3), 1-23. https://doi.org/10.3390/min11030253.

20. Togizov, K., & Antonenko, A. (2020), The structural tectonic position and predictive search criteria for the lead-zinc karst mineralisation (South Kazakhstan). International Multidisciplinary Scientific Geoconference SGEM, (20), 335-340. https://doi.org/10.5593/sgem2020/1.1/s01.042.

21. Shoimuratov, T. H., Hajitov, N. Sh., & Kurbanyazov, S. K. (2022). The role of hydrodynamic and structural-tectonic factors in the formation of hydrocarbon deposits in the Jurassic sediments of the Bukharo-Khiva region. Engineering Journal of Satbayev University, 144(4), 41-45. https://doi.org/10.51301/ejsu.2022.i4.06.

22. Antonenko, A., & Khodzhimuratova, A. (2020). Local criteria in search for karst mineralization in the Achisai ore district (South Kazakhstan). International Multidisciplinary Scientific Geoconference SGEM, (20), 147-153. https://doi.org/10.5593/sgem2020/1.1/s01.019.

23. Wang, J., Apel, D. B., Dyczko, A., Walentek, A., Prusek, S., Xu, H., & Wei, C. (2022). Analysis of the damage mechanism of strainbursts by a global-local modeling approach. Journal of Rock Mechanics and Geotechnical Engineering, 14(6), 1671-1696. https://doi.org/10.1016/j.jrmge.2022.01.009.

24. Mukhanova, A. A., Yessengaziyev, A. M., Barmenshinova, M. B., Samenova, N. O., Toilanbay, G. A., & Toktagulova, K. N. (2022). Improvement of the technology related gold-containing raw materials with the use of ultramicroheterogeneous flotoreagent. Metalurgija, 61(3-4), 777-780.

25. Yessengaziyev, A., Mukhanova, A., Tussupbayev, N., & Barmenshinova, M. (2022). The usage of basic and ultramicroheterogenic flotation reagents in the processing of technogenic copper-containing raw materials. Journal of Chemical Technology and Metallurgy, 57(6), 1235-1242.

26. Kassymkanova, K. K., Istekova, S., Rysbekov, K., Amralinova, B., Kyrgizbayeva, G., Soltabayeva, S., & Dossetova, G. (2023). Improving a geophysical method to determine the boundaries of ore-bearing rocks considering certain tectonic disturbances. Mining of Mineral Deposits, 17(1), 17-27. https://doi.org/10.33271/mining17.01.017.

27. Lewinska, P., Dyczko, A., & Matula, R. (2017). Integration of Thermal Digital 3D Model and a MASW (Multichannel Analysis of Surface Wave) as a Means of Improving Monitoring of Spoil Tip Stability. Baltic Geodetic Congress, 232-236, 8071478. https://doi.org/10.1109/BGC.Geomatics.2017.29.

28. Stepanenko, N. I., Dyusembaeva, K. Sh., & Isaeva, L. D. (2017). Ore-bearing weathering mantle of Kundybay rare earth deposit (North Kazakhstan). Gornyi Zhurnal, (2), 33-38. https://doi.org/10.17580/gzh.2017.02.06.

29. Mukhamedzhanov, M. A., Makyzhanova, A. T., & Kulagin, V. V. (2017). The rationale and definition of prospects by the use of groundwater for irrigation, forage production and pastures irrigation of Kazakhstan. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 3(423), 72-83.

30. Jurza, P., Campbell, I., Robinson Wackerle, R., Cunneen, P., & Pavlik, B. (2005). Use of 214Pb phtopeaks for Radon removal: utilizing current airborne gamma-ray spectrometer technology and data processing. Exploration Geophysics, (36), 322-327. https://doi.org/10.1071/EG05322.

31. Ratov, B. T., Bondarenko, M. O., Mechnik, V. A., Strelchuk, V. V., Prikhna, T. A., Kolodnitskyi, V. M., Nikolenko, A. S., …, & Borash, A. R. (2021). Structure and Properties of WC–Co Composites with Different CrB2 Concentrations, Sintered by Vacuum Hot Pressing, for Drill Bits. Journal of Superhard Materials, 43(5), 344-354. https://doi.org/10.3103/s1063457621050051.

32. Amralinova, B., Agaliyeva, B., Lozynskyi, V., Frolova, O., Rysbekov, K., Mataibaeva, I., & Mizernaya, M. (2023). Rare-Metal Mineralization in Salt Lakes and the Linkage with Composition of Granites: Evidence from Burabay Rock Mass (Eastern Kazakhstan). Water, 15(7), 1386. https://doi.org/10.3390/w15071386.

33. Issayeva, L., Assubayeva, S., Kembayev, M., & Togizov, K. (2019). The formation of a geoinformation system and creation of a digital model of Syrymbet rare-metal deposit (North Kazakhstan). International Multidisciplinary Scientific Geoconference SGEM, 19(1), 609-616. https://doi.org/10.5593/sgem2019/1.1/s01.075.

34. Amralinova, B. B., Frolova, O. V., Mataibaeva, I. E., Agaliyeva, B. B., & Khromykh, S. V. (2021). Mineralization of rare metals in the lakes of East Kazakhstan. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 16-21. https://doi.org/10.33271/nvngu/2021-5/016.

35. Kenzhetaev, Zh., Togizov, K., Abdraimova, M., & Nurbekova, M. (2022). Selecting the rational parameters for restoring filtration characteristics of ores during borehole mining of uranium deposits. Mining of Mineral Deposits, 16(3), 1-10. https://doi.org/10.33271/mining16.03.001.

 

Visitors

6169376
Today
This Month
All days
656
35441
6169376

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.

Contacts

D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (056) 746 32 79.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home Archive by issue 2023 Content №5 2023 Predicted resource assessment of Central Kazakhsta ore districts based on airborne geophysical methods