Current state and forecast of sulfur dioxide and dust emissions at thermal power plants of Ukraine

User Rating:  / 0


I.A.Volchyn,, Thermal Energy Technology Institute of the National Academy of Sciences of Ukraine, Kyiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.; National University of Food Technologies, Kyiv, Ukraine

L.S.Haponych,, Thermal Energy Technology Institute of the National Academy of Sciences of Ukraine, Kyiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

W.Ja.Przybylski,, National University of Food Technologies, Kyiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

повний текст / full article

Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2021, (5): 087 - 093


Analysing the current state of sulfur dioxide and dust emissions from coal combustion at thermal power plants of Ukraine, predicting them with regard to changes which have occurred in the Ukrainian power industry over the last years, and estimating these emissions to compare with the limit gross emission values of pollutants according to the National Emissions Reduction Plan.

The method for calculating the pollutant emissions is elaborated, based on using the quantity of produced or supplied electricity for each year of TPP operation.

It has been established that the gross emissions of SO2 at Ukrainian TPPs over the last years have amounted to about 620 thousand tons, and those of dust have made 140 thousand tons. In 2019, the average emission factors for all types of coal were 1180 g/GJ (for sulfur dioxide) and 288 g/GJ (for dust). The average values of specific emissions of SO2 and dust were 14.4 and 3.4g/kWh of supplied electricity, respectively, as compared with 1.2 and 0.2 g/kWh, which are characteristic of the current level at coal TPPs of the EU countries.

Analytic dependency has been established between SO2 emission factors in flue gas at coal TPPs and low heat value and sulfur and ash content for Ukrainian energy coal.

Practical value.
The developed method allows one to perform calculations of maximum permissible and predicted gross emissions of SO2 and dust at TPPs of Ukraine.

thermal power plant, electricity, flue gasses, sulfur dioxide, dust, emission limit values


1. Verkhovna Rada of Ukraine (n.d.). National Emissions Reduction Plan for Large Combustion Plants. Adopted by the direction of Cabinet of Ministers of Ukraine of 08.11.2017 No. 796-r. Retrieved from

2. UER-lex (2010). Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Union, 334/17. Retrieved from

3. Constantin, D.E., Bocneala, C., Voiculescu, M., Rou, A., Merlaud, A., Roozendael, M. V., & Georgescu, P. L. (2020). Evolution of SO2 and NOx Emissions from Several Large Combustion Plants in Europe during 20052015. International journal of environmental research and public health, 17(10), 3630.

4. European Environmental Agency (2019). EMEP/EEA air pollutant emission inventory guidebook 2019. Technical guidance to prepare national emission inventories. EEA Report. Luxembourg: Publications Office of the European Union.

5. Shrestha, R.M., Kim Oanh, N.T., Shrestha, R.P., Rupakheti, M., Rajbhandari, S., Permadi, D.A., , & Iyngararasan, M. (2013). Atmospheric Brown Clouds. Emission Inventory Manual. Nairobi, Kenya: United Nations Environment Programme. Retrieved from

6. Graham, D., Harnevie, H., van Beek, R., & Blank, F. (2012). Validated methods for flue gas flow rate calculation with reference to EN 12952-15. Netherlands, Arnhem: KEMA. Retrieved from

7. European Environment Agency (2020).Emissions of air Pollutants from Large Combustion Plants in Europe, Indicator Assessment. Retrieved from https:

8. Volchyn, I.A., & Haponych, L.S. (2014). Estimate of the sulfur dioxide concentration at thermal power plants fired by Donetsk coal. Power Technology and Engineering, 3(48), 218-221.

9. Volchyn, I.A., & Haponych, L.S. (2016). Engineering method for calculating the parameters of flue gas of coal-fired thermal power plants based on solid fuel characteristics. Ukrainian Journal of Food Science, 4(2), 327-338.

10. Volchyn, I.A., & Haponych, L.S. (2019). Estimation of pollutants emissions at Ukrainian thermal power plants. The Problems of General Energy, 4(59), 45-53.

11. Ukrenerho (2019). Compliance evaluation report on sufficiency of generating capacitance. Kyiv: Natsionalna enerhetychna kompaniia Ukrenerho. Retrieved from

12. Lecomte, ., Ferrera de la Fuente, J.F., Neuwahl, F., Canova,M., Pinasseau, A., Jankov, I., ..., & Sancho, L.D. (2017). Best Available Techniques (BAT). Reference Document for Large Combustion Plants, EUR 28836 EN. Seville: European Commission.

13. Srinivasan, S., Roshna, N., Guttikunda, S., Kanudia, A., Saif, S., & Asundi, J. (2018). Benefit Cost Analysis of Emission Standards for Coal-based Thermal Power Plants in India, (CSTEP-Report-2018-06). Retrieved from

14. Volchyn, I.A., Haponych, L.S., & Zghoran, I. (2018). Selection of the technology of desulfurization of flue gases for Ukrainian coal-burning thermal power plants. Scientific Works of National University of Food Technologies, 24(4), 154-168.

15. Ministry of Energy of Ukraine (n.d.). Reports on the implementation of NERP for 2018-2020. Retrieved from

16. Guttikunda, S.K., & Jawahar, . (2014). Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmospheric Environment, 92, 449-460.

17. Dai, ., Ma, D., Zhu, R., Sun, B., & He, J. (2019). Impact of Control Measures on Nitrogen Oxides, Sulfur Dioxide and Particulate Matter Emissions from Coal-Fired Power Plants in Anhui Province, China. Atmosphere, 10(1), 35.

18. Wu, R., Liu, F., Tong, D., Zheng, Y., Lei, Y., Hong, Ch., , & Bo, Y. (2019). Air quality and health benefits of Chinas emission control policies on coal-fired power plants during 20052020. Environmental Research Letters, 14(9), 094016. Retrieved from

19. Shirkey, G., Belongeay, M., Wu, S., Ma, X., Tavakol, H., Anctil,A., Marquette-Pyatt, S., , & Celik, I. (2021). An Environmental and Societal Analysis of the US Electrical Energy Industry Based on the WaterEnergy Nexus. Energies, 14, 2633.

20. Beshta, O.S., Fedoreiko, V.S., Palchyk, A.O., & Burega, N.V. (2015). Autonomous power supply of the objects based on biosolid oxide fuel systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 67-73.

21. Jin, Y., Andersson, H., & Zhang, S. (2016). Air Pollution Control Policies in China: A Retrospective and Prospects.International Journal of Environmental Research and Public Health, 13, 1219.


Newer news items:

Older news items: