Compound physical and mechanical effects stimulating metastable diamond formation
- Details
- Category: Content №4 2021
- Last Updated on 23 August 2021
- Published on 30 November -0001
- Hits: 6065
Authors:
V.V.Sobolev, orcid.org/0000-0003-1351-6674, Dnipro University of Technology, Dnipro, Ukraine, email: This email address is being protected from spambots. You need JavaScript enabled to view it.
O.S.Kovrov, orcid.org/0000-0003-3364-119X, Dnipro University of Technology, Dnipro, Ukraine, email: This email address is being protected from spambots. You need JavaScript enabled to view it.
M.M.Nalisko, orcid.org/0000-0003-4039-1571, State Higher Education Establishment Pridneprovsk State Academy of Civil Engineering and Architecture, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
N.V.Bilan, orcid.org/0000-0002-4086-7827, Dnipro University of Technology, Dnipro, Ukraine, email: This email address is being protected from spambots. You need JavaScript enabled to view it.
O.A.Tereshkova, orcid.org/0000-0001-5731-7349, Dnipro University of Technology, Dnipro, Ukraine, email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2021, (4): 047 - 055
https://doi.org/10.33271/nvngu/2021-4/047
Abstract:
Purpose. To synthesize diamond polycrystals in a thermodynamically stable region, and to grow up a single crystal shell under conditions of thermodynamic metastability. To investigate some physical properties and features of the internal structure for synthesized single crystals for the development of new models and hypotheses regarding the issue of diamond genesis.
Methodology. Experimental studies using shock-wave effects on a metal alloy containing non-diamond carbon. Methods of infrared and ultraviolet spectroscopy, X-ray phase analysis, electron paramagnetic resonance, isotope analysis, differential thermal analysis, electron microscopy, and others are used. The synthesis of nanocrystalline diamond particles as nuclei for growing single crystals is carried out by the shock-wave method using profiled shock waves.
Findings. A complex of physicochemical methods for studying the grown diamond monocrystals has been carried out. The reasons for the discrete growth of diamond and the retention of the central inclusion (a polycrystalline diamond of shock-wave origin) in the process of growth have been established and analyzed. It is shown that the discreteness of diamond formation is characteristic only for thermodynamically metastable conditions. The results of the experiments give grounds to make an assumption about the metastable growth, including of diamonds from primary deposits.
Originality. The hypothesis has been developed concerning the origin of diamond nanoparticles in interstellar carbon clouds which refer exclusively to central polycrystalline inclusions in a monocrystal diamond shell. The hypothesis eliminates the scientific contradiction that arises in all cases when attempts are made to interpret the natural discreteness of diamond formation based on the regularities of the graphite-diamond state diagram. Possible causes of discrete diamond formation in nature and the scenario of the formation of diamond nanocrystals in an interstellar cloud of atomic carbon have been considered.
Practical value. The value of the experimental research results refers to the development of a non-energy-intensive technology for the growing large diamond monocrystals at temperatures of 5001400 K, and pressures of 105107 Pa.
Keywords: diamond, metastability, discreteness, diamond formation, nanocrystals, monocrystal nucleus, protoplanetary cloud
References.
1. Lewis, R.S., Ming, T., Wacker, J.F., Anders, E., & Steel, E. (1987). Interstellar diamonds in meteorites. Nature, 326(6109), 160-162.
2. Minory Ozima, & Shigeo Zashu (1983). Primitive Helium in Diamond. Science, 219(4588), 1067-1068.
3. Garanin, V.K. (1990). On the issue of the discreteness of natural diamond formation. Mineralogicheskiy zhurnal, (5), 28-36.
4. Petrov, V.S. (1959). Genetic relation of diamonds with kimberlite carbonates. Vestnik MGU. Seriya geologicheskaya, (2), 13-20.
5. Portnov, M.M. (1979). Fluid diapirism as the cause of formation of kimberlite pipes and carbonatite massifs. Doklady AN SSSR, 246(2), 416-420.
6. Nikolskiy, N.S. (1981). On metastable crystallization of metastable diamonds from the fluid phase. Doklady AN SSSR, 226(4), 954-958.
7. Letnikov, F.A. (1983). Diamond formation in deep tectonic zones. Doklady AN SSSR, 271(2), 433-435.
8. Vasilyev, Ye.A., Kriulina, G.Yu., & Garanin, V.K. (2020). Spectroscopic features of the diamond deposit named after M.V. Lomonosov. Zapiski rossiyskogo mineralogicheskogo obshchestva, 149(2), 1-11. https://doi.org/10.31857/s0869605520020082.
9. Rozen, O.M., Zorin, Yu.M., & Zayachkovskiy, A.A. (1972). Discovery of diamond in connection with eclogites in the Precambrian of the Kokchetav massif. Doklady AN SSSR,203(3), 674-676.
10. Sidorenko, A.V. (1976). Carboniferous metamorphic complexes of the Precambrian as a potential source of diamond. Doklady AN SSSR,230(6), 1433-1436.
11. Kaminskiy, F.V. (1976). Alkaline-basalt breccias of the Onega Peninsula. Izestiya AN SSSR. Seriya geologicheskaya, (7), 50-59.
12. Kutyyev, F.SH., & Kutyyeva, G.V. (1975). Diamonds in Kamchatka basaltoids. Doklady AN SSSR,221(1), 183-186.
13. Lukyanova, L.I. (1978). On founds of diamonds in picrites of the Urals. Zapiski Vsesoyuznogo mineralogicheskogo obshchestva, 107(5), 580-585.
14. Abovyan, S.B., & Kaminskiy, F.V. (1977). On the depth of the of ultramafic rocks formation in the Armenian SSR. Doklady AN ArmSSR, 65(4), 227-232.
15. Smirnov, A.A. (1970). Moissonite in Precambrian rocks of Aldan. In Geology and experiment. Research. Moscow: Nedra.
16. Slobodskoy, R.M. (1981). Organoelemental compounds in magmatogenic and ore-forming processes: monograph. Novosibirsk: Nauka.
17. rishnarao, J.S.R. (1964). Native nickel-iron ll, its mode of occurrence, distribution and origin. Economic Geology, 59(3), 443-448.
18. Sokhor, M.I., Polkanov, Yu.A., & Yeromenko, G.K. (1973). Finding of a hexagonal polymorphic modification diamond (lonsdaleite) in placers, Doklady AN SSSR, 209(4), 933-936.
19. Letnikov, F.A., & Narseyev, V.A. (2016). Kumdykol diamond deposit in northern Kazakhstan. Geologiya i okhrana nedr, 60(3), 7-14.
20. Sobolev, V.V., Taran, Yu.N., & Gubenko, S.I. (1993). Synthesis of diamond in cast iron. Metal Science and Heat Treatment, 35(1), 3-9. https://doi.org/10.1007/BF00770062.
21. Nikolskiy, N.S. (1987). Fluid regime of endogenous mineral formation: monograph. Moscow: Nedra.
22. Sobolev, V.S. (1960). Conditions for diamond deposit formation. Geologiya i geofizika, (1), 7-22.
23. Alethea Inns (June 21, 2021). Geological origin of Natural Diamonds. Gemological Science International (GSI). Retrieved from https://gemscience.net/geological-origin-of-natural-diamonds/.
24. Lazko, Ye.Ye. (1979). Heavy diamond concentrates and the genesis of kimberlite rocks: monograph. Moscow: Nedra.
25. Vereshchagin, L.F. (1982). Synthetic Diamonds and Hydroextrusion: a collection of articles. Moscow: Nauka.
26. Kidalov, S.V., Shakhov, F.M., Davidenko, V.M., Yashin, V.A., Bogomazov, I.Ye., & Vul, A.Ya. (2008). Effect of carbon materials on the graphite-diamond phase transition at high pressures and temperatures. Fizika tverdogo tela, 50(5), 940-944.
27. Prikhna, A.I. (2008). High pressure cleaners in the production of synthetic diamonds (Review). Sverkhtvordyye materialy, (1), 3-22.
28. DeCarly, .S., & Jamieson, I.L. (1961). Formation of diamond by explosive shock. Science, 133(3467), 1821-1823. https://doi.org/10.1126/science.133.3467.1821.
29. Alder, B.J., & Christian, R.H. (1961).Behavior of strongly shocked carbon. Physical Review Letters, (7), 367.
30. Cannon, P. (1963). Formation of diamond. Journal of the American Chemical Society, 4(22), 4253-4256.
31. Kraus, D., Ravasio, A., Gauthier, M., Gericke, D. O., Vorberger,J., Frydrych, S., , & Roth, M. (2016). Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nature, (7), 10970. https://doi.org/10.1038/ncomms10970.
32. Kurdyumov, A.V., Britun, V.F., Yarosh, V.V., Danilenko, A.I., & Zelyavskii, V.B. (2012). The influence of the shock compression conditions on the graphite transformations into lonsdaleite and diamond. Journal of Superhard Materials, 34, 19-27. https://doi.org/10.3103/S1063457612010029.
33. Chao Wen, Xun Li, De-Yu Sun, Jin-Qing Guan, Xiao-Xin Liu, Ying-Rui Lin, , & Zhi-Hao Jin (2005). Raman spectrum of nano-graphite synthesized by explosive detonation. Guang Pu Xue Yu Guang Pu Fen Xi, 25(1), 54-70.
34. Sozin, YU.I., & Belyankina, A.V. (1976). Explosion-synthesized diamond substructure. Sinteticheskiye almazy, (5), 27-28.
35. Andreyev, V.D., Lukash, V.A., Voloshin, M.N., & Vishnevskiy,A.S. (1981). Structure and phase transformations of graphite in cast iron under dynamic loading and morphological characteristics of the resulting diamonds. Fizika i tekhnika vysokikh davleniy, (6), 61-64.
36. Sobolev, V.V., Slobodskoy, V.YA., & Yegorov, P.A. (1989). Possible mechanism of spontaneous diamond crystallization during shock compression of carbon-containing alloys. In Detonatsiya. Materialy IX Vsesoyuznogo simpoziuma po goreniyu i vzryvu, (pp. 69-72). Suzdal, Chernogolovka. SSSR: OIKHF AN SSSR.
37. Christopher J. Mundy, Alessandro Curioni, Nir Goldman, I-FWill Kuo, Evan J. Reed, Laurence E. Fried, & Marcella Ianuzzi (2008). Ultrafast transformation of graphite to diamond: an ab initio study of graphite under shock compression. Journal of Chemical Physics, 128(18), 184701. https://doi.org/10.1038/ncomms10970.
38. Turneaure, S.J., Sharma, S.M., Volz, T.J., Winey, M., & Gupta,Y.M. (2017). Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds, Science Advances, 3(10). https://doi.org/10.1126/sciadv.aao3561.
39. Sobolev, V.V. (January 1987). Diamond crystallization in nature. Combustion, Explosion, and Shock Waves, 23(1), 83-86.
40. Sobolev, V.V., Taran, Y.N., & Gubenko, S.I. (1997). Shock wave use for Diamond Synthesis. Journal de Physique IV, 7(3), 3-733-75. https://doi.org/10.1051/jp4:1997315.
41. Ferro, S. (2002). Synthesis of diamond. Journal of Materials Chemistry, 1(2,) 2843-2855. https://doi.org/10.1039/B204143J.
42. Taran, Yu.N., Sobolev, V.V., Slobodskoj, V.Ya., & Gubenko, S.I. (1991). Formation of diamond inclusions in grey iron at combination of shock-wave treatment and thermal cycling. Izvestiya AN SSSR: Metally, (3), 140-147.
43. Masaytis, V.L. (1998). Diamond-bearing impactites of the Popigai astrobleme: monograph. Saint Petersburg: VSEGEI.
44. Galimov, E.M. (1973). Cavitation as a mechanism for the diamond origin. Izvestiya AN SSSR. Seriya geologicheskaya, (1), 22-37.
45. Galimov, E.M., Sevastyanov, V.S., Karpov, G.A., Shilobreyeva,S.N., & Maksimov, A.P. (2016). Microcrystalline diamonds in the oceanic lithosphere and their possible nature. Doklady RAN, 469(1), 61-64. https://doi.org/10.7868/S0869565216190166.
46. Deryagin, B.D., Fedoseyev, D.V., & Bakul, V.N. (1971). Physical and chemical sirtez of diamond from gas: monograph. Kiev: Tekhnika.
47. Rudenko, A.P., & Kulakova, I.I. (1983). On the mechanism and initiation of the growth of diamond crystals under the conditions of chemical mining. In Superhard materials: synthesis, properties, application: reports of an international seminar, (pp. 40-44). Kiev: Naukova dumka.
48. Spitsyn, B.V. (2020). The nucleation of a diamond from an activated gas phase. Fizika tverdogo tela, 62(1), 16-19. Retrieved from https://www.elibrary.ru/item.asp?id=42571171.
49. Ddnik, S.F., Vasilenko, R.L., & Voyevodin, V.N. (2014). Preparation and properties of conductive diamond nanocrystalline coatings. Nanosystems, Nanomaterials, Nanotechnologies, 12(2), 213-224.
50. Spitsyn, B.V., & Alexenko, A.E. (2007). Chemical crystallization of diamond and the diamond coating deposition from gas phase. Protection of Metals, 43(5), 415-431.
51. Barjon, J., Rzepka, E., Jomard, F., Laroche, J.-M., Ballutaud, D., Kociniewski, T., & Chevallier, J. (2005).Silicon incorporation in CVD diamond layers. Physica Status Solidi, 202(11), 2177-2181. https://doi.org/10.1002/pssa.200561920.
52. Kopf, R.F. (2003). State-of-the-Art Program on Compound Semiconductors XXXIX and Nitride and Wide Bandgap Semiconductors for Sensors, Photonics and Electronics IV: proceedings of the Electrochemical Society. The Electrochemical Society, (2011), 363.
53. Roddy, D.J., Pepin, R.O., & Mkerrill, R.B. (1977). Impact and explosion cratering. New York: Pergamon Press.
54. Grieve, R.A.F. (1982). The record of impact on Earth: Implications for a major Cretaceous/Tertiary impact event. Geological Society of America Special Papers, (190), 25-37.
55. Sobolev, V.V., Bilan, N.V., & Khalimendik, A.V. (2017). n formation of electrically conductive phases under electrothermal activation of ferruginous carbonate. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 27-35.
56. Pivnyak, G.G., Sobolev, V.V., & Filippov, A.O. (2012). Phase transformations in bituminous coals under the influence of weak electric and magnetic fields. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 43-49.
57. Soboliev, V., Bilan, N., & Samovik D. (2013). Magnetic stimulation of transformations in coal. Mining of Mineral Deposits, 221-225. https://doi.org/10.1201/b16354-2.
58. Kravchenko, V.M., & Sobolev, V.V. (2002). Conditions and processes of ore-forming contraction strain of ferruginous quartzites in zones of dislocation metamorphism. Dopovidi NAN Ukrayiny, (4), 129-132.
59. Mindeli, E.O., Chagelishvili, E.SH., & Mechurchlishvili, T.I. (1980). Electron diffraction studies of diamonds synthesized under extreme conditions. Fizika i tekhnika vysokikh davleniy, (2), 56-58.
60. Sobolev, V.V., Didyk, R.P., Slobodskoi, V.Ya., Merezhko, Yu.I., & Skidanenko, A.I. (1993). Dynamic effects in the production of diamond from solid-solution carbon. Combustion, Explosion, and Shock Waves, 19(5), 658-659. https://doi.org/10.1007/BF00750451.
61. Sobolev, V.V., Gubenko, S.I., Rudakov, D.V., Kyrychenko, O.L., & Balakin, O.O. (2020). Influence of mechanical and thermal treatments on microstructural transformations in cast irons and properties of synthesized diamond crystals. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 53-62. https://doi.org/10.33271/nvngu/2020-4/053.
62. Sobolev, V.V., Taran, Yu.N., & Gubenko, S.I. (1993). Synthesis of diamond in cast iron. etallovedenie i Termicheskaya Obrabotka Metallov, (1), 2-6.
63 Sobolev, V.V., & Bondarenko, E.V. (1993). The change in granulometric composition of diamond crystals when treating synthesis products in electromagnetic field. Sverkhtverdye Materialy, (4), 57-58.
64. Sobolev, V.V. (1994). The Diamond Synthesis: Experimental Studies of Hard-Phase Epitaxy. Sverkhtverdye Materialy, (4), 340-347.
65. Trofimov, V.S. (1980). Geology of natural diamond deposits: monograph. Moscow: Nedra.
66. Garanin, V.K., & Kudryavtseva, G.P. (2006). Polygenicity and discreteness of natural diamond formation. Moscow: Akademik V.I.Smirnov Fund. Smirnovskiy sbornik.
67. Gurney, J.J., Helmstaedt, H.H., Le Roex, A.P., Nowicki, T.E., Richardson, S.H., & Westerlund, K.J. (2005). Diamonds: Crustal Distribution and Formation Processes in Time and Space and an Integrated Deposit Model. Economic Geology, 100th Anniversary Volume, 143-177.
68. Bartoshinskiy, Z.V., & Kvasnitsa, V.N. (1991). Crystallomorphology of kimberlite diamond: monograph. Kiev: Naukova dumka.
69. Bulanova, G.P., Barashkov, Yu.P., Talnikova, S.B., & Smelova,G.B. (1993). Natural diamond genetic aspects: monograph. Novosibirsk: Nauka.
70. Dishler, B. (2012). Handbook of spectral lines in diamond. Springer.
71. Bokiy, G.B., Bezrukov, G.N., Klyuyev, YU.A., Nalotov, A.M., & Nepsha, V.I. (1986). Natural and synthetic diamonds: monograph. Moscow: Nauka.
72. Khachatryan, G.K., Palazhchenko, O.V., & Garanin, V.K. (2008). Genesis of nonequilibrium diamond crystals from the Karpinsky-1 according to cathodic luminescence and IR spectroscopy data. Vestnik Moskovskogo Gosudarstvennogo Universiteta, (2), 38-45.
73. Chernai, A.V., Sobolev, V.V., Chernaj, V.A., Ilyushin, M.A., & Dlugashek, A. (2003). Laser initiation of charges on the basis of di-(3-hydrazino-4-amino-1,2,3-triazol)-copper (II) perchlorate. Fizika Goreniya i Vzryva, 39(3), 105-110. https://doi.org/10.1023/A:1023852505414.
74. Danilenko, V.V. (2010). Explosion: physics, engineering, technology: monograph. Moscow: Energoatomizdat.
75. Garanin, V.K., Digonskiy, S.V., & Kudryavtseva, G.P. (2006). Model of natural diamond formation in the aspect of its synthesis. Article 2. Genesis of diamond in meteorites, metamorphic rocks and kimberlites. Izvestiya VUZov. Geologiya i razvedka, (2), 8-14.
76. Galimov, E.M. (1984). 13/12 of diamond. Vertical zoning of diamond formation in the lithosphere. In Geochemistry and Cosmochemistry. Materials of the 27th International Geological Congress, (110-123). Moscow: Nauka.
77. Breusov, O.N., Volkov, V.M., Drobyshev, V.N., & Tatsiy, V.F. (1984). Experimental and theoretical study of the oxidation of diamond micropowders by the DTA method. In Interaction of diamonds with liquid and gaseous media, (19-35). Kiev: ISM AN USSR.
78. Breusov, O.N., Tatsiy, V.F., & Shunina, I.G. (1989). Evaluation of the oxidation resistance of diamond micropowders by the temperature of the maximum DTA curves. Sinteticheskiye almazy, (1), 25-28.
79. Konovalenko, A.A. (1984). Observations of carbon recombination lines at decameter waves in the direction of the Cassiopeia A source. Pisma v Astronomicheskiy zhurnal, 10(11), 846-853.
80. Sobolev, V.V., Bilan, N.V., Baskevich, A.S., & Stefanovich, L.I. (2018). Electrical charges as catalysts of chemical reactions on a solid surface. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 50-58. https://doi.org/10.29202/nvngu/2018-4/7.
81. Tsitsin, F.A. (2009). Essays on the modern cosmogony of the solar system: monograph. Dubna: Feniks.
82. Danilenko, V.V. (2013). Synthesis and sintering of diamond by explosion: monograph. Moscow: Energoatomizdat.
83. Yamaguchi, S. (1983). Obtaining diamond and boron nitride by the internal explosion method. In Superhard materials: synthesis, properties, application, (55-57). Kiev: Naukova dumka.
84. Sobolev, V.V., & Bilan, N.V. (2018). Physical conditions of the light core formation and thermonuclear heat source deep inside the earth. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. (5), 13-23. https://doi.org/10.29202/nvngu/2018-5/1.
85. Sobolev, V., & Hove Hogset, I. (1997). Phenomenon of spiral vortex formation over the shock wave front. Journal De Physique. IV: 7(3), 127-129.
86. Sobolev, V.V. (1985). The hypothesis of the formation of diamond in nature and the possible reasons for its widespread distribution on Earth. In Detonation. Tez. dokl. III Vses. soveshch. po detonatsii (p.174). Tallinn-Chernogolovka: OIKHF AN SSSR.
Newer news items:
- Modeling enterprises’ economic security in crisis conditions - 23/08/2021 18:11
- The enterprise capital structure management model - 23/08/2021 18:11
- Knowledge base formation for automation of dispatch control over power systems of the mining and metallurgical complex - 23/08/2021 18:11
- State regulation of environmental safety - 23/08/2021 18:11
- Research into ecological status and the degree of heavy metal concentration in the waters of the Drenica river (Kosovo) - 23/08/2021 18:11
- Recovery of iron and phosphorus removal from Gara Djebilet iron ore (Algeria) - 23/08/2021 18:11
- Analysis of stress in the conveyor belt (Maxwell–element model) - 23/08/2021 18:11
- Investigation of the effect of several parameters on the applicability of magnetic separation method - 23/08/2021 18:11
- Analytical and experimental assessment of screw centrifugal pump at improving its design - 23/08/2021 18:11
- Definition of rational operating modes of a vibratory jaw crusher - 23/08/2021 18:11
Older news items:
- Water resistance of structured sand-sodium-silicate mixtures - 23/08/2021 18:11
- Composition and processing of sulphide lead-zinc ores from Chaabet El-Hamra mine (Setif, Algeria) - 23/08/2021 18:11
- Automatic control of jet grinding on the basis of acoustic monitoring of mill operating zones - 23/08/2021 18:11
- Substantiating rational schedule to load trucks using draglines while mining a pit of Motronivskyi MPP - 23/08/2021 18:11
- New methods for preventing crumbling and collapse of the borehole walls - 23/08/2021 18:11
- Development of a methodology for assessing the expediency of mine workings decommissioning based on the geomechanical factor - 23/08/2021 18:11
- A model of the tectonic development of Irtysh shear zone in terms of present day radioisotope data - 23/08/2021 18:11