Process pattern of heterogeneous gas hydrate deposits dissociation

User Rating:  / 0


V. I. Bоndаrenkо, Dr. Sc. (Tech.), Prоf.,, Nаtiоnаl Mining University, Dniprо, Ukrаine, e-mаil: kаterynа.sаi@gmаil.cоm

K. S. Sаi, Cаnd. Sc. (Tech.),, Nаtiоnаl Mining University, Dniprо, Ukrаine, e-mаil: kаterynа.sаi@gmаil.cоm


Purpose. Justification of the effective dissociation process parameters of heterogeneous gas hydrate deposits and elaboration of their classification according to the thermal energy consumption.

Methodology. The methodological basis of the conducted complex research is the analysis and synthesis of literary sources, devoted to studying the peculiarities and thermobaric properties of gas hydrates, analytical calculations and laboratory experiments on the thermal energy consumption for the efficient decomposition of gas hydrates, experimental studies of the hydrate formation process and gas hydrate deposits of the mottled structure dissociation.

Findings. The parameters of formation and stable gas hydrate occurrence in natural environment, which should be taken into account when developing gas hydrate deposits, are substantiated. The existing classification of gas hydrate deposits in sedimentary rocks is analyzed. The regularities of the gas hydrate deposits dissociation process and methane gas production, depending on the percentage of rock intercalations content, are established. The volumes of analysis zones and gas output from heterogeneous gas hydrate deposits are determined. The amount of thermal energy that is necessary to be consumed to produce 1000 m3 of hydrated gas during the gas hydrate deposits development, is calculated.

Originality. It is established that the thermal energy consumption on the dissociation process in order to obtain methane gas varies with a parabolic dependency with an increase in the rock intercalations proportion in the gas hydrate deposit. A new classification of gas hydrate deposits, based on the content of rock intercalations and the amount of spent thermal energy for gas hydrate dissociation, has been developed.

Practical value. The results of studies with sufficient accuracy for practical application may be used in the development of the Black Sea gas hydrate deposits in order to obtain natural gas. The revealed dependencies of the methane gas output on the rock intercalation share are a tool for determining the effective application of technologies for the gas hydrate deposit development.


1. Hanushevych, K. and Srivastava, V., 2017. Coalbed methane: places of origin, perspectives of extraction, alternative methods of transportation with the use of gas hydrate and nanotechnologies. Mining of Mineral Deposits [e-journal], 11(3), pp. 23–34. DOI:10.15407/mining11.03.023.

2. Bondarenko, V. I., Kharin, Ye.N., Antoshchenko, N.I. and Gasyuk, R.L., 2013. Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, pp. 24–30.

3. Slyuta, E., 2017. Problems of research and mining of gas deposits on the Moon. Mining of Mineral Deposits [e-journal], 11(4), pp. 117–125. DOI: 10.15407/mining11.04.117.

4. Lozynskyi, V.H., Dychkovskyi, R.O., Falshtynskyi, V.S. and Saik, P.B., 2015. Revisiting possibility to cross disjunctive geological faults by underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, pp. 22–27.

5. Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Petlovanyi, M.V., Malanchuk, Ye.Z. and Malanchuk, Z.R., 2018. Modeling of the disjunctive geological fault influence on the exploitation wells stability during underground coal gasification. Archives of Civil and Mechanical Engineering [e-journal], 18(3), pp. 845–860. DOI: 10.1016/j.acme.2018.01.012.

6. Merey, S. аnd Sinаyuc, C., 2016. Investigаtiоn оf gаs hydrаte pоtentiаl оf the Blаck Seа аnd mоdelling оf gаs prоductiоn frоm а hypоtheticаl Clаss 1 methаne hydrаte reservоir in the Blаck Seа cоnditiоns. Jоurnаl оf Nаturаl Gаs Science аnd Engineering, 29, pp. 66–79.

7. Shnyukov, E.F., 2013. Mud volcanoes of the Black Sea as a prospecting indicator of methane gas hydrates.
Lithology and Mineral Resources [e-journal], 48(2), pp. 114–121. DOI: 10.1134/s0024490213010045.

8. Makogon, Y.F. and Makogon, T.Y., 2016. Natural Gas Hydrates. Exploration and Production of Petroleum and Natural Gas [e-journal], pp. 429–459. DOI: 10.1520/mnl7320140017.

9. Pedchenko, М. and Pedchenko, L., 2016. Technological complex for production, transportation and storage of gas from the offshore gas and gas hydrates field. Mining of Mineral Deposits [e-journal], 10(3), pp. 20–30. DOI: 10.15407/mining10.03.020.

10. Kobolev, V., 2017. Structural, tectonic and fluid-dynamic aspects of deep degassing of the Black Sea megatrench. Mining of Mineral Deposits, 11/1, pp. 31–49. DOI:10.15407/mining11.01.031.

11. Martín, M., 2016. Nonconventional fossil energy sources: shale gas and methane hydrates. Alternative Energy Sources and Technologies [e-journal], pp. 3–16. DOI: 10.1007/978-3-319-28752-2_1.

12. Pedchenko, M. and Pedchenko, L., 2017. Analysis of gas hydrate deposits development by applying elements of hydraulic borehole mining technology. Mining of Mineral Deposits [e-journal], 11(2), pp.  52–58. DOI: 10.15407/mining11.02.052.

13. Kuz’menko, O., Petlyovanyi, M. and Stupnik, M., 2013. The influence of fine particles of binding materials on the strength properties of hardening backfill. Mining of Mineral Deposits [e-journal], pp. 45–48. DOI: 10.1201/b16354-10.

14. Kovalevs’ka, I., Symanovych, G. and Fomychov, V., 2013. Research of stress-strain state of cracked coal-containing massif near-the-working area using finite elements technique. Annual Scientific-Technical Collection ‒ Mining of Mineral Deposits [e-journal], pp. 159–163. DOI: 10.1201/b16354-28.

15. Collett, T.S., 2013. Gas hydrate reservoir properties. In: Proceedings Unconventional Resources Technology Conference, Denver, Colorado.

16. Makogon, Y.F. and Omelchenko, R.Y., 2013. Commercial gas production from Messoyakha deposit in hydrate conditions. Journal of Natural Gas Science and Engineering [e-journal], 11, pp. 1–6. DOI: 10.1016/j.jngse.2012.08.002.

17. Bondarenko, V., Maksymova, E. and Koval, O., 2013. Genetic classification of gas hydrates deposits types by geologic-structural criteria. Annual Scientific-Technical Collection ‒ Mining of Mineral Deposits [e-journal], pp. 115–119. DOI: 10.1201/b16354-21.

18. Lozynskyi, V., Saik, P. and Petlovanyi, M., 2018. Analytical research of the stress-deformed state in the rock massif around faulting. International Journal of Engineering Research in Africa, 35, pp. 140–151.

19. Ovchynnikov, M., Ganushevych, K. and Sai, K., 2013. Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Collection ‒ Mining of Mineral Deposits [e-journal], pp. 203–205. DOI: 10.1201/b16354-37.

20. Bondarenko, V., Svietkina, O. and Sai, K., 2017. Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies [e-journal], 5‒6(89), pp. 48‒55. DOI: 10.15587/1729-4061.2017.112313.

 повний текст / full article



This Month
All days

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.


D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (056) 746 32 79.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home Archive by issue 2018 Content №2 2018 Mining Process pattern of heterogeneous gas hydrate deposits dissociation