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RESEARCH ON THE EFFECTIVENESS OF USING LSTM ARCHITECTURE
IN MODELING THE COGNITIVE PROCESS OF RECOGNITION

A person’s ability to recognize and separate the meanings of words when working with textual information refers to the higher
cognitive functions of the brain, in particular to the cognitive process of recognition. The solution to the problem of extracting the
meaning of words in text is related to the tasks of natural language processing (NLP) and is called word sense disambiguation
(WSD). There are many approaches to solving WSD, particularly using neural networks.

Purpose. Creation and analysis of the bidirectional LSTM neural network architecture for solving the WSD problem in the
Ukrainian language.

Methodology. One of the modern approaches to solving the WSD problem is the use of LSTM models — a type of recurrent ar-
chitecture of neural networks that allows you to capture long-term dependencies when modeling sequences. To determine the ef-
fectiveness of using this architecture, two neural networks were built during the study: the classic LSTM architecture and its improved
version — Bi-LSTM. As part of the study, a data set based on the SUM dictionary of the Ukrainian language was also created. The
implemented models were trained on the generated data set, after which a comparative analysis of the obtained data was performed.

Findings. The analysis of the results of the accuracy of the built models made it possible to determine the efficiency of the
neural network built according to the Bi-LSTM architecture. The obtained accuracy results are equal to 73 % for the LSTM
model and 83 % for Bi-LSTM, respectively, which is due to the presence of an additional layer in the Bi-LSTM model, which
provides the opportunity to take into account the full context of the word in the given text.

Originality. The paper establishes the effectiveness of the neural network model built on the Bi-LSTM architecture for solving
the WSD problem in texts in Ukrainian in comparison with the classical LSTM architecture.

Practical value. As a result of the work, a model is proposed that allows solving the problem of eliminating the ambiguity of
words in the Ukrainian language, and which can be used in text processing tasks, in particular for modeling the cognitive process

of understanding.
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Introduction. The cognitive process of understanding be-
longs to the highest level of cognitive functions of the brain
and is used by the human brain to identify objects that sur-
round it. Identification of objects, words, or external stimuli
occurs by retrieving stored information from memory and
comparing it with information from sensory inputs [1]. For ex-
ample, the ability of the human brain not only to recognize
written words, but also to distinguish and understand the
meanings of words when they can be used in different contexts
is special, when processing textual information.

Solving the task of recognizing the meaning of words in
the text belongs to the tasks of natural language processing
(NLP) and is called word sense disambiguation (WSD). The
task aims to automatically determine which of the possible
meanings of a word is used in a given context.

Creating a model that is adapted to work with texts in
Ukrainian is an actual problem, since most solutions for the
WSD task are developed for English and other common lan-
guages. However, the Ukrainian language has its own specific
features that require adapted approaches. For example, the
grammatical structure, word formation, and semantic rela-
tions in Ukrainian may differ significantly from other languag-
es, making the adaptation of existing models a difficult task.

Also, Ukrainian, like many other languages, is rich in pol-
ysemous words, i.e. words that have more than one meaning.
For example, the word “head” can be used to mean a part of
the body, as well as to define a person who is in charge of
something. The ability to automatically distinguish between
these meanings is important when creating high-quality sys-
tems for modeling the cognitive process of recognition in tasks
related to textual information.

This paper presents an analysis of the effectiveness of
models based on the LSTM architecture, and its improved

© Miakenkyi A. V., Aleksieiev M. O., Matsiuk S. M., 2025

version — Bi-LSTM, for solving the WSD problem, on a data-
set formed with the help of the SUM Ukrainian language dic-
tionary of the Ukrainian Language and Information Fund of
the National Academy of Sciences of Ukraine.

Related works. Over the past decades, various approaches
to solving the WSD problem have been proposed. Among the
main approaches are supervised learning, knowledge-based
approaches, and unsupervised learning.

Early studies used the support vector method (SVM) to
classify word meanings using a set of features such as POS and
surrounding words [2]. Another approach to solving the prob-
lem is a method based on graph data [3]. The authors propose
a method for distinguishing word meanings using random
walks on the knowledge graph. This method applies structural
information from lexical databases such as WordNet and uses
random walk algorithms to estimate the probability of different
word meanings in context.

The main disadvantages of the above-mentioned ap-
proaches are the orientation of their models to complex and
language-specific functions and resources, as well as difficul-
ties in determining the meaning when the same word is used in
different senses within the same context.

Recent studies have shown the effectiveness of using the
long-short term memory (LSTM) architecture in solving the
WSD problem [4]. LSTM is a type of recurrent neural network
architecture that allows capturing long-term dependencies when
modeling sequences. In addition to the basic structure of a re-
current network, which includes input, output, and hidden lay-
ers, LSTM has a more complex structure with additional mem-
ory cells and gateways that allow it to selectively remember or
forget information from previous time steps. This type of archi-
tecture is used in other NLP tasks such as machine translation
|5], speech recognition, and other sequential modeling tasks.

Further research has led to the appearance of an improved
version of the architecture — bi-directional LSTM or Bi-
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LSTM [6]. An important difference from a traditional LSTM
is that the state of a bi-directional network at each time step
consists of the state of two LSTMs, one moving forward, and
the other moving backward. For the WSD task, this means
that the model can store long-term information not only about
the previous but also about the next words around the target
word in the context, which in many cases is absolutely neces-
sary for correct sense classification.

Depending on the task for which the WSD model is built,
both the classical LSTM model and its improved version are
used, which makes it relevant to study the effectiveness of these
models for recognizing the meaning of words in Ukrainian texts.

Purpose. The aim of this paper is to develop a model archi-
tecture for solving the word sense disambiguation problem in
the context of the Ukrainian language using the bidirectional
LSTM architecture, as well as to analyze the effectiveness of
the developed architecture in comparison with the classical
LSTM architecture.

LSTM architecture. As mentioned above, LSTM is a re-
current neural network that overcomes the problem of stor-
ing long-term dependencies faced by conventional RNNs.
The LSTM architecture consists of a cell whose state deter-
mines the current long-term memory of the network, a hid-
den state, which is the output of the network from the previ-
ous step, and the current input of the network. The regula-
tion of incoming information at each step of the network is
regulated by three gateways: the forgetting gateway, the input
gateway, and the output gateway. The network architecture is
shown in Fig. 1.

The LSTM works sequentially starting from the forgetting
gateway, which is provided with the current input vector as
well as the hidden state from the previous step. The forget gate
decides what information to discard from the cell state. It uses
the input vector and the previous hidden state to generate a
number between 0 and 1 for each number in cell state c,_;.

ﬁ: (I/I/f[ht—la xt] + bf)7

where W, denotes the weighting matrix; /,_; is the hidden state
of the model from the previous step; X, is the current input data
of the model; bis the bias value.

In the next step, the input gate decides what new informa-
tion to store in the cell state. It has two parts. A sigmoid level that
defines the values to be updated, and a tanh level that creates a
vector of new candidate values that can be added to the state.

ii=Wilh, i, x]+by;

C; =tanh(W,[h_,,x,1+b,),

where W, and W, denote the weight matrix of the input gate
and cell state, respectively; 4,_, is the hidden state of the model
from the previous step; x; is the current input data of the mod-
el; b;, bc are the values of biases.

The previous state of the C,_; cell is then updated to the
new state of the cell by combining the two layers. The old state
of the cell is multiplied by the forget gate to forget the data.
The new candidate values are then added to the new cell state.

CI :ft'ct—l +i 'CzN’

where f,denotes the value of the forgetting gate; C,_, is the pre-
vious state of the memory cell of the model; i, is the value of
the input gate of the model; C; is the vector of candidate val-
ues for the new state of the memory cell.

The last step is the output gate, which determines the new
hidden state for the network.

o,= (W [h,_y,x] +b,);
h,=o,-tanh(C,),

where W, denotes the weight matrix; /,_, is the hidden state of
the model from the previous step; x, is the current input of the
model; b, is the offset value; C, is the state value of the memo-
ry cell.

Bi-LSTM architecture. The Bi-LSTM model is a combina-
tion between a bi-directional recurrent network (BiRNN) and
LSTM. Bi-LSTM is a sequence model that contains two levels
of LSTMs, one for processing input data in the forward direc-
tion and the other for processing in the reverse direction. The
architecture of the model is shown in Fig. 2.

A feature of this architecture is the ability to process data in
both directions, which makes it possible to better understand
the relationship between sequences (for example, to take into
account information about the next and previous words in a
sentence relative to the target word). Hidden model states for
the forward and backward layers are calculated as follows.

Forw _ Forw Forw Forw Forw .
H™" =A-(X, W, +HS™ - W™ +b,°");

Back _ Back Back Back Back
Pk = A-(X, W30k H Pk ek g ok

where W™ and W2« denote the weight matrix for the for-
ward and backward inputs, while W™ and W2« denote
the weight values for the forward and backward hidden states
from the previous step H2™ and H*. pf™ and bk de-
note the offset values for the forward and backward states.
A denotes the hidden layer activation function. The full hidden
state H, can be calculated by combining H%™ and H 2.
Finally, the initial state can be calculated using H,.

Ot:}[f I/I/o-'_b()’

where W, and b, are the values of the weight matrix and bias in
the output layer [7].

Methodology. As mentioned above, the WSD task is to
find the correct meaning of a given word in a given context. In
this paper, we analyze the solution of the WSD task by super-
vised learning of two LSTM models — bidirectional and tradi-
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Fig. 1. LSTM Architecture
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Fig. 2. Bi-LSTM architecture

tional ones. For this purpose, it is first necessary to obtain em-
beddings for the input context, its target word, and the target
sense of this word.

After that, the models are fed with encoded words from the
context surrounding the target word (for LSTM, these are the
words that precede the target word, and for bidirectional LSTM,
these are the words that both precede and follow the target
word). Each input to the model is labeled with the value of the
target word in the sentence. The output of the neural network is
the predicted meaning of the target word in a given context.

A similarity calculation between the obtained predicted
values and the real values from the test data set is necessary to
evaluate the model’s results. Depending on the type of task,
methods for evaluating the obtained word embeddings are di-
vided into two classes: intrinsic evaluation and extrinsic evalu-
ation [8].

Intrinsic evaluation methods are designed to test word em-
beddings on specific, isolated tasks, calculating their qualities,
such as semantic or syntactic relationships, regardless of their
performance when used in subsequent tasks. Such methods
provide a quick, task-independent assessment of the ability of
a vector space to capture the meaning and similarity of words,
with the greatest attention being paid to the semantic similar-
ity of simple lexical units, such as words and their meanings.

Extrinsic evaluation methods, on the other hand, are de-
signed to evaluate the quality of word representations in com-
plicated natural language processing tasks in which embed-
dings are part of a larger model. Unlike intrinsic methods,
extrinsic evaluation methods allow one to determine the ef-
fectiveness of word embeddings in solving tasks, such as text
categorization or sentiment analysis, taking into account the
characteristics in the context of the components of one model
or between several models. Although external evaluation
methods are important for understanding the effectiveness of
embedding integration, they have greater variability in terms of
tasks and benchmarks compared to simpler internal methods.

This study employs a method for evaluating the semantic
similarity of words, which belongs to the class of intrinsic eval-
uation methods. This attribute is the simplest to evaluate for
vector representations. The idea of the method is that the dis-
tances between word vectors in the embedded space reflect the
actual semantic similarity between these words. Depending on
the task, there are two most popular strategies: finding the
maximum similarity for a pair of words by semantic value, or
MaxSim, and averaging the similarities between possible pairs
of words, or AvgSim [9].

MaxSim strategy is used to identify the most similar words
to a certain word and also to identify the most representative
words in the context of a certain embedding. This approach is
used in such tasks as forming semantic groups of words, iden-
tifying synonyms, or classifying words by context.

In turn, AvgSim evaluates the average similarity of embed-
dings of words in tasks where the general representation of the
semantic space is important. For example, if you want to cal-
culate how well embeddings represent a certain category of
words. This strategy is used to categorize word representations
to evaluate how evenly they are distributed in terms of seman-
tic similarity in classification and clustering tasks.

To calculate the similarity of word embeddings, the cosine
similarity metric is used [9]. The cosine similarity is a measure
used to determine the similarity between two vectors in space,
regardless of their dimension. This method is widely used in ma-
chine learning tasks, in particular in text analysis, for comparing
documents, assessing the similarity between queries and search
results, and clustering data. The similarity is measured between
the predicted meaning of the target word and its true meaning.
The semantic value with the highest cosine similarity is consid-
ered the predicted meaning of the word in a given context.

Word embedding. In the context of NLP, word embedding
is a technique for representing words as vectors in a multidi-
mensional space, where the distance and direction between
vectors reflect the similarity and relationships between the
corresponding words. Thanks to this representation technique,
words can retain their semantic and syntactic information
based on the context in which the word is used [11].

For the first time, the idea of using vector representations of
words was applied in order to generalize and eliminate the di-
mensionality problem in large-scale language models that pre-
dicted the next word in the text [12]. A feature of the proposed
approach was the projection of unprocessed word vectors onto
the embedding layer before being sent to other layers of the net-
work. Such embedding models obtained from language models
of neural networks [13] are called prediction-based models.

Another type of word embedding models are models that
rely on using word context matrices to get vector representa-
tions. Such models are called count-based models, because
the creation of word embeddings is not done by training algo-
rithms that predict the next word given its context, but by glob-
ally counting occurrences of the word-context in the corpus.

Examples of prediction-based models are CBOW and
Skip-Gram [14]. These models are logarithmic with a two-
stage training procedure. The main goal of CBOW is to predict
a target word based on its context. SG, in turn, aims to predict
each word in context using the target word. The algorithms are
shown in Figs. 3 and 4 respectively.

The most popular count-based model is Global Vectors for
Word Representation or Glove [15]. The basic idea of word rep-
resentation is that the actual semantic information about a pair
of words is encoded by the co-occurrence ratio in the entire
word corpus. A word representation is created by maximizing

Wy W, W3 W5
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Fig. 3. CBOW algorithm
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Fig. 4. Skip-Gram algorithm
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Fig. 5. Glove example of word vectors in three-dimensional space

the similarity of each pair of words, which is measured by the
proportion of co-occurrences of this pair. In general, this model
performs better than prediction-based models because it takes
into account global statistical relationships between words in the
entire corpus rather than in the local context [16]. This allows it
to better understand the semantic relations between words and
more accurately determine their meanings in different contexts.

In the context of this work, the initial embeddings of con-
text, target word, and lexical meaning of the target word were
obtained with the Glove model trained using the Ukrainian
language corpus containing texts from fiction [17]. The ob-
tained vectors were used to initialize the input layer of the
LSTM neural network.

Dataset. To compare the work of LSTM models, a data set
was created based on the “SUM?” — the dictionary of the
Ukrainian language, which is freely available through the
Ukrainian Language and Information Fund of the National
Academy of Sciences of Ukraine. The examples presented in
the dictionary are formed using a wide list of sources, which
includes fiction, folklore, journalism, popular science works,
mass media articles, and Internet resources. At the time of the
research, the version of the dictionary contains words, exclu-
sively for the word “ITPED®EPEHLIIA” (preference). An ex-
ample of word with multiple meanings is shown in Table 1.

The dataset was constructed by retrieving each word from
the dictionary, as well as its corresponding definition and ex-
amples. The resulting dataset contains data on 138,044 words.
Further operations on the obtained data set include normal-
ization of examples and their labeling.

Normalization of the examples consists in removing all
punctuation from it, as well as reducing each word in the ex-
amples to its canonical form. For nouns, for example, it will be

a word in the singular, nominative case. For this task, the mor-
phological analyzer pymorphy2 was used, which is written in
Python and provides models for the analysis of Ukrainian
words [18].

After obtaining the normalized form of the word examples,
the marking operation was carried out, which consists in re-
placing the target word in the example with a special symbol.

The target word’s part of speech was also determined using a
part-of-speech tagging (POS) algorithm. POS is a grammatical
classification that typically includes verbs, adjectives, adverbs,
nouns, etc. POS tags are an important natural language process-
ing algorithm in tasks like machine translation, resolving word
ambiguity, analyzing responses to questions, and more.

Traditional approaches to part-of-speech tagging include
rule-based methods and statistical methods. The rule-based
approach for POS tagging uses manually created rules to as-
sign tags to words in a sentence. Linguistic features of the lan-
guage, such as lexical, morphological, and syntactic informa-
tion, are used to create these rules. The disadvantage of this
approach is the complexity of creating a rule set with the in-
volvement of experts, as well as tagging words that may have
multiple meanings in the text. Statistical methods, on the
other hand, use models trained on large annotated corpora to
predict POS tags. An example of such a model is the hidden
Markov model (HMM). This model is based on the Markov
model, where the data structure is examined by analyzing
transitions between hidden states. Unlike the classical Markov
model, in HMM, the state is hidden by the observer, but the
outcome, which depends on the state, is visible.

Another approach to part-of-speech tagging is using ma-
chine learning models. This approach utilizes machine learn-
ing algorithms like decision trees, support vector machines, or
neural networks to learn patterns from the data. Special atten-
tion is paid to contextual information. The most popular ML
algorithms used for POS taggers are naive Bayes, conditional
random fields (CRF), Brill, and TnT.

In this work, the Stanza library, developed at Stanford
University for the Python programming language, was used
for tagging the parts of speech of target words in the dataset. It
provides a wide range of tools for analyzing texts in various
languages, including POS tagging for Ukrainian [19]. An ex-
ample of the obtained dataset is shown in Table 2.

Model training. Training and testing data were generated
from the dataset for model training. For this purpose, the dataset

Table 1
Multiple meanings of word “3amox” (“castle”) from “SUM?” dictionary
Word Meaning Example
3aMoKk | YkpirmuieHe xumio ¢eonana 1o6u CepenHbOBIYYS 3 TTuHwMii 3aMoK y maHa JlaHua, HalllaaKa 1peBHboro 2Kmaiinal ...

(lock) NBEpLST madu, a TAKOXK CKPUHB, mryxJisin (A device
for locking doors in rooms, cabinet doors, as well as
chests and drawers)

(castle) | 0OOPOHHMMHU, FOCIIOAAPCHKUMM, KYJIBTOBUMM i T.iH. | MillHi, Gii CTiHM, BUCOKI BeXi, TyOOBi 1Bepi, 3aJ1i30M KyTi, BY3bKi
OyniBISIMU, 3BUYATHO OTOYEHE BUCOKMM KaM>sTHUM BiKHA...; OOHECEHMI BiH Mypamu 3 GallTaMu Mo KyTKax, 3 TapMaTtaMu i
MypoM i3 KibkoMma Bexkamu. (Fortified housing of a rakiBHuLsIMU. (Magnificent castle of Mr. Danylo, a descendant of the
feudal lord of the Middle Ages with defensive, ancient Zhmail!... Strong, white walls, high towers, oak doors, iron
economic, religious, etc. buildings, usually surrounded | corners, narrow windows...; it is surrounded by walls with towers at the
by a high stone wall with several towers.) corners, with cannons and hook guns)
3amok | TropemHa Gyaisis; Tiopma (Prison building; prison) XaH Binnpasus itoro B TypeyurHy B MOAapyHOK CyITaHOBi. Tam aeskuit
(prison) yac BiH cuIiB B o1MHOYIli CeMUBEXHOTO 3aMKY — TIOPMi JUIst
MOJIITUYHUX 3IOYMHIIB Ta cynepHuKiB cyntana. (Khan sent him to
Turkey as a gift to the Sultan. There for some time he sat in solitary
confinement in the Castle of the Seven Towers — a prison for political
criminals and rivals of the Sultan)
3aMoK TTpuctpiit 1151 3aMUKaHHS ABEPEit y MPUMIIIIEHHSIX, Bona 3akpuBana i BizkpuBaia yemonaH, OyJ0 YyTH, SIK CTYKa€e KpUIIIKa i

KJIanaroTh 3aMku. (She was closing and opening the suitcase, you could
hear the lid banging and the locks clicking)

3aMok Y nesikux BUgax BOrHeNnajlbHOI 30poi — MPUCTPiid,
(lock) npu3Hay. 114 3aiiicHeHHd nocTpiny. (In some types
of firearms — a device designed to fire a shot.)

AJle TM BCe-TaK 3aMUCITMBCSI? — CKa3aB TOBApUIll BOBUMK, MPOBipsiioun
3aMKHU B cBOIll pyuiHui. (But you still thought about it? Comrade
Vovchyk said, checking the locks in his gun.)
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Table 2
Example of word “abaxyp” (“lampshade”) from dataset

Attribute name

Attribute value

ID

¢36e8898-dc2d-4a02-9c9a-3{19f4831391

Target word

ABAXYP (lampshade)

Part of speech NOUN

Context Most 1aMna Mij IUPOKUM KapTOHOBUM abaxkypoM IIMTh XaTy Ha JBa MOBEPXU — Bropi TEMHMUIA, MOXMYPUIA, BaXKKHMIA; ITiJ
HUM — 3aIMTHii cBiTIoM. (My lamp under a wide cardboard lampshade divides the house into two floors — upstairs is dark,
gloomy, heavy; under it — filled with light.)

Normalized [Mmiii, Tammna, min, IMKUPOKKii, KAPTOHOBUIA, abaxXyp, TiIMTH, XaTa, Ha, IBa, TIOBEPX, BrOpi, TEMHUI1, TOXMYPHIA, BaXKKHIA,

context Miz, BiH, 3aIMTHii, cBiTIo] ([my, lamp, under, wide, cardboard, lampshade, divide, house, into, two, floor, upstairs, dark,

gloomy, heavy, under, it, fill, light])

Tagged context

[Mmiit, mamrra, o, IUPOKWIA, KAPTOHOBUIA, <target>, TIINTH, XaTa, Ha, IBa, IOBEPX, BrOPi, TEMHMUIA, TTOXMYPHIA, BAXKUIA,
min, BiH, 3anuTHii, cBitio] ([my, lamp, under, wide, cardboard, <target>, divide, house, into, two, floor, upstairs, dark,
gloomy, heavy, under, it, fill, light])

Meaning ID abaxyp_1
Meaning of YacTuHa CBITUJIbHMKA, 3BUYATHO Y BUIJISIIE KOBIaKa, MpU3HaY. ISl 30Cepe/IKEHHS i BIOUTTS CBiT/Ia Ta 3aXMCTY OYeid Bij
word itoro BruinBy. (Part of the lamp, usually in the form of a cap, is intended for focusing and reflecting light and protecting the

eyes from its influence.)

was filtered to remove all words with less than two examples. Af-
ter that, the first instance of each word was selected for the train-
ing set, and the remaining instances were selected for the test set.

The obtained training set was used to train two LSTM and
Bi-LSTM models, built with the difference that the Bi-LSTM
implemented two layers of input data — forward input and
backward input, while the conventional LSTM implemented
only forward input [20]. The models were implemented using
the tensorflow library in the Python programming language
[21]. To optimize the learning process, an early stopping
mechanism based on minimizing the loss function was imple-
mented, along with Nadam (Nesterov Adam), an optimizer
that combines the advantages of Adam and Nesterov Momen-
tum and is used to accelerate convergence and improve the
performance of deep learning models [22]. The parameters of
the LSTM and Bi-LSTM models are shown in Table 3.

Results. The results of the models are presented in Table 4.
For validation, a test sample was used, which was obtained
from the generated dataset.

The obtained results showed weighted accuracy values of
73 and 83 % on the test data set for the LSTM and Bi-LSTM
models, respectively. Optimization of accuracy was achieved
with the help of dropout technology, which helps to reduce
retraining of the model. The idea of the algorithm is to ran-

accuracy of the model. Tables 5 and 6 show the corresponding
dropout values and their effect on model accuracy.

Thus, the correct setting of the dropout parameter can im-
prove the forecasting accuracy. If you do not use this technol-
ogy at all, the results obtained may not be optimal.

The cosine similarity between the predicted meaning vec-
tor for a given word and the true meaning of the word in the
context was chosen as the metric for calculating accuracy. The
greater accuracy of the Bi-LSTM model is due to the use of the
second backward layer of the model, which allows taking into
account not only the context preceding the target word in the
sentence, but also the context following it.

Conclusion. In this paper, we have built and compared mod-
els for solving the WSD problem, as one of the approaches to
modeling the cognitive process of recognition, for recognizing
the meaning of given words in Ukrainian texts. For this purpose,
two neural networks based on the LSTM and Bi-LSTM archi-
tectures were built. To train the neural networks, a dataset was
generated based on the SUM dictionary of the Ukrainian lan-
guage. The results showed that the bidirectional LSTM has a
higher accuracy than the unidirectional one, which is due to the
use of a backward input layer that allows considering the full con-

domly “turn off” neurons at each stage of training. The tables Table 5
show the corresponding dropout values and their effect on the Results of LSTM model training at different values of
dropout
Table 3 Model Dropout Accuracy, %
LSTM model parameters LSTM 0 20
Attribute Value LSTM 0.1 7
Embedding size 300 LSTM 0.2 73
LSTM units 300 LSTM 05 7
Learning rate 0.002
Optimization algorithm Nadam Table 6
Momentum 1 Results of Bi-LSTM model training at different values of
dropout
Table 4 Model Dropout Accuracy, %
Results of model training Bi-LSTM 0 79
Model name Accuracy, % Bi-LSTM 0.1 82
LSTM 73 Bi-LSTM 0.2 83
Bi-LSTM 83 Bi-LSTM 0.5 81
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text surrounding the word in the sentence. Thus, the architecture
of the bidirectional LSTM allows us to effectively solve the WSD
problem in the context of modeling the cognitive process of hu-
man comprehension in Ukrainian text processing. Further re-
search on this topic may include improving the context labeling
algorithm for the dataset, as well as experimenting with training
data customization to improve the model’s accuracy.
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Hocnaimkennsa egeKTHBHOCTI BUKOPHUCTAHHS
apxitektypu LSTM npu MoaemoBanHi
KOTHITMBHOTO MPOLECY PO3YMiHHA

A. B. M’sakenvkuir*, M. O. Anexcees, C. M. Mauyrok

HauionanpHuii TeXHIiYHUIN yHiBepcuTeT «/IHiMmpoBchbKa 1o-
JiTexHika», M. JIHinpo, Ykpaina
* ABTOp-KOpecnoHAeHT e-mail: miakenkyi.ar.v@nmu.one

3[aTHICTh JIIOAWHU PO3Mi3HABATU Ta BUOKPEMITIOBATU
CEHCH CJIiB TIpy poOOTi 3 TEKCTOBOIO iH(OpMAaIli€lo BiTHO-
CUTBCS 10 BUILMX KOTHITUBHUX (QYHKLIN MO3KY, 30KpeMa 10
KOTHITUBHOTO TIpoLiecy po3yMiHHs. Po3B’s13aHHS 3anadi Bu-
OKPEMJICHHSI CEHCY CJIiB Y TEKCTi HAJIEXKUTh JI0 3a1a4 00po0-
KU TIpUPOTHUX MOB abo natural language procesing (NLP) ta
Ma€ Ha3BY «yCYHEHHSI HEOHO3HAYHOCTI cJ1iB» abo word sense
disambiguation (WSD), mig BupilieHHS SIKO1 iCHYIOTh 6araTo
MiAXO/iB, 30KPeMa 3 BAKOPUCTAHHSIM HEHPOHHUX MEPEX.

Merta. CTBOpeHHS Ta aHAi3 apXiTeKTypy HEMPOHHOI Me-
pexi nBoHarnpanieHoi LSTM st po3s’sizanHs 3agadi WSD B
YKpaiHCBKill MOBI.

Meroauka. OpHuUM i3 CcydyacHMX TAXOMIB IS
po3B’ss3aHHs  3amadi WSD € BUKOpHUCTaHHSI Mopeleit
LSTM — TUnoMm peKypeHTHOI apXiTeKTypyu HEHPOHHUX Me-
pexX, 10 M03BOJsIE (hiKCyBaTH MOBIOCTPOKOBI 3aJIeXKHOCTI
P MOJETIOBaHHI MOCioBHOCTeM. 151 BUBHAUEHHS eheK-
TUBHOCTI BUKOPUCTAHHS JAHOI apXiTeKTypH ITiJ yac JA0CIi-
JIDKeHHST OyJIM moOymoBaHi IBi HEMPOHHUX MepexKi: 3a Kia-
cnyHoW0 apxitekTyporo LSTM Ta ii B1IoCKOHaJIeHOIO Bepci-
€0 — Bi-LSTM. ¥ pamkax mociiikeHHsI Takox OyB chop-
MOBaHUI Habip JaHUX, OCHOBAHWI Ha CJIOBHUKY yKpaiH-
cbkoi MoBu SUM. OtpumaHi Mmoaei Oy HaBYeHi Ha chop-
MOBaHOMY Ha0Opi JaHUX, IicJs 4Yoro OyB MpPOBeNeHUN To-
PiBHSUIbHUI aHaJTi3 OTPUMAaHUX JaHUX.

PesyabraTu. AHani3 pe3ysibTaTiB TOUHOCTI pOOOTH MOOY-
JIOBaAaHUX MOJENell NTO3BOJMB BU3HAYUTH €(DEKTUBHICTh He-
MpOHHOI MepexXi, modynoBaHoi 3a apxiTekTypot Bi-LSTM.
OTtpuMaHi pe3yJbTaTh TOYHOCTI JOPIiBHIOIOTH BiAIMOBIIHO
73 % s LSTM moneani ta 83 % minsa Bi-LSTM, 1110 06yMOB-
JIeHO HasiBHicTIO y Mogzeni Bi-LSTM momaTtkoBoro 1apy,
SIKWI Haa€ MOKJIUBICTD JIJIST BpaXyBaHHS MTOBHOTO KOHTEK-
CTY CJIOBA Y ITOJAHOMY TEKCTi.

HaykoBa HoBH3HA. Y po0OTi BCTAHOBJIEHA €()EKTUBHICTh
MojieJli HEePOHHOI Mepexi, MoOYyA0OBaHOI 3a apXiTEKTYpOlO
Bi-LSTM, nmnst po3B’si3aHHS 3a1adi YCYHEHHSI HEOTHO3HAU-
HOCTIi CJIiB Y TEKCTax YKpaiHChKOIO MOBOIO y TOPIBHSIHHI 3
KJIaCMYIHOIO apXiTeKTyporo LSTM.

IIpakTHyHa 3HAYMMICTB. Y pe3yabTaTi poOOTH 3aIporo-
HOBaHa MOJIEJb, 110 JO3BOJISIE PO3B’SI3yBaTH 3a1auy YCYHEH-
HsI HEOAHO3HAYHOCTI CJIiB B YKpaiHCHKiii MOBi, SIKYy MOXHa
BUKOPUCTOBYBATH Y 3a/1adax OOPOOKHU TEKCTiB, 30KpeMa JIst
MOJIEJIIOBaHHS KOTHITUBHOTO MPOLIECY PO3YMiHHS.

KimouoBi ciioBa: xoenimuene mooeao8anus, KOSHIMUGHUI
npoyec, NLP, WSD, LSTM, Bi-LSTM, pymorphy2, stanza,
tensorflow
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