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RESEARCH ON STOCHASTIC PROPERTIES OF TIME SERIES DATA 
ON  CHEMICAL ANALYSIS OF CAST IRON

Purpose. To provide a procedure for identifying chaotic processes in a dynamic system and to examine time series, describing 
the chemical composition of cast iron at the blast furnace output with the purpose of identifying the nonlinearity of the investi­
gated system and detecting the presence of chaotic processes in it.

Methodology. The determination of the unique characteristics of the attractor of a dynamic chaotic system based on the time 
series of cast iron’s chemical composition values was carried out using methods of nonlinear dynamics and dynamic chaos theory, 
such as the autocorrelation function method, correlation and fractal dimensions.

Findings. The methods of nonlinear dynamics and dynamic chaos theory were used to study the behavior of time series data on 
the chemical composition of cast iron at the blast furnace output. The presence was identified of chaotic processes with a fractal 
structure in the studied dynamic system, leading to the inefficiency of traditional analysis methods based on the Gaussian proper­
ties of stochastic processes.

Originality. For the first time, the possibility and feasibility of applying chaos theory methods for the analysis and prediction of 
time series data on the chemical composition of cast iron at the blast furnace output were substantiated.

For the first time, the nonlinearity of the studied dynamic system was identified, and chaotic processes were discovered within 
it by determining the unique characteristics of the strange attractor of the system using the analyzed time series, such as embedding 
dimension, time delay, and the largest Lyapunov exponent.

Practical value. The obtained results open up the possibility for more effective and qualitative analysis of the behavior of the stud­
ied dynamic system by developing new tools for assessment and prediction that are adequate to the nature of the ongoing processes.
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Introduction. In modern metallurgy of cast iron produc­
tion, the rapid development of technology presents the indus­
try with significant challenges, particularly concerning the 
improvement of product quality and the optimization of pro­
duction processes. One of the key components of this process 
is the control and assurance of the required chemical compo­
sition of cast iron at the stage of release from the blast furnace. 
In this context, automated control and prediction of the 
chemical composition of pig iron become essential tools for 
enhancing production efficiency and quality.

The control, prediction, and management of the blast fur­
nace process are complex and multifaceted. This process is char­
acterized by non-stationary parameters, a large number of inter­
dependent variables, a high level of noise, significant inertia, and 
time delays. Furthermore, the specific features of the techno­
logical process and the structural characteristics of the blast fur­
nace complicate direct measurements. This creates serious ob­
stacles to obtaining accurate information about the state of the 
object, significantly reducing the capabilities of control systems.

Improving the control and prediction of the chemical 
composition of cast iron requires the implementation of mod­
ern automated systems that ensure high accuracy and speed in 
obtaining data. Through the use of advanced information pro­
cessing methods and mathematical modeling, such systems 
can predict changes in chemical composition in real time, al­
lowing timely adjustments to technological parameters and 
preventing possible deviations from set norms.

Modern automated control systems not only increase 
measurement accuracy but also reduce the impact of the hu­
man factor on the production process. The use of advanced 
technologies, such as machine learning and artificial intelli­
gence, allows for the development of sophisticated algorithms 
that efficiently process large volumes of data and provide a 
high level of adaptability to changing production conditions.

Thus, the integration of automated systems for controlling 
and predicting the chemical composition of cast iron is an in­
tegral part of modern metallurgy. This contributes to the im­
provement of the quality of the final product, the optimization 

of production processes, and the reduction of costs. Ultimate­
ly, the application of advanced technologies in metallurgy 
opens new opportunities for the industry, ensuring its sustain­
able development and competitiveness in the global market.

Literature review. Until recently, it was believed that the 
time sequences of data representing the results of the chemical 
analysis of cast iron at the blast furnace output followed a 
Gaussian distribution [1]. However, studies [2, 3] on time se­
ries data of chemical composition have proposed and con­
firmed the hypothesis of the fractal properties of the investi­
gated time series. This, in turn, has provided the impetus for 
applying the principles of chaos theory to study the dynamic 
properties of the investigated time series.

Presentation of the main research material. At the initial 
stage of the study, an analysis of the time series generated by 
the dynamic system was conducted. This analysis identified 
the unique characteristics of the system’s attractor, specifically 
the embedding parameters: the dimension of the embedding 
space and the signal time delay. Determining the embedding 
parameters is essential for further analysis of the time series, as 
the obtained indicators are input parameters for calculating 
the largest Lyapunov exponent [4].

The results of the first stage of processing chaotic process­
es allow for the identification of the chaotic process through 
the determination of the largest Lyapunov exponent and the 
phase reconstruction of the chaotic process [5]. At this stage, 
the main challenge is the need to process a large volume of 
output data, as with a small volume of initial information, it is 
practically impossible to qualitatively reconstruct the attractor 
and calculate the largest Lyapunov exponent. Therefore, it is 
necessary to use software tools with the required functionality 
for the analysis. Currently, one of the most effective and mul­
tifunctional software products for analyzing time series of 
various natures is Matlab. This tool allows for the analysis us­
ing both linear and nonlinear methods. Matlab’s flexibility in 
programming is one of its key advantages. On the one hand, it 
offers a wide range of built-in functions that significantly fa­
cilitate the analysis process, and on the other hand, it provides 
the ability to develop custom algorithms, allowing it to be 
adapted to specific user needs.
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Due to its versatility, Matlab has become an indispensable 
tool in many fields of science and engineering. It is used for signal 
processing, data analysis, system modeling, and for developing 
and testing new algorithms. Matlab’s built-in functions allow for 
quick and efficient execution of complex mathematical calcula­
tions, greatly simplifying the work of researchers and engineers.

Additionally, Matlab has an extensive library of tools for 
data visualization. This allows for easy creation of graphs, 
charts, and other visual representations of data, promoting a 
deeper understanding of the studied processes and phenome­
na. This functionality enables users to quickly and clearly as­
sess the results of their analyses.

Another significant advantage of Matlab is its ability to in­
tegrate with other software products and programming lan­
guages. This allows Matlab to be used as part of complex sys­
tems consisting of various components, providing flexibility in 
the development of multifunctional solutions.

The stages of identifying chaotic processes in a dynamic 
system are determined by the presence of a strange attractor in 
such systems, which has a fractal dimension and the property 
of scale invariance.

The first step in identifying a chaotic process is the analysis 
of the time series generated by the dynamic system. This anal­
ysis is crucial as it allows for the determination of the unique 
characteristics of the system’s attractor, including the dimen­
sion of the embedding space and the signal time delay.

The process of analyzing the time series begins with the 
construction of the phase space, which allows for the visualiza­
tion of the system’s dynamic behavior. This is done using the 
embedding method, which involves transforming the one-di­
mensional time series into a multidimensional space. Choosing 
the correct embedding parameters, such as the dimension of 
the embedding space and the signal time delay, is critically im­
portant for accurately reflecting the system’s dynamics.

The dimension of the embedding space determines the 
number of dimensions needed to adequately represent the sys­
tem’s phase space. It is chosen in such a way as to minimize the 
loss of information about the system’s dynamics. Too small a 
dimension of the embedding space can lead to overlapping tra­
jectories, complicating the identification of the attractor, while 
too large a dimension of the embedding space can introduce 
unnecessary dimensions, increasing computational costs.

The signal time delay is determined using methods such as 
the autocorrelation function or mutual information. It should 
be chosen to maximally preserve the system’s dynamic struc­
ture, revealing hidden patterns in the time series [6].

The obtained indicators are input parameters for calculat­
ing the value of the largest Lyapunov exponent for the time 
series, a positive value of which identifies the presence of cha­
otic processes in the studied system.

This study was conducted using the Matlab and Fractan soft­
ware environments, based on real data on the percentage content 
of silicon in pig iron obtained at different times at Blast Furnace 
No. 3 (BF-3) of the Ilyich Iron and Steel Works in Mariupol [7].

For the quantitative characterization and identification of 
patterns associated with the system’s dynamics, a detailed anal­
ysis of the geometric image of the dynamic regime – the attrac­
tor, which is the so-called attracting set of the system’s trajec­
tories in D-dimensional phase (or pseudo-phase) space, is 
necessary. The coordinates of the phase space are the dynamic 
variables of the process. Each type of dynamic behavior corre­
sponds to its own attractor and, accordingly, its geometric im­
age – the phase portrait [8]. For example, the dynamics of a 
conventional chemical reaction corresponds to an attractor of 
the stable point type. Regular oscillations correspond to a sta­
ble limit cycle. These classical attractors correspond to classical 
geometric regions: a point, a closed curve (circle, ellipse, etc.), 
or a toroidal surface. In contrast, disordered phase portrait tra­
jectories indicate the presence of a chaotic attractor. This class 
of attractors also includes the so-called strange attractor, whose 
geometric image in phase space is a fractal object.

The appearance of the strange attractor for the studied time 
series in normalized coordinate axes is shown in Fig. 1. Here, the 
attraction region, which is a dense “core”, is clearly visible. This 
attraction region indicates the presence of structured dynamics in 
the system, where trajectories tend to be attracted to a certain re­
gion of phase space, forming a complex but organized geometric 
structure. The strange attractor demonstrates characteristic prop­
erties of chaotic systems, such as sensitivity to initial conditions 
and the presence of self-similar structures at different scales.

At the same time, for a random sequence, as mentioned 
above, the points of the reconstructed pseudo-attractor form an 
unstructured cloud in lag space. This means that random pro­
cesses lack any organized structure, and the points are chaotically 
arranged without an apparent regular order. Such sequences do 
not exhibit the properties of attraction to certain regions of phase 
space, which is characteristic of deterministic dynamic systems.

The studies conducted by Takens [9] prove that by using 
only one coordinate of the dynamic system, it is possible to 
reconstruct the original attractor in the space of points with 
delays [x(t), x(t + t), …, x(t + (m - 1) ⋅ t) ∈ Rm], in such a way 
that it retains the most important topological properties and 
dynamics of the original attractor. The dimension of the em­
bedding space m is determined by the formula
	 m ≥ 2{d} + 1,	 (1)
where d is the fractal dimension of the attractor. The curly 
braces indicate that only the integer value of d is considered.

Therefore, first and foremost, to conduct a thorough analy­
sis of chaotic processes, it is necessary to determine the embed­
ding parameters of the dynamic system required for maximizing 
the predictability of the chaotic process, specifically the appro­
priate signal time delay t and the embedding dimension m [10].

Different methods are used to choose the time delay of the 
signal, including the autocorrelation function method and the 
mutual information method. These methods are based on the 
assumption that the most suitable time delay is the minimal 
delay at which the coordinates of the reconstructed attractor 
become maximally independent.

1. Autocorrelation Function Method. For each value of time 
delay t autocorrelation Function R(t) is determined by formula, 
where the correlation coefficient between the original time series 
and its modification is calculated using a time delay of t steps.

0

1 ( )ln .
( ) 

t
t t

e
λ =

D e
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Fig. 1. Phase Portrait of the Strange Attractor
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where y(t) = x(t) - E{x} is a centered version of the time series.
For the investigated time series, the first approximation of 

the autocorrelation function approaches zero at lag 1 (Fig. 2), 
hence, according to this method, the most suitable time delay 
is 1 [12, 13].

The simplicity of calculation of this method, which does 
not require extensive computations, makes it one of the most 
accessible and widely used by many researchers. However, it 
relies on the assumption of non-correlation, which can lead to 
obtaining inappropriate values for time delay in chaotic analy­
sis of dynamic systems

2. Mutual Information Method. The mutual information 
function, defined by the following formula, involves partition­
ing (a, b) ∈ R1 – minimum interval containing all values of the 
investigated time series in L equal parts and denoted Ai when 
the event occurs, when x(t) belongs to the interval i, and Bj oc­
currence of an event x(t + t) belongs to the interval j.
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where P is the probability of a certain event occurring.
The most suitable time delay by this method is chosen ac­

cording to the first minimum of the function I(t).
The mutual information method provides more accurate 

results than the autocorrelation function method, as it relies 
on the independence property. However, it is significantly 
more complex to compute. Automation of this method, how­
ever, eliminates this drawback.

Next, it is necessary to choose the embedding dimension 
m, which can be estimated using various methods.

1. The correlation dimension method. To determine the val­
ue of the correlation dimension, the Grassberger-Procaccia 
algorithm is used, with which we calculate Dk, value F from a 
sample of points { }, . 1,ix i M=

The correlation dimension is calculated by the formula
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where C(e) is the correlation integral which is calculated by the 
formula
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where q is the Heaviside function, which is defined as
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The Grassberger-Procaccia algorithm consists of the fol­
lowing steps:

1. The correlation integral C(e) is computed for different e.
2. The obtained dependence C(e) on e is represented in a 

coordinate system with double logarithmic scale.
3. A search for a linear segment is conducted.
4. Angular coefficient d for the found segment; it will be an 

estimate of the correlation dimension for F.
This algorithm allows determining the embedding dimen­

sionality m for the investigated time series.
For example, let there be a time series of data, and a time 

delay t found by any method, fixing this whole number m and 
applying the idea of pseudo-phase reconstruction, we can ob­
tain a set of points

xi = x(i), x(i - t), …, x(i - (m - 1)t) ∈ Rm,

where ( 1) 1 , .i m N = - t + 
For the value m and the obtained sample x(t) the correlation 

dimension Dk(m) is calculated using the method described 
above. This procedure is repeated several times, considering se­
quentially m = 1, 2, 3, … As the value m increases, saturation of 
the corresponding value Dk(m) is observed, thus, the calculated 
value of the correlation dimension does not exceed the maxi­
mum value as the embedding dimension increases. If saturation 
Dk(m) does not occur, then the investigated signal is likely gener­
ated not by a dynamic system but rather by noise. When calculat­
ing the correlation dimension using the method described above 
with the FRACTAN software, conflicting results were obtained. 
The automatic calculation of the correlation dimension in this 
program showed that the estimate for this dimension for the time 
series data on silicon content in cast iron is 8, while the embed­
ding dimension is 12. The graph depicting the correlation integral 
for the time series on silicon content in cast iron, as a function of 
the experimental embedding dimension, is presented in Fig. 3.

2. False nearest neighbours algorithm. False nearest neigh­
bours algorithm is based on Takens’ theorem on embedding: 
with appropriate choices of t and mthe original and recon­
structed attractors should be topologically equivalent (homeo­
morphic). Since trajectories of the original attractor do not 
intersect, trajectories of the reconstructed attractor should 
also not intersect. Self-intersections of trajectories in the re­
constructed attractor imply that the embedding dimension is 
less than the fractal dimension of the attractor.

Fig. 2. Autocorrelation function
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Self-intersections will be absent provided that all neigh­
boring points of the reconstructed attractor Rm will also be 
neighboring Rm + 1.

Using this method, it is possible to determine the minimum 
embedding dimension such that when transition m + 1 the 
number of points of the attractor that are close to each other in 
Rm and those that are distant in Rm + 1, will be relatively small.

The calculated value of m by this method determines the 
minimum embedding dimension where reconstruction of the 
attractor without self-intersections is possible.

False nearest neighbors algorithm is performed in several 
stages:

1. At the minimum embedding dimension m = 1, the search 
for the nearest neighbor is performed ( )x j  for each point ( )x i
of the investigated time series.

2. Calculation of the distance ( ) ( ) .x i x j-
3. Calculated distance between these points on the next 

step ( 1) ( 1) .x i x j+ - +
4.Calculated Ri using the following formula

( 1) ( 1) .
( ) ( )i

x i x j
R

x i x j
+ - +

=
-

If Ri > Rt where Rt is threshold (recommended value is 2), 
then the point ( )x j  is considered a false nearest neighbor 
relative to the point ( ).x i

In our case, the calculated embedding dimension value us­
ing the false nearest neighbours algorithm is 5.

3. The Hurst exponent method. The Hurst exponent meth­
od is frequently used in the analysis of time series due to the 
persistent Hurst exponent, which distinguishes random time 
series from non-random ones. This method is also known as 
R/S analysis.

R/S analysis method allows identifying the following 
properties of time series:

1. The value of the Hurst exponent and the corresponding 
noise color.

2. Presence of long-term memory and estimation of its depth.
3. Presence of trend persistence.
4. Presence of cycles.
For a series of observations E = {ei}, i = 1, 2, 3, …, N, where 

N is a general number of observations, the Hurst exponent is 
calculated using the following algorithm:

1. A fixed time interval is determined T = n, and for each k 
from N - n the first ones are determined n observations e1, 
e2, …, en and their average value is calculated M1n.

2. A time series of cumulative deviations is generated using 
the formula

  1 1
1
( ), .

m

m i n
i

x e M m n
=

= - <∑
3. For k = 2 a series of observations is selected e1, e2, …, en + 1 

and stages 1 and 2 are repeated, thereby determining the aver­
age M2n and X2n.

4. The calculation process is repeated for all k from 1 to N 
thereby generating a series of cumulative deviation values Xkm.

5. The range of the sequence is calculated, the series of 
cumulative deviation values by formula

Rn = max (Xkm) - min (Xkm).

For comparing different types of series, Hurst suggested 
dividing this range by the standard deviation of the original 
observations.

Let S be the sample standard deviation of the series {ei}, 1, 
2, …, N. Then, normalizing the range Rn by dividing it S, the 

magnitude nR
S

 is determined – dimensionless variation of the 

series, which increases with the interval T = n.
The following regularity was discovered by Hurst

	 ( ) ,n HR
an

S
= 	 (2)

where a is constant; n – the number of observations; H – 
Hurst exponent.

Taking the logarithm of (2), we obtain

	 ln ln ln . nR
H n a

S
= + 	 (3)

Using the method of least squares, linear regression is per­

formed for points with abscissa ln n and ordinate ln nR
S

 and 
the slope of the regression line determines the value of the 
Hurst exponent, which is an important fractal characteristic of 
the time series (Fig. 4).

The value of the Hurst exponent can be interpreted as fol­
lows:

- 0 ≤ H < 0.5 – the time series exhibits anti-persistence 
(pink noise) and a tendency towards alternating trends;

- H = 0.5 – the degree of persistence of the time series is 
characterized as Brownian motion (white noise) with no 
trend;

- 0.5 < H < 1 – means a persistent time series (brown noise) 
characterized by trend persistence.

Taking into account the Hurst exponent, the fractal di­
mension can be determined by formula

D = 2 - H.

For the investigated time series data on silicon content in 
liquid cast iron at the output of the blast furnace, the Hurst 
exponent was found to be 0.6189 ± 0.1261. According to for­
mula (3), this determines a fractal dimension of 1.3811.

The obtained estimates of the Hurst exponent and fractal 
dimension for the analyzed time series indicate that the series 
exhibits long-term memory and is characterized as persistent. 
Thus, the calculated values of the fractal dimension obtained 
using the Hurst exponent method correspond to the condi­
tions of formula (1).

The largest Lyapunov exponent, which characterizes the de­
gree of exponential divergence of close trajectories, having a 
positive value means that any two close trajectories diverge rap­

Fig. 3. Graph of dependence of the correlation integral for the 
time series on the content of silicon in cast iron, on the ex-
perimental dimension of the investment

Fig. 4. The R/S analysis plot for the time series on silicon con-
tent in cast iron



ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2024, № 4	 139

idly over time. Therefore, the system is sensitive to initial condi­
tions, identifying the dynamic system in terms of the presence of 
chaotic behavior [16]. The calculation of the largest Lyapunov 
exponent for the investigated time series was performed using 
the Matlab software environment and the “lyap_exp” function.

The largest Lyapunov exponent for the time series of sili­
con content in iron at the blast furnace discharge was calcu­
lated to be 0.3521 and 0.3579 for time series 1 and 2, respec­
tively. These values confirm the hypothesis proposed in this 
study regarding the presence of chaotic properties in the ana­
lyzed time series. The magnitude of the largest Lyapunov ex­
ponent itself is not highly informative; its sign is of primary 
importance. A positive value indicates that the analyzed dy­
namic system exhibits chaotic properties.

In nonlinear dynamic systems, visual assessment plays a 
crucial role due to the often complex and unpredictable dynam­
ics. Data visualization aids in better understanding the system’s 
behavior. One of the key tools for analyzing nonlinear time se­
ries is the spectrogram of the largest Lyapunov exponent (Fig. 
5). The spectrogram helps identify characteristic features of 
chaotic behavior, stability, or instability of the system under in­
vestigation. Interpretation of this spectrogram requires careful 
attention because correct analysis can provide insights into the 
nature of dynamic processes occurring within the system.

Visual analysis of the spectrogram of the largest Lyapunov 
exponent helps identify critical transition points, detect phases 
of stability and instability, and forecast possible changes in sys­
tem behavior.

In the context of time series analysis, a spectrogram can 
help visualize changes in the frequency domain of the data se­
ries, which can be valuable for analyzing its dynamics and un­
derstanding the nature of oscillations [17, 18].

As seen in Fig. 5, the spectrogram predominantly shows 
yellow color (positive region), with occasional patches of green 
(closer to negative values), indicating relatively stable periods 
when the system is in a more predictable state [19, 20]. How­
ever, areas of orange and green colors closer to negative values 
may suggest transitions or shifts towards more chaotic behav­
ior of the system. This could be associated with increased un­
certainty or changes in the dynamics of the system, leading to 
more complex or less predictable behavior.

To demonstrate the capabilities of nonlinear dynamics and 
chaos theory, a study was conducted on the bifurcation pro­
cess of time series data from chemical analysis of iron at the 
blast furnace output over different operational periods.

Phase bifurcation analysis of nonlinear dynamic systems 
allows identifying bifurcation zones (where the system abrupt­
ly changes its behavior). In the conditions of blast furnace pro­
duction, this may indicate various critical situations such as 
ore breakthroughs or raw material changes. Characteristics of 
bifurcation zones include:

1. Unpredictability. Bifurcation zones typically involve sev­
eral branches of the attractor (stable operating regimes), one of 
which the system will follow. However, it is impossible to pre­
dict in advance which new attractor the system will occupy.

2. Short-term nature. Bifurcation zones are transient and 
divide longer stable system regimes.

3. Cascade effects. In certain situations, bifurcation zones 
can trigger cascade effects, where changes in parameters in 
one zone provoke further changes in other zones.

On the bifurcation diagram, each point represents a value 
of the chemical analysis parameter of cast iron at a specific 
moment in time. The horizontal axis represents time (the 
number of points), and the vertical axis represents the value of 
the chemical analysis parameter. When bifurcation points be­
come pivotal moments that alter the structure or dynamics of 
the system, further data analysis becomes necessary.

For investigating bifurcation zones, a Matlab program was 
developed to construct a bifurcation diagram. To enhance in­
formativeness, two experiments were conducted analyzing 
data on chemical composition to identify bifurcation zones. 
The first experiment utilized 1,000 data points of chemical 
composition, while the second used 1,400 data points. The 
program’s output resulted in graphs depicted in Fig. 6.

Based on the obtained bifurcation diagrams, the following 
conclusions can be drawn:

1. The diagrams clearly show points where the chemical 
analysis values significantly change or abrupt transitions oc­
cur. These points may indicate the presence of bifurcations or 
transitions of the system from one state to another.

2. Stable values of the chemical analysis are visible on the dia­
grams, indicating the existence of stable states within the system.

3. Transitions between different values of the chemical 
analysis or the occurrence of oscillations are observed on the 
diagrams, suggesting changes in the dynamics of the system 
(changes in parameters or conditions).

Conclusions. The conducted research allows the following 
conclusions:

1. The application of traditional methods based on the Gauss­
ian stochastic processes is impractical for analyzing data on the 
chemical composition of cast iron, as they do not account for the 
presence of chaotic processes in the investigated time series.

Fig. 5. The 3D spectrogram of the largest Lyapunov exponent 
for the investigated time series

a

b

Fig. 6. Bifurcation diagrams:
a – analysis of bifurcation zones for the time period from 2011-01-
01 01:04:00.0 to 2011-05-12 11:56:00.0; b – analysis of bifurca-
tion zones for the time period from 2012-01-01 12:03:00.0 to 
2012-04-24 06:03:00.0
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2. Experimental studies of time series data on the chemical 
composition of cast iron allowed for reconstructing a strange 
attractor of the dynamic system, geometrically represented as 
a fractal object in phase space. The external appearance of the 
geometric shape of this time series clearly shows a single core, 
indicating a unified region of trajectory attraction of the dy­
namic system.

3. Based on the computed fractal dimension of the attrac­
tor, the embedding space dimension was determined, allowing 
for the estimation of the maximum forecasting period.

4. For visual assessment of the dynamic properties of the 
investigated nonlinear system, a spectrogram of the largest Ly­
apunov exponent was constructed, revealing the peculiarities 
of its behavior.

5. During bifurcation analysis, bifurcation zones and tran­
sitions between different states of the system were identified, 
indicating changes in raw materials or production technology.
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Дослідження стохастичних властивостей 
часових рядів даних про хімічний аналіз 

чавуну
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Мета. Забезпечення процедури ідентифікації хаотич­
них процесів у динамічній системі та перевірка часових 
рядів, що описують хімічний склад чавуну на випуску до­
менної печі, з метою ідентифікації нелінійності дослі­
джуваної системи й наявності в ній хаотичних процесів.

Методика. Визначення унікальних характеристик 
атрактора динамічної хаотичної системи на основі часо­
вого ряду значень хімічного складу чавуну виконано ме­
тодами нелінійної динаміки й теорії динамічного хаосу, 
такими як метод автокореляційної функції, кореляційної 
та фрактальної розмірності.

Результати. Методами нелінійної динаміки й теорії 
динамічного хаосу досліджено характер поведінки часо­
вих рядів даних про хімічний склад чавуну на випуску до­
менної печі. Виявлена наявність у досліджуваній дина­
мічній системі хаотичних процесів, які мають фракталь­
ну структуру, що зумовлює неефективність застосування 
традиційних методів аналізу, які ґрунтуються на гаусових 
властивостях стохастичних процесів.

Наукова новизна. Уперше обґрунтована можливість і 
доцільність застосування методів теорії хаосу для аналізу 
та прогнозування часових рядів даних про хімічний склад 
чавуну на випуску доменної печі. Також уперше викона­
на ідентифікація нелінійності досліджуваної динамічної 
системи й виявлена в ній наявність хаотичних процесів 
шляхом визначення унікальних характеристик дивного 
атрактора системи за аналізованими часовими рядами, 
таких як розмірність вкладення, часова затримка та зна­
чення старшого показника Ляпунова.

Практична значимість. Отримані результати відкрива­
ють можливість більш ефективного та якісного аналізу 
поведінки досліджуваної динамічної системи шляхом 
розробки нових інструментів оцінки та прогнозу, адек­
ватних характеру досліджуваних процесів.

Ключові слова: нелінійна динаміка, динамічний хаос, 
дивний атрактор, фрактальні властивості часових рядів, 
спектрограма
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