https://doi.org/10.33271 /nvngu/2024-4/121

1. S. Konokh,
orcid.org/0000-0001-5930-1957,
N. M. Istomina®,
orcid.org/0000-0002-6811-8115,
A. 1. Lomonos,
orcid.org/0000-0002-5001-1280

DESIGNING THE PREDICTIVE CONTROL OF A DRUM DRYER USING
MULTI-AGENT TECHNOLOGY

Kremenchuk Mykhailo Ostrohradskyi National University,
Kremenchuk, Ukraine
* Corresponding author e-mail: nmistomina@gmail.com

Purpose. To increase the efficiency of drying lines for bulk products by automating control using intelligent technology to determine
the state of the product and predict its initial moisture content by analyzing a series of control signals and messages in the time domain.

Methodology. The author’s model of a drum dryer with axial and furnace burners for drying charge used for the production of
iron ore concentrate — pellets — was used. The model was used to generate training and control examples. The performance of the
multi-agent technology and the accuracy of predicting the initial moisture content were researched.

Findings. The article analyses the factors that complicate the high-quality automatic control of the process of drying bulk products
in drum dryers rotating in a furnace with burners. A model of an intelligent predictor is proposed, which identifies the state of the prod-
uct and predicts its output moisture content on the basis of available control and feedback signals. The operability of the multi-agent
system model and of the calculating algorithms for the predicted moisture value was proved. The possibility of using the technology to
ensure automatic control of the technological process and high-quality stabilization of the controlled parameter are demonstrated.

Originality. The predictor is implemented as a peer-to-peer multi-agent system. This multi-agent system stores and works
signal vectors with values placed by the time delays between the change in the corresponding signal and the change in product
moisture at the dryer outlet. Each agent contains a description of a specific situation in the dynamics. The technology provides for
automatic adjustment of the multi-agent system by analyzing arrays of signals over a long time period and generating new agents in
cases where a situation is detected which cannot be described by an array of existing agents.

Practical value. The technology provides the initial moisture content calculation by an array of agents and allows the dryer

automatic control by levelling the time delay in the feedback channel.
Keywords: bulk products drying, automated control, model experiments

Introduction. In the current realities of the processing in-
dustry (including iron ore concentrate production, carbon
black production, feed additive production and construction
mix production), operational staff try to achieve acceptable
sustainable mode. They try to avoid changing the operating
modes as there is a risk of not keeping critical product quality
parameters within acceptable limits [1].

Drum dryers belong to a specific class of objects that require
special structures and models for automatic control. In dryers
rotated inside the furnace, the number of control influences can
be more than ten. There is no possibility of direct measurement
of the humidity and temperature for the product inside the drum.
Time delay between the change in the control influence and the
change in the humidity of the product at the drum outlet can be
several tens of minutes. In addition, the set capacity can vary
throughout the day, and raw materials have different initial mois-
ture content and drying kinetics at different times. All these fac-
tors make it impossible to use classical PID control structures.

Problem statement. The paper considers the type of indus-
trial furnaces of cylindrical shape with rotation about the lon-
gitudinal axis, in particular, drum furnaces. Such furnaces are
designed to heat bulk materials for the purpose of their physi-
cal and chemical treatment. The material and flue gas are fed
into the drum furnace both in parallel with the movement of
the product and in the opposite direction. The heat sources
are burners with burn powdered, solid, liquid or gaseous fuels.

For the purpose of this study we have chosen a furnace that
processes the charge for the production of iron ore concentrate.
The scheme of the technological equipment is shown in Fig. 1.

The metal drum is installed on support rollers at a slight
angle to the horizon. In some cases, the diameter of the drum is
made variable in length. The drum is rotated (1—6 rpm) by an
electric motor through a gearbox and an open gear. The charge
is fed through a metering device and a controlled capacity feed-
er (usually a frequency controlled electric drive). Slag in the
form of pulp is fed in bulk or through nozzles. To improve the
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heat transfer conditions, the drum is equipped with various heat
exchange devices such as blades, shelves, chain loops, nozzles,
etc. For the same purpose, in some cases, the drum lining is
made of complex shapes, such as cellular. The main dimensions
of the drum vary considerably: the length from 20 to 130 m and
the diameter from 3 to 7.5 m. When the drum rotates, the mate-
rial is poured over the internal nozzles and moves along the axis
of the drum to the outlet. It is influenced by fuel gases supplied
from the same end and heat from the drum walls.

The finished product is discharged on the other side and
flows into the transport and cooling system. The steam-gas
mixture is removed from the center of the drum by a fan that
maintains a constant vacuum level in the piping. The mixture
is cleaned of dust (fines) in the filtration system.

For the selected scheme, the heat sources are an axial
burner and two furnace burners located along the drum. Each
burner has a built-in control system regulating the supply of
fuel and compressed air to the nozzle depending on the set
output. The technological system has energy feedback: the
hot gases in the chimney heat the compressed air for the
burner, which is fed to the burners. This increases the tem-
perature of the flame.

The exhaust gas from the furnace is transferred to the out-
let of the drum through an exhaust hood, which creates dif-
ferential pressures inside the drum and removes liquid vapors
and fumes from the system.

Drying occurs under the furnace gases come into contact
with the raw material in three ways:

1) when the raw material falls from the blades, blown by
the flue gases;

2) from the surface of the material piled on the bottom of
the drum;

3) by contact with more heated surfaces (walls, blades).

The plant’s capacity reaches 150 tons per hour (finished
product). The technological process is energy-intensive, and
the quality of the final product, which includes the dried mate-
rial, depends on it. For continuous production, it is important
to maintain quality indicators within narrow limits.
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Fig. 1. Scheme of technological equipment

Literature review. Studies in the field of applied intelligent
technologies show the insufficient adaptability of formal mod-
els of artificial neural networks, fuzzy logic controllers, and
expert systems to optimize and automatically control techno-
logical processes in real time. Works [2, 3] describe neural
controllers for technological processes. Satisfactory synthesis
results are achieved if private optimal solutions for individual
process states have already been found. Neural controllers ap-
proximate training examples to all possible states, but they do
not provide the search for optimal solutions.

Works [4, 5] describe a model of a fuzzy controller and a
method for selecting the settings and parameters of the accessory
functions. The fuzzy controller acts as an additional module that
adjusts the settings of the PID controller and gives the controller
nonlinear properties that improve the transient process.

We can generalize: the proposed models of neural network
and fuzzy automatic control systems also work on the basis of an
inconsistency signal and do not implement full-fledged predictive
control. They have very limited self-tuning properties and require
the participation of experts to improve the quality of control [6].

The absence of a universal approach to the use of advanced
intelligent technologies forces the synthesis of specialized
methods and models for each installation individually, and
sometimes it is necessary to supplement and modify the con-
trol system even for individual technological modes [7, 8].
Also, many improved automatic control methods for optimiz-
ing control algorithms require an analytical description of
control processes and adequate computational models [9].

Sources [10, 11] define the technology of multi-agent sys-
tems as promising for solving the problems of optimal control
of multiconnected systems.

Therefore, it is important to initially determine the mode
with highest efficiency within the specified productivity of the
production line for the selected product brand. After that, the
task is to achieve and stabilize it. Works [12, 13] describe meth-
ods for controlling and forecasting a continuous dynamic pro-
cess using a multiagent system (MAS) with a set of peer objects
that classify the current state of the process according to tem-
porary reports of technological signals. Such MAS is focused
on determining parameters that cannot be directly measured.
In essence, the MAS should act as a predictor that identifies
the regulated parameter at the next control cycles.

The positive effect of using predictors and state observers
in automatic control processes is described in [14, 15]. Paper
[16] describes the use of a neural network to identify the state
and control a nonlinear dynamic object using the “control sys-
tem design” framework. In this example, the neural network
matches the current situation with optimized control actions,
which provides advantages over traditional control systems.
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Unsolved aspects of the problem. The proposed models of
neural network and fuzzy automatic control systems also work
on the basis of an inconsistency signal and do not implement
full-fledged predictive control. They have very limited self-tun-
ing properties and require the participation of experts to improve
the quality of control [17]. The lack of a universal approach to
the use of known intelligent technologies forces the synthesis of
specialized methods and models for each installation individu-
ally [18], and sometimes it is necessary to supplement and mod-
ify the control system even for individual technological modes.
Also, many improved automatic control methods for optimizing
control algorithms require an analytical description of control
processes and adequate computational models. Sources [19, 20]
define the technology of multiagent systems as promising for
solving problems of optimal control of multichain systems.

Purpose and tasks statement. The purpose of the work is to
increase the efficiency of technological lines for drying bulk
products by automating control using intelligent technology
for determining the state of the product and predicting its ini-
tial moisture content using the analysis of an array of control
and message signals in the time domain.

The following tasks were formulated to achieve the purpose:

- development of a model of a drum dryer as a technologi-
cal control object, generation of experimental data;

- development of structural elements of the multiagent
system;

- development of an algorithm for setting up and operating
a multi-agent predictor;

- experimental study of the performance and quality of the
multi-agent forecasting technology.

Description of the research methodology. In order to gener-
ate an array of experimental data and debug the multi-agent
technology, it is advisable to develop a computer model of a
technological installation that reproduces the drying process in
compliance with the dynamic characteristics of real equipment.

The modeling assumes that the product moves along the
drum discretely from one conditional link to another. The
model is based on two parallel circuits of memory elements
that correspond to the product and moisture in the condition-
al section of the drum (Fig. 2).

The input signals are the product flow and moisture content,
on the basis of which the “Calculating the mass of material and
water” block generates separate dry product and water flows,
which are integrated into the material and water mass, which is on
average at the beginning of the drum. The memory elements store
the values of the mass of the substance and transfer them from the
previous to the next one according to the speed of the substance
movement, depending on the drum rotation speed. The “Reset
and download signal generation module” (Fig. 2) generates sig-
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Fig. 2. Scheme of modeling the drying process

nals for the memory elements to fix and memorize the input val-
ue. Such a scheme allows subtracting the mass of evaporated
moisture from the mass of water in the area at each step.

The “Function for calculation of calories on each link of
the drum” calculates the calories delivered to each drum link
based on the fuel consumption. Based on information about
the moisture content of the product and on the basis of kinetic
dependencies, the mass of evaporated moisture is calculated.

A separate module “Temperature calculation module”
calculates the signals from the furnace temperature sensors
and the temperature of the vapor-gas mixture at the drum out-
let based on the product weight, evaporated water weight, and
fuel consumption of each burner. The computational model
considers and displays the time delays between changes in the
process state and their detection by temperature sensors. The
model serves as a generator of training and control data to
study the quality of the multi-agent system.

Results. The final form of the automatic prognostication
system structure depends on the configuration of the techno-
logical equipment. In the considered configuration, the input
signals of the multiagent system are selected:

- rotational speed of the drum, rpm;

- gas flow to the axial gas burner, m?/h;

- gas flow rate to the first furnace gas burner, m’/h;

- gas consumption to the second gas burner, m’/h;

- input product flow rate into the drum, kg/s;
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- moisture content of the input product, %;

- temperature of the vapor-gas mixture, °C;

- temperature of the upper part of the furnace, °C.

Each input signal passes through a delay link, which cor-
responds to the time that elapses from the change in the cor-
responding signal to the change in humidity at the output.
Thus, a simple one-dimensional vector describes the situation
in dynamics to facilitates the identification task. Fig. 3 shows
the formation of the input vector (signals y’).

The multi-agent system consists of an ensemble of peer
agents. Each agent contains its own memorized vector ( y;,),
similar to the input vector. Also, the agent stores the moisture
content of the output product under the conditions specified
by the input vector. The number of agents depends on the
number of identified situations.

The agent also stores an array of weights for each compo-
nent of the vector w'. Each agent calculates the weighted dis-
tance between the input and the stored vectors, which allows
adequately assessing the degree of difference between situa-
tions. The basic principle of weighting coefficients is next: if a
small change in the input signal leads to a significant change in
the predicted value, the coefficient is chosen to be greater than
one, and if a significant change in the input signal leads to a
slight change in the predicted value, the coefficient is chosen
to be less than one.

The agent structure provides the calculation of a weighted

() s

Activation function

Results accumulation block

Correction result block

<

Fig. 3. Structure of the multi-agent predictor in the forecasting mode
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modulo difference sum. Based on the sum of the difference,
the output of the activation function () is calculated, which is
inversely proportional to the difference between the vectors.
The value of “a” corresponds to the degree of similarity be-
tween the input and the vectors stored in the agent. Also, the
agent calculates the product of the predicted value z and the
degree of similarity o, forming the output signal (o - 7).

The “Results accumulation block™ for the selected agents
calculates the result using the 0”-order Sugeno defuzzification

method
) yz'—y,f;,-|)w/]
iftr(o‘i’amax) ' fact [i( yc. _y‘zjn|)wlj]
i=1 Jj=1

where f,,, is the output of the activation function of the i
agent; f,. is the logical function of selecting agents according to
the threshold of o;, depending on the maximum value of a
across the entire set of agents, the activation function is de-
scribed by the expression

Loy > threshold
" 0,0, < threshold ’
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=l /

R
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where threshold is the adaptive threshold for selecting calculat-
ing agents.

Thus, an adaptive selection of agents is realized to form the
final forecast. The approach is as follows: the higher the maxi-
mum value of a.,,,,, the higher the threshold for agents whose
output will be considered. Thus, for certain situations, the in-
fluence of those agents that are inadequate to the current situ-
ation is leveled. The threshold for the £, function can be set in
a tabular way (Table 1).

The “Correction result block” is used for a low value of
Omax- 1T @ low degree of any agent correspondence to the current
situation is observed, the output value is corrected by the a

Table 1

Dependence of the threshold for selecting agents on the
maximum degree of compliance

No. OLmax threshold
1 0.001 0.03
2 0.003 0.04
3 0.006 0.1
4 0.008 0.15
5 0.01 0.2
6 0.015 0.25
7 0.03 0.3
8 0.05 0.35
9 0.10 0.4
10 0.4 0.45
11 0.7 0.5
12 1.0 0.9

priori formed dependence of the proportional influence of the
input signal vector components on the output humidity value

ﬁpredict = Res +ﬂzkj ’ ij’ (2)
o”max
where Ay; is the deviation of the j vector component for the
agent with the maximum value of a; ; is the coefficient of in-
fluence for the j” component on the final result.

Algorithm for setting up and operating a multi-agent predic-
tor. The functioning of the multiagent system can be repre-
sented as a UML states diagram of a single procedure (Fig. 4).
The procedure is cyclical, performed in constant steps. At each
step, a vector of input signals is generated for the multiagent
predictor. At the same time, the moisture content of the out-
put product is correlated with the past values of the input vec-
tor and, if these data differ from the existing ones by more than
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Fig. 4. UML state diagram of the procedure for calculating the predicted humidity value by the multi-agent system
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a given threshold, a new agent is added to the collection. This
is how the self-learning property is realized.

When it is time to calculate the forecast, the output signals
of all agents o and (a - z) are calculated. When all agents have
been reviewed, the maximum value of o and the number of
such an agent are determined, as well as the threshold for in-
cluding a particular agent in the calculation.

Next, the result is calculated using formula (1). The final
predicted value of the product moisture content fi,,..4;, is calcu-
lated by formula (2), with the result adjusted in proportion to
the deviation between the components of the input vector and
the components of the agent vector oi,-

Experimental study of the multiagent forecasting technology
quality. Based on the developed model of the technological
process, several modes were formed, which differed in initial
humidity and gas flow to the burners. The rotational speed of
the drum and the material flow into the drum remained con-
stant. It was also assumed that the product brand was constant
and had constant kinetic properties of moisture evaporation.
Each control variable was changed after the transient process
was completed.

The multiagent system was implemented as a procedure in
the same simulation environment in which the model of the
technological plant was designed. During the modeling process,
the multiagent system processed information. If situation that
differed from those already described by existing agents based on
signal vectors was identified, the MAS also formed agents.

The list of input and control influences during the training
period is shown in Table 2.

The criterion for adding an agent was the expression

Olpnax < 2.

Based on the results of observing the object’s operation,
the system automatically generated 739 agents.

In order to study the performance of the developed tech-
nology, controlling influences were formed within the ob-
served values, but in such combinations, which are not found
in existing agents.

Fig. 5 shows the change in the initial humidity, which is cal-
culated by the model of the technological installation and is ex-
perimental data. Also, Fig. 5 shows a variant of the multi-agent
system without the correction operation according to formula
(2). In the interval from 600 to 1,750 seconds and from 2,800 to
3,750 seconds, a significant error is observed, reaching 32 % in
determining the initial moisture content. This is due to the fact
that the combination of input signals causes a significant change
in humidity, but is not familiar to the multi-agent system.

The next step was to apply the correction operation ac-
cording to formula (2) based on empirically determined coef-
ficients. In the course of the experiments, the values indicated
in Table 3 were selected: C1 is the number of the vector com-
ponent (signal designation); C2 is the value of the coefficient.

For the rest of the signals, the coefficients are equal to zero.

In Fig. 6, we can see the comparative results of the forecast
on the same example with the application of the correction
operation.

The next step was to allow the multiagent system to add
new agents when a significant prediction error occurs and the
Omay Value is less than 0.1. Fig. 7 shows the results of the pre-
dictor for the studied modes.

Discussion of the experimental results. In the course of the
study, the raw material consumption and the rotational speed
of the drum were not changed to reduce the number of combi-
nations of input conditions. This allows us to test the possibil-
ity of self-learning and approximation of multidimensional
dependencies under working with one-dimensional signal
vectors describing dynamic processes, within the local area.
Changing four input influences (input product moisture, gas
consumption/performance of the axial burner, and two fur-
nace burners) made it possible to identify the advantages and
disadvantages of the multi-agent technology.

Table 2
Composition of the input signal vector
No. n efl gf2 ef3 inpF fi_in
(rpm) | (m*/h) | (m’/h) | (m’/h) | (kg/s) (%)
1 4 100 60 60 5 20
2 4 100 70 60 5 20
3 4 100 70 70 5 20
4 4 150 70 70 5 20
5 4 170 70 70 5 20
6 4 130 60 60 5 18
7 4 100 60 60 5 22
8 4 100 60 70 5 22
9 4 100 70 70 5 22
10 4 150 70 70 5 22
11 4 170 70 70 5 22
12 4 160 60 65 5 23
13 4 110 60 65 5 23
14 4 110 60 65 5 17
15 4 110 40 65 5 17
16 4 110 40 45 5 17
17 4 130 40 45 5 17
18 4 150 60 65 5 24
19 4 120 60 65 5 24
20 4 120 60 65 5 18
21 4 120 60 55 5 18
22 4 120 45 55 5 18
23 4 140 60 60 5 22
24 4 110 60 60 5 22
25 4 110 60 60 5 19.5
26 4 110 60 25 5 19.5
27 4 110 45 25 5 19.5
28 4 170 77 45 5 22
29 4 170 77 72 5 22
30 4 80 77 72 5 22
31 4 80 77 72 5 19.5
32 4 80 77 89 5 19.5
33 4 80 112 89 5 19.5
34 4 80 67 89 5 19.5
35 4 175 60 40 5 22
36 4 135 60 40 5 22
37 4 135 60 40 5 19.5
38 4 135 60 65 5 19.5
39 4 135 45 65 5 19.5
Table 3
Correction factors for calculating the final moisture value
Cl 2 3 4 > 6 7(T1l) | 8(T2)

(gfl) | (gf2) | (gf3) | (inpF) | (fi_in)
c2| 06 0.5 0.5 0.2 0.25 | 0.05 | 0.05

Modeling studies have shown the general operability of the
proposed technology, the fundamental possibility of approxi-
mating the multidimensional dependence of the output of a
dynamic object on the set of input and disturbing influences of
an agent ensemble. Each agent stores a description of a sepa-
rate dynamic situation in the form of a signal vector of input
signals and a constant of the predicted humidity value.

On a set of control examples, the predictor correctly iden-
tified the direction of change in the controlled variable, if each
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of the components of the input vector was within the range of
situations considered in the past, even if it was significantly off
the exact value.

Experiments have shown that the complexity of the appli-
cation is due to the fact that the technology involves calculat-
ing the Hamming distance between vectors to select ones for
forecast formation. This approach requires an expanded set of
agents for an accurate result, otherwise, as shown in Fig. 5, the
forecast has a significant error. Using weighting coefficients to
calculate the weighted Heming distance, selecting agents by
the threshold of “recognizing” the situation (signal o) im-
proves the result only partially.

This is fixed by applying a correction. The coefficients of
the correction function can be calculated by analyzing the data
for the entire array of agents through regression analysis.

Automatic addition of an agent, in cases of appearing situ-
ation that is not recognized by any agent, allows one not only
to accurately determine the initial humidity under these con-
ditions, but also to improve the accuracy of the forecast for
other situations, as can be seen in Fig. 7. After 2,600 seconds,
we can notice a difference from the similar fragment in Fig. 6,
which proves the impact of the new agent on the result in
other situations.

Conclusions and prospects for further development. Drum
dryers, in the context of automatic control, require the intro-
duction of special models of automation systems that will pro-
vide PID control loops with up-to-date and accurate informa-
tion about the state of the process, and will allow timely
changes in control influences. In most drum dryers rotated
inside the furnace, there can be more than a dozen control in-
fluences. For high-quality process control, in addition to the
software and hardware of the process control system, it is nec-
essary to have qualified operational personnel, who prevent
the rejects occurrence or unprofitable modes.

The large range and individual characteristics of dryers, as
well as the variety of product characteristics, make it very im-

portant to develop an intelligent technology with automatic
learning and adaptation to a specific dryer.

Experimental studies confirm the following:

1. Multi-agent technology involves the use of a passive in-
dustrial experiment for its training, what is safe for the enter-
prise’s operation.

2. Observation of the technological process allows the de-
veloped technology to automatically form a limited set of
agents for reliable operation of the predictor. In cases where an
unfamiliar situation is encountered, the technology allows
generating the appropriate agent, when the quality indicator at
the output of the technological unit becomes known.

3. For modes characterized by intermediate values of input
signals, the ensemble of agents generates a collective forecast,
in which the contribution of agents with a higher degree of
compliance (situation recognition) is considered with greater
weight. The procedure of excluding agents with a low level of
correspondence allows reducing the forecast error. Otherwise,
a situation may arise when a large number of agents with a low
level of compliance “overpower” a single agent with a high
level of compliance.

4. The quality of forecasting depends significantly on the
accuracy of determining the time delays between changes in
the input signal and the output humidity. The use of time delay
blocks allows us to adequately describe the state of a dynamic
process with a one-dimensional vector and reliably identify
the current situation.

5. The use of the function of correcting the output result,
at a low level of identification for the current situation based on
the calculated values of the consistency between the same
components of the input and the most appropriate vectors,
can significantly improve the accuracy of the forecast.

6. The absolute error in predicting the moisture content of
the output product in the studied examples does not exceed
5 %, which makes it possible to implement automatic stabili-
zation of the product moisture content.
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The achieved results are relevant for a wide range of objects
characterized by the impossibility of direct measurements,
non-stationarity of characteristics, long transportation delays,
and a multitude of possible states. The implementation of the
proposed technology allows ensuring the proper quality of au-
tomatic control by identifying and predicting the quality of
products. The use of the predictor will allow one to implement
classical control loops, compensate for the delay in the control
loop and ensure timely correction of control influences before
the product characteristic goes beyond the permissible limits.

The property of self-learning is realized by adding a new
agent to the collection when an input signal vector with a high
degree of difference from all vectors stored in the agents is de-
tected. Under working with vectors composed of signal reports
in the direct control channel and the feedback channel, it be-
comes possible to use the multi-agent system to perform pre-
dictive control of a dynamic object. The model experiments
demonstrate the efficiency of the multi-agent control system.
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MyJbTHATEHTHA TEXHOJIOTiS MO0y 10BH
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Mera. [linBuilieHHS e(EKTUBHOCTI TEXHOJOTIYHUX JIiHil
CYLIIHHS CUITyYMX TPOAYKTIB IIUISIXOM aBTOMaTH3allil Kepy-
BaHHS i3 3aCTOCYBaHHSIM iHTEJIEKTyaJIbHOI TEXHOJIOTi1 BU3HA-
YEeHHSI CTaHy MPOIYKTY Ta MPOTHO3YBaHHsI HOro BUXiTHOI
BOJIOTOCTi 3 BAKOPUCTAHHSIM aHaJTi3y MaCUBY CUTHAJIIB Kepy-
BaHHSI 1 MOBiTOMJIEHHSI B YaCOBiii 001acTi.

Metoauka. Bukopucrana aBTopcbKy MoJiesib 6apadaHHOL
CyLIapKU 3 aKCialbHUMU i TOMKOBUMHU MaJTbHUKAMMU AJIS CY-
IIHHS AXTHU, IO BUKOPUCTOBYETHCS TSI BAPOOHUIITBA 3a-
JII30PYAHOIO KOHLIEHTpaTy — OKOTKiB. Ha Monesi BUKoHaHa
reHepaisi HABYJIbHUX | KOHTpOJIbHUX NpuKIIadiB. [Iposene-
He JOCIIKEHHS Mpale3IaTHOCTI MyJbTUareHTHOI TEXHOJIO0-
ril Ta OlliHKAa TOYHOCTi TPOTHO3YBaHHS BUXiHOI BOJOTOCTI.

Pesyabratu. Y poGoTi mpoaHanizoBaHi ¢akTopu, 1110
YCKJTAMHIOIOTh SIKICHE aBTOMATUYHE KEepyBaHHS TIPOIECOM
CYLIIHHSI CUIMYYUX MPOAYKTIB y OapabaHHUX cyllapkax, sIKi
00epTaloThCs BCEPEANHI TOTIKY 3 TTAJIbHUKAMU. 3aIlpOIIOHO-
BaHa MOJEJb iHTEJEKTYaJIbHOTO TPEAUKTOPY, 110 ideHTU(i-
KY€ CTaH MPOMYKTY Ta MPOTHO3Y€E HOTO BUXITHY BOJOTICTh 3a
JNOCTYITHUMU KEePYIOUMMU CUTHAJaMU i CUTHaJIaMU 3BOPOT-
Horo 3B’43Ky. JloBeneHa Mpaue3aaTHICTh MOJENi MyJbTha-
TEHTHOI CUCTeMU Ta aJITOPUTMIB OOUYMCIIEHHS IPOrHO3HOIO
3HAUEHHS BOJIOTOCTi, MOXKJIUBICTh BUKOPUCTAHHS TEXHOJIOTIi
JUTsI 3a0e3MeYeHHs] aBTOMAaTUYHOTO KepyBaHHS TEXHOJOTiv-
HUM IMPOLIECOM i SIKICHOI cTa0ii3allii KepOBaHOTO MapaMeTpa.

Hayxosa noBusHa. [1pequkrop peanisyeTbcs y BUTTISIL O~
HOPaHTOBOI MYJIbTUAr€HTHOI CUCTEMH, 1110 30epirae Ta mpoBo-
IIUTh POOOTY 3 CUTHAJIBHUMM BEKTOPaMH, B SIKUX 3HAYEHHS
CUTHAJIIB PO3MillleHE 3 ypaxyBaHHSIM YaCOBUX 3aTPUMOK MixX
3MiHOIO Bi/IMOBIIHOTO CUTHAJTY Ta 3MiHOIO BOJIOTOCTi MPOIYKTY
Ha Buxogi cymapku. KoXHUT areHT MIiCTUTb OIMUC OKPEeMOi
KOHKPETHOI cuTyauii B iuHaMmili. TexHosoris nepeaoayae aB-
TOMATUYHE HATAIITYBAaHHS MyJIbTUATEHTHOI CUCTEMHU IILISIXOM
aHaJli3y MacUBIB CUTHAJIiB HA TPMBAJIOMY MPOMIXKKY 4acy i re-
Hepallilo HOBUX areHTiB y BUIaaKaX, KOJU (hiKCYETLCSI CUTya-
11is1, SIKy HEMOXJIMBO OIUCATU MaCUBOM iCHYIOUMX areHTiB.

IIpakTyna 3HaunmicTh. TexHoJoOTIsA 3a0e3mneuye po3pa-
XYHOK BUXiIHOI BOJIOTOCTi MACUBOM areHTiB i 103BOJIsIE pea-
JIi3yBaTW aBTOMaTUYHE KEPYBaHHS CYIIapKOIO 3 HiBeJIOBaH-
HSIM 4acOBOI 3aTPMMKU B KaHaJli 3BOPOTHOTO 3B’ SI3KY.

KimiouoBi caoBa: cywinns cunyuux npodykmie, aeémoma-
muune Kepy8anHs, MOOeAbHI eKchepumeHmu
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