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DESIGNING THE PREDICTIVE CONTROL OF A DRUM DRYER USING 
MULTI-AGENT TECHNOLOGY

Purpose. To increase the efficiency of drying lines for bulk products by automating control using intelligent technology to determine 
the state of the product and predict its initial moisture content by analyzing a series of control signals and messages in the time domain.

Methodology. The author’s model of a drum dryer with axial and furnace burners for drying charge used for the production of 
iron ore concentrate – pellets – was used. The model was used to generate training and control examples. The performance of the 
multi-agent technology and the accuracy of predicting the initial moisture content were researched.

Findings. The article analyses the factors that complicate the high-quality automatic control of the process of drying bulk products 
in drum dryers rotating in a furnace with burners. A model of an intelligent predictor is proposed, which identifies the state of the prod­
uct and predicts its output moisture content on the basis of available control and feedback signals. The operability of the multi-agent 
system model and of the calculating algorithms for the predicted moisture value was proved. The possibility of using the technology to 
ensure automatic control of the technological process and high-quality stabilization of the controlled parameter are demonstrated.

Originality. The predictor is implemented as a peer-to-peer multi-agent system. This multi-agent system stores and works 
signal vectors with values placed by the time delays between the change in the corresponding signal and the change in product 
moisture at the dryer outlet. Each agent contains a description of a specific situation in the dynamics. The technology provides for 
automatic adjustment of the multi-agent system by analyzing arrays of signals over a long time period and generating new agents in 
cases where a situation is detected which cannot be described by an array of existing agents.

Practical value. The technology provides the initial moisture content calculation by an array of agents and allows the dryer 
automatic control by levelling the time delay in the feedback channel.

Keywords: bulk products drying, automated control, model experiments

Introduction. In the current realities of the processing in­
dustry (including iron ore concentrate production, carbon 
black production, feed additive production and construction 
mix production), operational staff try to achieve acceptable 
sustainable mode. They try to avoid changing the operating 
modes as there is a risk of not keeping critical product quality 
parameters within acceptable limits [1].

Drum dryers belong to a specific class of objects that require 
special structures and models for automatic control. In dryers 
rotated inside the furnace, the number of control influences can 
be more than ten. There is no possibility of direct measurement 
of the humidity and temperature for the product inside the drum. 
Time delay between the change in the control influence and the 
change in the humidity of the product at the drum outlet can be 
several tens of minutes. In addition, the set capacity can vary 
throughout the day, and raw materials have different initial mois­
ture content and drying kinetics at different times. All these fac­
tors make it impossible to use classical PID control structures.

Problem statement. The paper considers the type of indus­
trial furnaces of cylindrical shape with rotation about the lon­
gitudinal axis, in particular, drum furnaces. Such furnaces are 
designed to heat bulk materials for the purpose of their physi­
cal and chemical treatment. The material and flue gas are fed 
into the drum furnace both in parallel with the movement of 
the product and in the opposite direction. The heat sources 
are burners with burn powdered, solid, liquid or gaseous fuels.

For the purpose of this study we have chosen a furnace that 
processes the charge for the production of iron ore concentrate. 
The scheme of the technological equipment is shown in Fig. 1.

The metal drum is installed on support rollers at a slight 
angle to the horizon. In some cases, the diameter of the drum is 
made variable in length. The drum is rotated (1–6 rpm) by an 
electric motor through a gearbox and an open gear. The charge 
is fed through a metering device and a controlled capacity feed­
er (usually a frequency controlled electric drive). Slag in the 
form of pulp is fed in bulk or through nozzles. To improve the 

heat transfer conditions, the drum is equipped with various heat 
exchange devices such as blades, shelves, chain loops, nozzles, 
etc. For the same purpose, in some cases, the drum lining is 
made of complex shapes, such as cellular. The main dimensions 
of the drum vary considerably: the length from 20 to 130 m and 
the diameter from 3 to 7.5 m. When the drum rotates, the mate­
rial is poured over the internal nozzles and moves along the axis 
of the drum to the outlet. It is influenced by fuel gases supplied 
from the same end and heat from the drum walls.

The finished product is discharged on the other side and 
flows into the transport and cooling system. The steam-gas 
mixture is removed from the center of the drum by a fan that 
maintains a constant vacuum level in the piping. The mixture 
is cleaned of dust (fines) in the filtration system.

For the selected scheme, the heat sources are an axial 
burner and two furnace burners located along the drum. Each 
burner has a built-in control system regulating the supply of 
fuel and compressed air to the nozzle depending on the set 
output. The technological system has energy feedback: the 
hot gases in the chimney heat the compressed air for the 
burner, which is fed to the burners. This increases the tem­
perature of the flame.

The exhaust gas from the furnace is transferred to the out­
let of the drum through an exhaust hood, which creates dif­
ferential pressures inside the drum and removes liquid vapors 
and fumes from the system.

Drying occurs under the furnace gases come into contact 
with the raw material in three ways:

1) when the raw material falls from the blades, blown by 
the flue gases;

2) from the surface of the material piled on the bottom of 
the drum;

3) by contact with more heated surfaces (walls, blades).
The plant’s capacity reaches 150 tons per hour (finished 

product). The technological process is energy-intensive, and 
the quality of the final product, which includes the dried mate­
rial, depends on it. For continuous production, it is important 
to maintain quality indicators within narrow limits.
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Literature review. Studies in the field of applied intelligent 
technologies show the insufficient adaptability of formal mod­
els of artificial neural networks, fuzzy logic controllers, and 
expert systems to optimize and automatically control techno­
logical processes in real time. Works [2, 3] describe neural 
controllers for technological processes. Satisfactory synthesis 
results are achieved if private optimal solutions for individual 
process states have already been found. Neural controllers ap­
proximate training examples to all possible states, but they do 
not provide the search for optimal solutions.

Works [4, 5] describe a model of a fuzzy controller and a 
method for selecting the settings and parameters of the accessory 
functions. The fuzzy controller acts as an additional module that 
adjusts the settings of the PID controller and gives the controller 
nonlinear properties that improve the transient process.

We can generalize: the proposed models of neural network 
and fuzzy automatic control systems also work on the basis of an 
inconsistency signal and do not implement full-fledged predictive 
control. They have very limited self-tuning properties and require 
the participation of experts to improve the quality of control [6].

The absence of a universal approach to the use of advanced 
intelligent technologies forces the synthesis of specialized 
methods and models for each installation individually, and 
sometimes it is necessary to supplement and modify the con­
trol system even for individual technological modes [7, 8]. 
Also, many improved automatic control methods for optimiz­
ing control algorithms require an analytical description of 
control processes and adequate computational models [9].

Sources [10, 11] define the technology of multi-agent sys­
tems as promising for solving the problems of optimal control 
of multiconnected systems.

Therefore, it is important to initially determine the mode 
with highest efficiency within the specified productivity of the 
production line for the selected product brand. After that, the 
task is to achieve and stabilize it. Works [12, 13] describe meth­
ods for controlling and forecasting a continuous dynamic pro­
cess using a multiagent system (MAS) with a set of peer objects 
that classify the current state of the process according to tem­
porary reports of technological signals. Such MAS is focused 
on determining parameters that cannot be directly measured. 
In essence, the MAS should act as a predictor that identifies 
the regulated parameter at the next control cycles.

The positive effect of using predictors and state observers 
in automatic control processes is described in [14, 15]. Paper 
[16] describes the use of a neural network to identify the state 
and control a nonlinear dynamic object using the “control sys­
tem design” framework. In this example, the neural network 
matches the current situation with optimized control actions, 
which provides advantages over traditional control systems.

Unsolved aspects of the problem. The proposed models of 
neural network and fuzzy automatic control systems also work 
on the basis of an inconsistency signal and do not implement 
full-fledged predictive control. They have very limited self-tun­
ing properties and require the participation of experts to improve 
the quality of control [17]. The lack of a universal approach to 
the use of known intelligent technologies forces the synthesis of 
specialized methods and models for each installation individu­
ally [18], and sometimes it is necessary to supplement and mod­
ify the control system even for individual technological modes. 
Also, many improved automatic control methods for optimizing 
control algorithms require an analytical description of control 
processes and adequate computational models. Sources [19, 20] 
define the technology of multiagent systems as promising for 
solving problems of optimal control of multichain systems.

Purpose and tasks statement. The purpose of the work is to 
increase the efficiency of technological lines for drying bulk 
products by automating control using intelligent technology 
for determining the state of the product and predicting its ini­
tial moisture content using the analysis of an array of control 
and message signals in the time domain.

The following tasks were formulated to achieve the purpose:
- development of a model of a drum dryer as a technologi­

cal control object, generation of experimental data;
- development of structural elements of the multiagent 

system;
- development of an algorithm for setting up and operating 

a multi-agent predictor;
- experimental study of the performance and quality of the 

multi-agent forecasting technology.
Description of the research methodology. In order to gener­

ate an array of experimental data and debug the multi-agent 
technology, it is advisable to develop a computer model of a 
technological installation that reproduces the drying process in 
compliance with the dynamic characteristics of real equipment.

The modeling assumes that the product moves along the 
drum discretely from one conditional link to another. The 
model is based on two parallel circuits of memory elements 
that correspond to the product and moisture in the condition­
al section of the drum (Fig. 2).

The input signals are the product flow and moisture content, 
on the basis of which the “Calculating the mass of material and 
water” block generates separate dry product and water flows, 
which are integrated into the material and water mass, which is on 
average at the beginning of the drum. The memory elements store 
the values of the mass of the substance and transfer them from the 
previous to the next one according to the speed of the substance 
movement, depending on the drum rotation speed. The “Reset 
and download signal generation module” (Fig. 2) generates sig­

Fig. 1. Scheme of technological equipment
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nals for the memory elements to fix and memorize the input val­
ue. Such a scheme allows subtracting the mass of evaporated 
moisture from the mass of water in the area at each step.

The “Function for calculation of calories on each link of 
the drum” calculates the calories delivered to each drum link 
based on the fuel consumption. Based on information about 
the moisture content of the product and on the basis of kinetic 
dependencies, the mass of evaporated moisture is calculated.

A separate module “Temperature calculation module” 
calculates the signals from the furnace temperature sensors 
and the temperature of the vapor-gas mixture at the drum out­
let based on the product weight, evaporated water weight, and 
fuel consumption of each burner. The computational model 
considers and displays the time delays between changes in the 
process state and their detection by temperature sensors. The 
model serves as a generator of training and control data to 
study the quality of the multi-agent system.

Results. The final form of the automatic prognostication 
system structure depends on the configuration of the techno­
logical equipment. In the considered configuration, the input 
signals of the multiagent system are selected:

- rotational speed of the drum, rpm;
- gas flow to the axial gas burner, m3/h;
- gas flow rate to the first furnace gas burner, m3/h;
- gas consumption to the second gas burner, m3/h;
- input product flow rate into the drum, kg/s;

- moisture content of the input product, %;
- temperature of the vapor-gas mixture, °С;
- temperature of the upper part of the furnace, °С.
Each input signal passes through a delay link, which cor­

responds to the time that elapses from the change in the cor­
responding signal to the change in humidity at the output. 
Thus, a simple one-dimensional vector describes the situation 
in dynamics to facilitates the identification task. Fig. 3 shows 
the formation of the input vector (signals ).i

cy
The multi-agent system consists of an ensemble of peer 

agents. Each agent contains its own memorized vector ( ),i
py  

similar to the input vector. Also, the agent stores the moisture 
content of the output product under the conditions specified 
by the input vector. The number of agents depends on the 
number of identified situations.

The agent also stores an array of weights for each compo­
nent of the vector wi. Each agent calculates the weighted dis­
tance between the input and the stored vectors, which allows 
adequately assessing the degree of difference between situa­
tions. The basic principle of weighting coefficients is next: if a 
small change in the input signal leads to a significant change in 
the predicted value, the coefficient is chosen to be greater than 
one, and if a significant change in the input signal leads to a 
slight change in the predicted value, the coefficient is chosen 
to be less than one.

The agent structure provides the calculation of a weighted 

Fig. 2. Scheme of modeling the drying process

Fig. 3. Structure of the multi-agent predictor in the forecasting mode
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modulo difference sum. Based on the sum of the difference, 
the output of the activation function (a) is calculated, which is 
inversely proportional to the difference between the vectors. 
The value of “a” corresponds to the degree of similarity be­
tween the input and the vectors stored in the agent. Also, the 
agent calculates the product of the predicted value z and the 
degree of similarity a, forming the output signal (a ⋅ z).

The “Results accumulation block” for the selected agents 
calculates the result using the 0 th-order Sugeno defuzzification 
method
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where fact is the output of the activation function of the ith 
agent; ftr is the logical function of selecting agents according to 
the threshold of ai, depending on the maximum value of a 
across the entire set of agents, the activation function is de­
scribed by the expression
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where threshold is the adaptive threshold for selecting calculat­
ing agents.

Thus, an adaptive selection of agents is realized to form the 
final forecast. The approach is as follows: the higher the maxi­
mum value of amax, the higher the threshold for agents whose 
output will be considered. Thus, for certain situations, the in­
fluence of those agents that are inadequate to the current situ­
ation is leveled. The threshold for the ftr function can be set in 
a tabular way (Table 1).

The “Correction result block” is used for a low value of 
amax. If a low degree of any agent correspondence to the current 
situation is observed, the output value is corrected by the a 

priori formed dependence of the proportional influence of the 
input signal vector components on the output humidity value

	
max

0.12 ,predict es j jfi R k y= + ⋅D
α ∑ 	 (2)

where Dyi is the deviation of the jth vector component for the 
agent with the maximum value of a; kj is the coefficient of in­
fluence for the jth component on the final result.

Algorithm for setting up and operating a multi-agent predic-
tor. The functioning of the multiagent system can be repre­
sented as a UML states diagram of a single procedure (Fig. 4). 
The procedure is cyclical, performed in constant steps. At each 
step, a vector of input signals is generated for the multiagent 
predictor. At the same time, the moisture content of the out­
put product is correlated with the past values of the input vec­
tor and, if these data differ from the existing ones by more than 

Table 1
Dependence of the threshold for selecting agents on the 

maximum degree of compliance
No. amax threshold

1 0.001 0.03
2 0.003 0.04
3 0.006 0.1
4 0.008 0.15
5 0.01 0.2
6 0.015 0.25
7 0.03 0.3
8 0.05 0.35
9 0.10 0.4

10 0.4 0.45
11 0.7 0.5
12 1.0 0.9

Fig. 4. UML state diagram of the procedure for calculating the predicted humidity value by the multi-agent system



ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2024, № 4	 125

a given threshold, a new agent is added to the collection. This 
is how the self-learning property is realized.

When it is time to calculate the forecast, the output signals 
of all agents a and (a ⋅ z) are calculated. When all agents have 
been reviewed, the maximum value of a and the number of 
such an agent are determined, as well as the threshold for in­
cluding a particular agent in the calculation.

Next, the result is calculated using formula (1). The final 
predicted value of the product moisture content fipredict is calcu­
lated by formula (2), with the result adjusted in proportion to 
the deviation between the components of the input vector and 
the components of the agent vector amax.

Experimental study of the multiagent forecasting technology 
quality. Based on the developed model of the technological 
process, several modes were formed, which differed in initial 
humidity and gas flow to the burners. The rotational speed of 
the drum and the material flow into the drum remained con­
stant. It was also assumed that the product brand was constant 
and had constant kinetic properties of moisture evaporation. 
Each control variable was changed after the transient process 
was completed.

The multiagent system was implemented as a procedure in 
the same simulation environment in which the model of the 
technological plant was designed. During the modeling process, 
the multiagent system processed information. If situation that 
differed from those already described by existing agents based on 
signal vectors was identified, the MAS also formed agents.

The list of input and control influences during the training 
period is shown in Table 2.

The criterion for adding an agent was the expression
amax < 2.

Based on the results of observing the object’s operation, 
the system automatically generated 739 agents.

In order to study the performance of the developed tech­
nology, controlling influences were formed within the ob­
served values, but in such combinations, which are not found 
in existing agents.

Fig. 5 shows the change in the initial humidity, which is cal­
culated by the model of the technological installation and is ex­
perimental data. Also, Fig. 5 shows a variant of the multi-agent 
system without the correction operation according to formula 
(2). In the interval from 600 to 1,750 seconds and from 2,800 to 
3,750 seconds, a significant error is observed, reaching 32 % in 
determining the initial moisture content. This is due to the fact 
that the combination of input signals causes a significant change 
in humidity, but is not familiar to the multi-agent system.

The next step was to apply the correction operation ac­
cording to formula (2) based on empirically determined coef­
ficients. In the course of the experiments, the values indicated 
in Table 3 were selected: C1 is the number of the vector com­
ponent (signal designation); C2 is the value of the coefficient.

For the rest of the signals, the coefficients are equal to zero.
In Fig. 6, we can see the comparative results of the forecast 

on the same example with the application of the correction 
operation.

The next step was to allow the multiagent system to add 
new agents when a significant prediction error occurs and the 
amax value is less than 0.1. Fig. 7 shows the results of the pre­
dictor for the studied modes.

Discussion of the experimental results. In the course of the 
study, the raw material consumption and the rotational speed 
of the drum were not changed to reduce the number of combi­
nations of input conditions. This allows us to test the possibil­
ity of self-learning and approximation of multidimensional 
dependencies under working with one-dimensional signal 
vectors describing dynamic processes, within the local area. 
Changing four input influences (input product moisture, gas 
consumption/performance of the axial burner, and two fur­
nace burners) made it possible to identify the advantages and 
disadvantages of the multi-agent technology.

Table 2
Composition of the input signal vector

No. n
(rpm)

gf1
(m3/h)

gf2
(m3/h)

gf3
(m3/h)

inpF
(kg/s)

fi_in
(%)

1 4 100 60 60 5 20
2 4 100 70 60 5 20
3 4 100 70 70 5 20
4 4 150 70 70 5 20
5 4 170 70 70 5 20
6 4 130 60 60 5 18
7 4 100 60 60 5 22
8 4 100 60 70 5 22
9 4 100 70 70 5 22
10 4 150 70 70 5 22
11 4 170 70 70 5 22
12 4 160 60 65 5 23
13 4 110 60 65 5 23
14 4 110 60 65 5 17
15 4 110 40 65 5 17
16 4 110 40 45 5 17
17 4 130 40 45 5 17
18 4 150 60 65 5 24
19 4 120 60 65 5 24
20 4 120 60 65 5 18
21 4 120 60 55 5 18
22 4 120 45 55 5 18
23 4 140 60 60 5 22
24 4 110 60 60 5 22
25 4 110 60 60 5 19.5
26 4 110 60 25 5 19.5
27 4 110 45 25 5 19.5
28 4 170 77 45 5 22
29 4 170 77 72 5 22
30 4 80 77 72 5 22
31 4 80 77 72 5 19.5
32 4 80 77 89 5 19.5
33 4 80 112 89 5 19.5
34 4 80 67 89 5 19.5
35 4 175 60 40 5 22

36 4 135 60 40 5 22
37 4 135 60 40 5 19.5
38 4 135 60 65 5 19.5
39 4 135 45 65 5 19.5

Table 3
Correction factors for calculating the final moisture value

С1 2 
(gf1)

3 
(gf2)

4 
(gf3)

5 
(inpF)

6 
(fi_in) 7 (T1) 8 (T2)

С2 0.6 0.5 0.5 0.2 0.25 0.05 0.05

Modeling studies have shown the general operability of the 
proposed technology, the fundamental possibility of approxi­
mating the multidimensional dependence of the output of a 
dynamic object on the set of input and disturbing influences of 
an agent ensemble. Each agent stores a description of a sepa­
rate dynamic situation in the form of a signal vector of input 
signals and a constant of the predicted humidity value.

On a set of control examples, the predictor correctly iden­
tified the direction of change in the controlled variable, if each 
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of the components of the input vector was within the range of 
situations considered in the past, even if it was significantly off 
the exact value.

Experiments have shown that the complexity of the appli­
cation is due to the fact that the technology involves calculat­
ing the Hamming distance between vectors to select ones for 
forecast formation. This approach requires an expanded set of 
agents for an accurate result, otherwise, as shown in Fig. 5, the 
forecast has a significant error. Using weighting coefficients to 
calculate the weighted Heming distance, selecting agents by 
the threshold of “recognizing” the situation (signal a) im­
proves the result only partially.

This is fixed by applying a correction. The coefficients of 
the correction function can be calculated by analyzing the data 
for the entire array of agents through regression analysis.

Automatic addition of an agent, in cases of appearing situ­
ation that is not recognized by any agent, allows one not only 
to accurately determine the initial humidity under these con­
ditions, but also to improve the accuracy of the forecast for 
other situations, as can be seen in Fig. 7. After 2,600 seconds, 
we can notice a difference from the similar fragment in Fig. 6, 
which proves the impact of the new agent on the result in 
other situations.

Conclusions and prospects for further development. Drum 
dryers, in the context of automatic control, require the intro­
duction of special models of automation systems that will pro­
vide PID control loops with up-to-date and accurate informa­
tion about the state of the process, and will allow timely 
changes in control influences. In most drum dryers rotated 
inside the furnace, there can be more than a dozen control in­
fluences. For high-quality process control, in addition to the 
software and hardware of the process control system, it is nec­
essary to have qualified operational personnel, who prevent 
the rejects occurrence or unprofitable modes.

The large range and individual characteristics of dryers, as 
well as the variety of product characteristics, make it very im­

portant to develop an intelligent technology with automatic 
learning and adaptation to a specific dryer.

Experimental studies confirm the following:
1. Multi-agent technology involves the use of a passive in­

dustrial experiment for its training, what is safe for the enter­
prise’s operation.

2. Observation of the technological process allows the de­
veloped technology to automatically form a limited set of 
agents for reliable operation of the predictor. In cases where an 
unfamiliar situation is encountered, the technology allows 
generating the appropriate agent, when the quality indicator at 
the output of the technological unit becomes known.

3. For modes characterized by intermediate values of input 
signals, the ensemble of agents generates a collective forecast, 
in which the contribution of agents with a higher degree of 
compliance (situation recognition) is considered with greater 
weight. The procedure of excluding agents with a low level of 
correspondence allows reducing the forecast error. Otherwise, 
a situation may arise when a large number of agents with a low 
level of compliance “overpower” a single agent with a high 
level of compliance.

4. The quality of forecasting depends significantly on the 
accuracy of determining the time delays between changes in 
the input signal and the output humidity. The use of time delay 
blocks allows us to adequately describe the state of a dynamic 
process with a one-dimensional vector and reliably identify 
the current situation.

5. The use of the function of correcting the output result, 
at a low level of identification for the current situation based on 
the calculated values of the consistency between the same 
components of the input and the most appropriate vectors, 
can significantly improve the accuracy of the forecast.

6. The absolute error in predicting the moisture content of 
the output product in the studied examples does not exceed 
5 %, which makes it possible to implement automatic stabili­
zation of the product moisture content.

Fig. 5. A control example of studying the operation of the multi-agent system without a correction operation

Fig. 6. Control example of studying the operation of the multi-agent system with a correction operation

Fig. 7. Control example of studying the operation of the multi-agent system with an adjustment operation and adding a new agent
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The achieved results are relevant for a wide range of objects 
characterized by the impossibility of direct measurements, 
non-stationarity of characteristics, long transportation delays, 
and a multitude of possible states. The implementation of the 
proposed technology allows ensuring the proper quality of au­
tomatic control by identifying and predicting the quality of 
products. The use of the predictor will allow one to implement 
classical control loops, compensate for the delay in the control 
loop and ensure timely correction of control influences before 
the product characteristic goes beyond the permissible limits.

The property of self-learning is realized by adding a new 
agent to the collection when an input signal vector with a high 
degree of difference from all vectors stored in the agents is de­
tected. Under working with vectors composed of signal reports 
in the direct control channel and the feedback channel, it be­
comes possible to use the multi-agent system to perform pre­
dictive control of a dynamic object. The model experiments 
demonstrate the efficiency of the multi-agent control system.
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Мета. Підвищення ефективності технологічних ліній 
сушіння сипучих продуктів шляхом автоматизації керу­
вання із застосуванням інтелектуальної технології визна­
чення стану продукту та прогнозування його вихідної 
вологості з використанням аналізу масиву сигналів керу­
вання й повідомлення в часовій області.

Методика. Використана авторську модель барабанної 
сушарки з аксіальними й топковими пальниками для су­
шіння шихти, що використовується для виробництва за­
лізорудного концентрату – окотків. На моделі виконана 
генерація навчальних і контрольних прикладів. Проведе­
не дослідження працездатності мультиагентної техноло­
гії та оцінка точності прогнозування вихідної вологості.

Результати. У роботі проаналізовані фактори, що 
ускладнюють якісне автоматичне керування процесом 
сушіння сипучих продуктів у барабанних сушарках, які 
обертаються всередині топки з пальниками. Запропоно­
вана модель інтелектуального предиктору, що ідентифі­
кує стан продукту та прогнозує його вихідну вологість за 
доступними керуючими сигналами й сигналами зворот­
ного зв’язку. Доведена працездатність моделі мультиа­
гентної системи та алгоритмів обчислення прогнозного 
значення вологості, можливість використання технології 
для забезпечення автоматичного керування технологіч­
ним процесом і якісної стабілізації керованого параметра.

Наукова новизна. Предиктор реалізується у вигляді од­
норангової мультиагентної системи, що зберігає та прово­
дить роботу з сигнальними векторами, в яких значення 
сигналів розміщене з урахуванням часових затримок між 
зміною відповідного сигналу та зміною вологості продукту 
на виході сушарки. Кожний агент містить опис окремої 
конкретної ситуації в динаміці. Технологія передбачає ав­
томатичне налаштування мультиагентної системи шляхом 
аналізу масивів сигналів на тривалому проміжку часу й ге­
нерацію нових агентів у випадках, коли фіксується ситуа­
ція, яку неможливо описати масивом існуючих агентів.

Практична значимість. Технологія забезпечує розра­
хунок вихідної вологості масивом агентів і дозволяє реа­
лізувати автоматичне керування сушаркою з нівелюван­
ням часової затримки в каналі зворотного зв’язку.

Ключові слова: сушіння сипучих продуктів, автома-
тичне керування, модельні експерименти
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