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Introduction. Graphical representation of data is undeni­
ably valuable in most cases. Visualization in an easily compre­
hensible form can enhance overall understanding of informa­
tion, illustrate expected patterns, and reveal anomalies or in­
correct prior assumptions. Utilizing graphical formats can oc­
cur at both the initial and final stages of data analysis and is 
always used when presenting research results and demonstrat­
ing the significance of conducted studies. This is particularly 
true when visualizing empirical distribution functions.

Most commonly, frequency histograms are used for this 
purpose. In the case of continuous values, the line connecting 
the midpoints of the upper bases of the histogram bars can be 
considered as an estimate of the distribution density. Such a 
procedure is simple to perform even with a large number of 
observations and is typically used to determine the closeness of 
an experimental distribution to one of the known generalized 
distributions and to compare various samples. Since histo­
grams use the combination of data, their shape depends sig­
nificantly on the width of the intervals (bins) into which the 
range of the obtained values is divided. Despite the fact that 
the method has been in use for over 200 years, the issue of 
choosing an interval remains a matter of controversy [1]. The 
agreement is that various interval widths must be used in com­
putations and that the optimal interval width depends on the 
previously unknown distribution of the studied value [2]. 
Therefore, histograms remain subjective objects that may not 
reflect important details or, on the contrary, give an exces­
sively detailed picture, where generalized properties are lost.
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CUMULATIVE TRIANGLE FOR VISUAL ANALYSIS OF EMPIRICAL DATA
Purpose. The development of a graphical object for visual analysis that allows for simultaneous evaluation of both general 

characteristics and details of the empirical data distribution.
Methodology. Justification of the feasibility and sequence of creating the cumulative triangle, as well as proving its properties, 

was carried out using geometric constructions, generalization, and lattice functions. The construction of the cumulative triangle 
was implemented in the “Matlab” software. Samples of random variables with known distribution laws were obtained using a 
pseudo-random number generator. Previously calculated dependencies of the spectral power density of seismic-acoustic noise-
like signals were used as empirical data.

Findings. A folded cumulative function of the n-th order was introduced as a generalization of the known folded cumulative func­
tion. Using the folded cumulative functions, a geometric object that is the cumulative triangle, was designed to visualize the empirical 
distribution function. Lines dividing the triangle into flat curvilinear quadrilaterals are plotted on each triangle. It is shown that the face 
area can be used as a characteristic of the random variable concentration near the abscissa of the face upper node, and the difference 
in the areas of the face left and right parts provides for assessing the asymmetry of the distribution over the interval covering the face.

Originality. A new graphical object for visual analysis of empirical data distribution is proposed. It is shown how, relying on 
its appearance, conclusions can be drawn both regarding the characteristics of the entire sample and individual intervals of the 
distribution function.

Practical value. The cumulative triangle can be a useful addition to graphical visualization tools. Its use allows for simultaneous 
detailing and generalization of the properties of experimentally obtained data at different scale levels, which is particularly valuable 
when data have complicated and variable distributions.

Keywords: visualization, empirical data, distribution function, folded cumulative function, power spectrum

One of the reasons for the widespread use of histograms is 
the possibility of constructing them manually. The addition of 
computational tools allows one to directly find a smooth em­
pirical function of the distribution density. To do this, the 
method of kernel density estimation (KDE-Kernel Density 
Estimation) is employed [3, 4]. Usage of the method involves 
choosing a kernel function (typical functions: uniform, trian­
gular, quadratic, normal [5]) and bandwidth. The bandwidth 
affects the resulting density graph in a similar way to the width 
of the interval when constructing a histogram. A small band 
clutters the chart with small fluctuations and hides the main 
trends. A wide band does not make it possible to detect small 
features of the distribution. The kernel function also affects the 
type of dependence obtained, introducing various artifacts [5, 
6]. Especially unexpected results can occur if there are long 
“tails” in the distribution [7]. Thus, the method of nuclear 
density estimation also significantly depends on the subjective 
choice of parameters.

Disadvantages of histograms and the method of nuclear 
density estimation are primarily caused by the necessity to 
group data (either explicitly or through the kernel function). 
The cumulative function does not have such a drawback [8]. 
The construction of its graph does not require the addition of 
any numerical parameters or assumptions. Each observation 
can be clearly plotted on a function graph, which simultane­
ously allows a visual estimate of the sample size. At the same 
time, relying on the graph of the cumulative function, the in­
terpretation of the random variable features and the compari­
son of different data sets are complicated by the visual proxim­
ity of the curves for different distributions.
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Generalized information of the cumulative function can be 
visualized using a box diagram (“box-and-whiskers plot”) [9]. In 
the classic form, the box is bounded by the first and third quar­
tiles and has a mark for the second quartile (median). “Whis­
kers” indicate the limits of a statistically significant part of the 
sample and in most cases are close to the 1st and 99 th percentiles.

The box diagram allows you to visually determine the medi­
an, assess symmetry, and establish the presence of outliers in the 
values of the studied data. The obvious disadvantages of the dia­
gram are the lack of display of details and gaps in the data, as well 
as the impossibility to estimate the sample size from the diagram. 
In order to overcome these shortcomings, various modifications 
are proposed [10, 11], which complicate the diagram shape, but 
do not eliminate the generalization defect. Therefore, it is most 
appropriate to use a box plot when tracking or comparing data 
that have the same or similar type of distribution.

All the information present in the cumulative function is 
stored in the folded empirical cumulative function, the use of 
which has spread since the article by K. Monti (1995). The differ­
ence of the latter is only in the graphically displayed data, but this 
significantly simplifies their interpretation. From the graph, you 
can easily determine the median, assess the symmetry of the dis­
tribution, track outliers, and detect gaps in the sample. In [12] it 
is shown that the area under the graph of the folded cumulative 
function is equal to the average absolute deviation of the sample 
values from the median, that is, the area under the graph can be 
used to estimate the variance of a random variable. It is also im­
portant that all the data is reflected on the graph of the function. 
Therefore, it is not surprising that this method of visualization is 
the most common in medical research [13, 14], where a specific 
patient can stand behind each specimen of the sample.

As a disadvantage, it is necessary to point out the difficulty 
in comparing several distributions, especially when it is neces­
sary to observe changes over time. In such situations, a box plot 
may be more useful. In case of an unknown type of distribution 
in advance, preference should be given to the folded cumulative 
function. Even though all the data are clearly present on the 
graph, it is easy to make a visual assessment only in relation to 
the entire distribution as a whole. Peculiarities in the distribu­
tion on some separate segments affect the appearance of the 
function, but in order to interpret them, it is necessary to carry 
out auxiliary calculations and, possibly, graphic constructions.

The research purpose is development of a graphical object 
that simultaneously displays both the general characteristics 
and the details of empirical data distribution. At the same time, 
a generalization of the folded cumulative function is used.

Theoretical basis. If F(x) is a cumulative distribution func­
tion of a random variable X, then folded distribution function 
(mountain plot) is defined as
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playing its symmetry and the median of the distribution.
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which we will call the folded cumulative function of the sec­
ond order (mountain graph of the second order). The graph of 

this function has two extremes (two peaks, two mountains). 
The abscissas of the extremes are the quantiles of the levels

1 1 30, , , ,1.
4 2 4

 Fig. 2 visualizes the deviation with respect to the 

symmetry of both the entire distribution and its two parts sep­

arately: the left part, where 1( ) ,
2

F x ≤  and the right part, 

where 1( ) .
2

F x >

To identify the details of the distribution, we will introduce 
a folded cumulative function of the kth order (mountain graph 
of the kth order), which we will denote as �

�
( ).kF x

Let us assume that F(x) is a monotonic nondecreasing 
function for the interval [a, b] and F(a) = 0, F(b) = 1.

This function could be considered “theoretical”. Graphs 
of functions will be constructed in a rectangular coordinate 
system xOy, while putting the values of cumulative F(x) and 
folded cumulative �

�
( )kF x  distribution functions along the Oy 

axis.
Let us denote as xi quantiles of the levels 

1,
2k

i -
 1, 2 1ki = +  

cumulative function F(x). Then there are equalities
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Graph �
�

( )kF x  is limited by points with coordinates (a, 0) 
and (b, 0); it has 2k - 1 maximums (“mountain peaks”) located 
at points

1, , 2,4, , 2 ,
2

k
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…

and 2k - 1 + 1 minimums (“intermountain troughs” together 
with the extreme points), which are located in points (xi, 0), i = 
= 1, 3, …, 2k + 1 (odd indices are applied for minimums; even 
indices are applied for maximums).

For convenience, let us designate the abscissas of the max­
imums as +

ix  and minimums as -
ix
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“Peak” number i 1( 1,2 )ki -=  has maximum at the point 
with abscissa ix+  and is limited by the points with abscissas 

ix-  and 1
-
+ix  (Fig. 1, a).

With the entered designations the curve equation at the in­
tervals of growth 2 1 2[ , ] [ , ],i i i ix x x x- +

-=  11,2ki -=  looks like
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we have
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Let us compile a general expression for the folded cumula­
tive function of the kth order
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where Box(y, a, b) = H[y - a] - H[y - b] – “Boxcar” function, 
H(x) – the Heaviside function.

Based on the same data and, accordingly, the same cumula­
tive function, it is possible to obtain folded functions of different 
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orders. Graph at k > 1 has a saw-looking shape. Let us construct 
a graph of the cumulative function of the 1st order �1

�
( )F x  in the 

same coordinates and extend the lines of growth and decline of 
the graph �

�
( )kF x  to the intersection with the curves of the graph 

�
1

�
( ).F x  The constructed lines form a grid. The intersection 

points of the grid lines will be called nodes, the segments of 
lines between adjacent nodes are called edges, and the area of 
the plane bounded by adjacent lines is called faces.

Folded cumulative functions of different orders illustrate the 
distribution of a random variable at different scales. That is why 
for ease of visual perception it makes sense in addition to graphs 
�� ( )kF x  and �1

�
( )F x  also highlight graphs � �

2 1
� �

( ), , ( ),kF x F x-…  
that are superimposed on part of the constructed grid. The 
graphical object obtained in this way will be called a cumulative 
triangle of the kth order (k – triangle), according to the highest 
order of the function used, and marked as �

�
.kFD

When depicting a triangle, graphs � �
1

� �
( ), , ( ),kF x F x…  and a 

grid between them are first built. In this case, a dashed black 
line is used. Next, the lines of the graphs � � �

1 2
� � �

( ), ( ), , ( )kF x F x F x…  
are drawn sequentially with a change in color. Thus, the graph 
of the next function covers part of the previous one. Only the 
graph of the folded cumulative function of the higher order 
�� ( )kF x  is fully in its own color.

As an example, Fig. 2 shows cumulative triangles of the 4th 
order for uniform and beta distributions on the finite interval 
[0, 1].

Let us consider the lines y = y(x) forming the grid in the 
coordinate system. All the lines come from points with coordi­
nates 1

2 1( ,0) ( ,0), 1,2 1.k
i ix x i- -

-= = +  Two lines emerge from 
each point in the middle of the interval (a, b). One line is par­
allel to the rising part of the graph �1

�
( ),F x  and the second one 

is parallel to the falling part of the same graph. We will use the 

symbols “u” and “d” for y, respectively, and in addition iden­
tify the family of lines of the first type (increasing) with indices 

11,2 ,ki -=  and the second (decreasing) 11,2 .kj -=  Note that 
the lines of different families with the same numbers cross the 
Ox axis at different points, namely

1 1
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The equations of the lines look like
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The range of values x for the function y = yu(x, i) (5) is lim­
ited on one side by the point x2i - 1on the Ox axis from which the 
line begins, and on the other side, by the abscissa of the point 
of intersection with line y = yd(x, 2k - 1), which are the falling 
part of �1

�
( ).F x  From the latter we can state the following
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Whence, according to (3), we can write, that 12 .k ix x - +≤
Thus, equation (5) should be supplemented by the condi­

tion 12 1 2, .ki ix x x -- + ∈ 
Similarly, the condition for equation (6) is the following 

1 2 1, .j jx x x+ + ∈ 
Any node lies at the intersection of grid lines and its coor­

dinates x* = x*(i, j), y* = y*(i, j) are determined by a pair of 
numbers (i, j). From (5) and (6) in the node (i, j) we have

* *
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2 2 2 2k k k k

j i r j i sy F x- + + - -
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From the latter, considering (3), one can obtain that x* = 
= xi + j.

Fig. 1. Construction scheme of the graph section �
�

( )kF x  with 

1[ , ]i ix x x- +
+∈  (а) and diagram of a triangle face (b)

a

b
Fig. 2. Cumulative triangles for uniform distribution (а) and 

beta distribution with parameters a = 0.5, b = 0.3 (b)

a

b
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Thus, the node (i, j) on the plane xOy is located at the 

point 
1, , .

2 2i j sk k
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 It means that all nodes are 

located only at the intersections of the horizontal 
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zontal lines correspond to quantile levels from 0 to 
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constant step 
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2k  Vertical lines pass only through the points 

on the abscissa axis, which are equal to the values xi of the 

quantiles of levels 
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i -
 1,2 1.ki = +

If each node is identified by the quantile level (it coincides 
with the coordinate y) and the quantile value, then the transi­
tion from any node along one edge to the adjacent one leads to 
changes in both specified identifiers for a given value graph.

Any face has four nodes (Fig 1, b). Let us mark them as

A(i, j), B(i + 1, j), C(i + 1, j - 1), D(i, j - 1).

In the system xOy, these nodes have coordinates
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and the edges are described by the equations
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The face is symmetrical with respect to the diagonal BD, 

lying on the straight line 
1 .

2 2k k
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= =  Another diagonal 

AC lies on a straight line x = xs. The diagonal AC divides the 
face into two parts. Considering the symmetry with respect to 
the horizontal diagonal, we find the areas of the left S1 and 
right S2 parts of the face
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For a random value in the interval [xs - 1, xs + 1] the value xs 

is a median, and 
1

11 1

1 ( )
( ) ( )

s
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s s x

xF x dx
F x F x

+

-
+ +

′
- ∫  is a mean val­

ue. Therefore, it follows from (7 and 8) that for values from the 
interval [xs - 1, xs + 1] with accuracy up to the constant factors for 
the given triangle (with given k) can be stated: the face area is 
equal to the mean of a random variable deviation from the me­
dian; the difference in the areas of the left and right parts of the 
face is equal to the difference between the mean and median.

Thus, the area of the face sS�  can be used as a characteristic 
of the concentration of random variable values near the abscissa 
of the upper node xs: the smaller is the area, the higher is the 
concentration. The sign of the Pearson asymmetry coefficient is 
determined by the sign of the difference between the mean and 
median [15]. Hence, the difference in areas DSs can be used to 
estimate the asymmetry of the distribution on the interval [xs - 1, 
xs + 1]. If the difference is zero, then the distribution is symmet­
ric. If the difference is greater than zero, then the distribution 
has positive asymmetry, that is, the density of the distribution is 
shifted to the left border of the range. In the opposite case, 
when the difference is less than zero, the asymmetry is negative 
and the density of the distribution is shifted to the right border.

Both values Ss and DSs are easily visually evaluated and 
compared at different S.

Similarly, we can use the amalgamation of faces and draw 
conclusions about larger intervals. If the vertex of the constitu­
ent face is at the node (xs, y*), extreme left and right nodes have 

coordinates *,
2s m k

mx y-
 

- 
 

 and *,
2s m k

mx y+
 

- 
 

 respectively, 

and the bottom node has coordinates * 1, ,
2s k

mx y
-

 
- 

 
 then 

conclusions about the distribution properties can be made rela­
tive to the interval (xs - m, xs + m) and the point xs. It is easier to do 
this along the edges formed by folded cumulative functions of a 
lower order and depicted in the appropriate color (Fig. 2).

Application to sampling of a modulated random variable. 
When experimentally investigated, the cumulative function is 
calculated from a set of data 

001 02 03, , , , .Nz z z z…  In most cases, 
all elements in the sample are considered equal, while the val­
ues of different elements may coincide. The elements are ar­
ranged in the order of increasing their values. An element 
whose value is equal to the previous one is deleted. Thus, the 
data set z1 < z2 < z3 < … < zN, where N ≤ N0 is obtained. Each 

value observed in the initial set is assigned a value 
0

1
1N +

once, and each value observed n times is assigned a value 

0
.

1
n

N +
 Dividing by N0 + 1, and not by N0 ensures the exact 

calculation of the median, and in addition, eliminates the con­
tradictory equality of the cumulative function of unity at the 
experimentally observed farthest point zN.
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Denoting the constructed numerical sequence f1, f2, f3, …, 
fN, the empirical cumulative function can be defined as

	 ( ) , ( , ).
i

i
z x

F x f x
≤

= ∈ -∞ ∞∑ 	 (9)

Graph (9) has a stepped form. Assuming that N is not too 
small, instead of (9) we will use a lattice function with a vari­
able discreteness interval

	
1

( ) , 1, ,
i

i j
j

F z f i N
=

= =∑ 	 (10)

and form an envelope from segments of linear interpolation 
between adjacent nodes. This function is continuous and non-
decreasing in the interval [a, b] = [z1, zN], which corresponds to 
the requirements for the theoretical cumulative function con­
sidered above. The differences are that the quantiles of the lev­

els of multiples 
1
2k  do not coincide with the discrete zi ones 

and the conditions F(a) = 0, F(b) = 1 are not fulfilled at the 
ends of the interval.

To solve the first of the mentioned problems, auxiliary 
counts were introduced into the lattice function (10) at the 
points that are quantiles of the required level, found along the 
interpolation segments. These counts were used when con­
structing the lines of the graph, but, unlike the points related 
to the data, they were not clearly marked on the graph.

The second of the mentioned differences requires some 
change in the calculation relationships used above.

For the sake of generalization, let us allow some arbitrary 
deviations at the ends of the domain of the cumulative func­
tion, that is, we assume that

F(a) = Fa ≥ 0;  F(b) = Fb ≤ 1.

It should be noted that the same conditions must be taken 
into account in the case of the theoretical cumulative func­
tion, when it is defined in the infinite interval. Instead of (4) 
now we use
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To satisfy the requirement of obtaining 2k - 1maxima 
(“peaks”) the following restrictions should be put on the high­
est order ˆ ( )kF x

1 2 10 , ( ) 1.
2 2

k

a k k
F F b-

≤ < < ≤

From the latter, the maximum possible order value is

kmax = min[-log2 Fa, -log2(1 - Fb)] =

= - max[log2 Fa, log2(1 - Fb)] - 1.

All other relationships and the methodology of construct­
ing a triangle remain the same.

Fig. 3 shows cumulative triangles constructed from a data 
set obtained as a mixture of an equal number of elements taken 
from two normally distributed random variables with means 
equal to 1 and 2, and variances equal to 1 and 0.2, respectively. 
The sample consisted of 60 elements. For the triangle shown 
in Fig. 3, a, only the first 20 elements of the sample were used, 
and for the triangle in Fig. 3, b all 60 elements were involved. 
The difference in images illustrates the selective variability. An 
increase in the sample size naturally leads to an increase in the 
range of values and, at the same time, to a stabilization of the 
overall shape of the triangle. Zones of concentration of values 
are quite simply determined, especially if, in addition to the 

Fig. 3. Cumulative triangles: (а, b) and their parts (c, d), which are constructed from a simulated sample of a random variable of 60 elements:
a, c – involving the first 20 values; b, d – involving all sample

a

c

b

d
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reduction of the face area, the asymmetry of the neighboring 
faces is taken into account. Thus, Figs. 3, c, d show enlarged 
parts of triangles in the same zone of values x obtained with 
different sample volumes. In the case of a larger sample 
(Fig. 3, d), to determine the zone of increased concentration 
of a random variable, it is sufficient to involve only the area of 
faces. The smallest area refers to x ≈ 2. In the case of a smaller 
sample (Fig. 3, c), the faces that are tangent to the vertical line 
x = 2 are too large and the concentration of values is mani­
fested in the asymmetry of the neighboring faces. Only those 
adjacent faces whose top node is close to x = 2 are taken into 
account. In the figure, these faces are marked with letters. In 
the faces to the left (A, C), the area of the right part is much 
smaller than the area of the left part, which means that the 
distribution on the interval covering this face has a negative 
asymmetry and the density of the distribution is shifted to the 
right border, i. e. to x ≈ 2. In the faces on the right (B, D), the 
area of the left part is much smaller than the area of the right 
one, accordingly, this face has positive symmetry and the den­
sity of the distribution is shifted to the left border, i. e. again to 
x ≈ 2. Thus, based on the constructed cumulative triangle, it is 
possible to draw conclusions regarding the features of the em­
pirical data distribution.

Results. Application to empirical data. An additional con­
venience of using the cumulative triangle is the simplicity of 
the calculation and visualization algorithm. The graphs pre­
sented in this article are obtained as the results of a simple code 
written in the Matlab software of “The MathWorks” company.

The proposed approach to visualization of experimental 
data, in particular, was applied to the analysis of seismoacous­
tic signals used to assess the stability of mining excavations un­
der the impact of working destructive mechanisms. Predictive 
estimation of the excavation state is based on the power spec­
tral density of the registered acoustic signals [16, 17]. Fig. 4 
shows the dependence of the unilateral power spectral density 
G on the signal frequency f. The spectra are computed based 
on the signals obtained in the same excavation, but at different 

time intervals in segments of different durations: signal No. 1 
matches to duration of 38 s, signal No. 2 matches to duration 
of 21 s. The different duration of the signals is due to the un­
regulated time of the rock-destroying mashine action, which is 
the source of the generated oscillations. Full spectra occupy a 
much larger frequency range than shown in Fig. 4, namely 
from 0 to 5,512.5 Hz (Nyquist frequency). Counts G at fre­
quencies not shown in the graph have much smaller values, but 
the number of such counts is significant and must be taken into 
account when calculating the cumulative function. The spec­
tra shape indicates the noise-like nature of the signal with a 
rather complex spectral structure, and individual outliers (ex­
trema) of the spectral density are variable and strongly depend 
on the parameters of the spectral evaluation procedure [18]. 
The use of a cumulative triangle to represent the distribution 
of signal power simplifies the systematization and analysis of 
signals, at least in the initial stages of research. Fig. 5 shows 
cumulative triangles of the fifth order for the same signals, 
whose spectra are shown in Fig. 4.

The comparison of triangles obviously indicates not only a 
change in the frequency interval and medians of the power dis­
tribution, but also changes in the structure of the power distri­
bution. Moreover, the features of changes can be observed at 
different scale levels based on the area and shape of faces with 
different sizes.

Conclusions.

1. Folded cumulative function of the kth order �
�

( )kF x  is 
introduced as a generalization of the commonly known folded 
cumulative function.

2. A new geometric object called the cumulative triangle is 
proposed for visualizing the empirical distribution function. 
Outside, the triangle is limited by the graph �1

�
( )F x and has in 

its field the graphs of several folded cumulative functions with 
increasing orders � �

2
� �

( ), , ( ).kF x F x…  Based on �
�

( ),kF x  an aux­
iliary grid of lines is applied to the triangle, which divides the 
area of the triangle into curvilinear quadrilaterals (faces).

3. It is shown that:
- the area of the face is equal to the average value of the 

modulus of deviations of the random variable from the median 
and, thus, can be used as a characteristic of the concentration 
of the random variable values near the abscissa of the upper 
end of the face;

a

b

Fig. 4. Spectral densities of mine seismoacoustic signals power:
a – signal No. 1; b – signal No. 2

a

b

Fig. 5. Cumulative triangles of power distribution of mine seis-
moacoustic signals:
a – signal No. 1; b – signal No. 2
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- the difference in the areas of the left and right parts of the 
face is equal to the difference between the mean and the me­
dian and, thus, can be used to estimate the asymmetry of the 
distribution on the interval, which is the projection of the face 
on the axis of random variable;

4. As examples, cumulative triangles are developed for:
- samples of random numbers generated by the random 

number generator;
- spectral power densities of seismo-acoustic signals, 

which were registered during the observed state of the mining 
excavation under conditions of working rock-crushing units.

5. Shortcomings. Developing a cumulative triangle is more 
difficult than constructing a histogram or box plot. If there is a 
significant number of samples, it may be more appropriate to 
use other types of visualization to compare their distributions. 
The redundancy of the geometric image, manifested in the 
duplication of faces in the vertical direction should be noted.

At the same time, the cumulative triangle makes it possible 
to simultaneously detail and generalize the properties of ex­
perimentally obtained data at different scale levels. Therefore, 
it should be preferred when studying data with complicated 
and varying distributions.
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Кумулятивний трикутник для візуального 
аналізу емпіричних даних

Ю. М. Головко, О. О. Сдвижкова*

Національний технічний університет «Дніпровська по­
літехніка», м. Дніпро, Україна
* Автор-кореспондент e-mail: sdvyzhkova.o.o@nmu.one

Мета. Розробка графічного об’єкту для візуального 
аналізу, що давав би можливість одночасно оцінювати як 
загальні характеристики, так і деталі розподілу емпірич­
них даних.

Методика. Обґрунтування доцільності й послідов­
ності створення кумулятивного трикутника, а також до­
ведення його властивостей виконувалось із залученням 
геометричних побудов, узагальнених і решітчастих функ­
цій. Побудова кумулятивного трикутника здійснювалася 
програмно у середовищі «Matlab». Вибірки випадкових 
величин з відомими законами розподілу отримувалися з 
використанням генератора псевдовипадкових чисел. 
У якості емпіричних даних використані попередньо об­
числені залежності спектральної щільності потужності 
сейсмоакустичних шумоподібних сигналів.

Результати. Уведена згорнена кумулятивна функція 
k-го порядку як узагальнення відомої згорненої кумуля­
тивної функції. Використовуючи згорнені кумулятивні 
функції, побудовано геометричний об’єкт – кумулятив­
ний трикутник, призначений для візуалізації емпіричної 
функції розподілу. На трикутник наносяться лінії, що 
розбивають його на плоскі криволінійні чотирикутники. 
Показано, що площа грані може використовуватися як 
характеристика концентрації значень випадкової вели­
чини біля абсциси верхнього вузла грані, а різниця площ 
лівої та правої частин грані дає оцінку асиметрії розподі­
лу на проміжку, що покриває грань.

Наукова новизна. Запропоновано новий графічний 
об’єкт для візуального аналізу розподілу емпіричних да­
них. Показано, яким чином, спираючись на його вид, 
можна робити висновки як відносно характеристик усієї 
вибірки, так і окремих проміжків функції розподілу.

Практична значимість. Кумулятивний трикутник 
може бути корисним доповненням до графічних засобів 
візуалізації. Його використання дає можливість візуаль­
ної одночасної деталізації та узагальнення властивостей 
експериментально отриманих даних на різних масштаб­
них рівнях, що є особливо цінним, коли дані мають 
ускладнені й мінливі розподіли.

Ключові слова: візуалізація, аналіз даних, функція роз-
поділу, згорнута кумулятивна функція, спектр потужності
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