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CUMULATIVE TRIANGLE FOR VISUAL ANALYSIS OF EMPIRICAL DATA

Purpose. The development of a graphical object for visual analysis that allows for simultaneous evaluation of both general
characteristics and details of the empirical data distribution.

Methodology. Justification of the feasibility and sequence of creating the cumulative triangle, as well as proving its properties,
was carried out using geometric constructions, generalization, and lattice functions. The construction of the cumulative triangle
was implemented in the “Matlab” software. Samples of random variables with known distribution laws were obtained using a
pseudo-random number generator. Previously calculated dependencies of the spectral power density of seismic-acoustic noise-
like signals were used as empirical data.

Findings. A folded cumulative function of the n-th order was introduced as a generalization of the known folded cumulative func-
tion. Using the folded cumulative functions, a geometric object that is the cumulative triangle, was designed to visualize the empirical
distribution function. Lines dividing the triangle into flat curvilinear quadrilaterals are plotted on each triangle. It is shown that the face
area can be used as a characteristic of the random variable concentration near the abscissa of the face upper node, and the difference
in the areas of the face left and right parts provides for assessing the asymmetry of the distribution over the interval covering the face.

Originality. A new graphical object for visual analysis of empirical data distribution is proposed. It is shown how, relying on
its appearance, conclusions can be drawn both regarding the characteristics of the entire sample and individual intervals of the
distribution function.

Practical value. The cumulative triangle can be a useful addition to graphical visualization tools. Its use allows for simultaneous
detailing and generalization of the properties of experimentally obtained data at different scale levels, which is particularly valuable
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when data have complicated and variable distributions.
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Introduction. Graphical representation of data is undeni-
ably valuable in most cases. Visualization in an easily compre-
hensible form can enhance overall understanding of informa-
tion, illustrate expected patterns, and reveal anomalies or in-
correct prior assumptions. Utilizing graphical formats can oc-
cur at both the initial and final stages of data analysis and is
always used when presenting research results and demonstrat-
ing the significance of conducted studies. This is particularly
true when visualizing empirical distribution functions.

Most commonly, frequency histograms are used for this
purpose. In the case of continuous values, the line connecting
the midpoints of the upper bases of the histogram bars can be
considered as an estimate of the distribution density. Such a
procedure is simple to perform even with a large number of
observations and is typically used to determine the closeness of
an experimental distribution to one of the known generalized
distributions and to compare various samples. Since histo-
grams use the combination of data, their shape depends sig-
nificantly on the width of the intervals (bins) into which the
range of the obtained values is divided. Despite the fact that
the method has been in use for over 200 years, the issue of
choosing an interval remains a matter of controversy [1]. The
agreement is that various interval widths must be used in com-
putations and that the optimal interval width depends on the
previously unknown distribution of the studied value [2].
Therefore, histograms remain subjective objects that may not
reflect important details or, on the contrary, give an exces-
sively detailed picture, where generalized properties are lost.
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One of the reasons for the widespread use of histograms is
the possibility of constructing them manually. The addition of
computational tools allows one to directly find a smooth em-
pirical function of the distribution density. To do this, the
method of kernel density estimation (KDE-Kernel Density
Estimation) is employed [3, 4]. Usage of the method involves
choosing a kernel function (typical functions: uniform, trian-
gular, quadratic, normal [5]) and bandwidth. The bandwidth
affects the resulting density graph in a similar way to the width
of the interval when constructing a histogram. A small band
clutters the chart with small fluctuations and hides the main
trends. A wide band does not make it possible to detect small
features of the distribution. The kernel function also affects the
type of dependence obtained, introducing various artifacts [5,
6]. Especially unexpected results can occur if there are long
“tails” in the distribution [7]. Thus, the method of nuclear
density estimation also significantly depends on the subjective
choice of parameters.

Disadvantages of histograms and the method of nuclear
density estimation are primarily caused by the necessity to
group data (either explicitly or through the kernel function).
The cumulative function does not have such a drawback [8].
The construction of its graph does not require the addition of
any numerical parameters or assumptions. Each observation
can be clearly plotted on a function graph, which simultane-
ously allows a visual estimate of the sample size. At the same
time, relying on the graph of the cumulative function, the in-
terpretation of the random variable features and the compari-
son of different data sets are complicated by the visual proxim-
ity of the curves for different distributions.

114 ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2024, N° 4



Generalized information of the cumulative function can be
visualized using a box diagram (“box-and-whiskers plot”) [9]. In
the classic form, the box is bounded by the first and third quar-
tiles and has a mark for the second quartile (median). “Whis-
kers” indicate the limits of a statistically significant part of the
sample and in most cases are close to the I and 99" percentiles.

The box diagram allows you to visually determine the medi-
an, assess symmetry, and establish the presence of outliers in the
values of the studied data. The obvious disadvantages of the dia-
gram are the lack of display of details and gaps in the data, as well
as the impossibility to estimate the sample size from the diagram.
In order to overcome these shortcomings, various modifications
are proposed [10, 11], which complicate the diagram shape, but
do not eliminate the generalization defect. Therefore, it is most
appropriate to use a box plot when tracking or comparing data
that have the same or similar type of distribution.

All the information present in the cumulative function is
stored in the folded empirical cumulative function, the use of
which has spread since the article by K. Monti (1995). The differ-
ence of the latter is only in the graphically displayed data, but this
significantly simplifies their interpretation. From the graph, you
can easily determine the median, assess the symmetry of the dis-
tribution, track outliers, and detect gaps in the sample. In [12] it
is shown that the area under the graph of the folded cumulative
function is equal to the average absolute deviation of the sample
values from the median, that is, the area under the graph can be
used to estimate the variance of a random variable. It is also im-
portant that all the data is reflected on the graph of the function.
Therefore, it is not surprising that this method of visualization is
the most common in medical research [13, 14], where a specific
patient can stand behind each specimen of the sample.

As a disadvantage, it is necessary to point out the difficulty
in comparing several distributions, especially when it is neces-
sary to observe changes over time. In such situations, a box plot
may be more useful. In case of an unknown type of distribution
in advance, preference should be given to the folded cumulative
function. Even though all the data are clearly present on the
graph, it is easy to make a visual assessment only in relation to
the entire distribution as a whole. Peculiarities in the distribu-
tion on some separate segments affect the appearance of the
function, but in order to interpret them, it is necessary to carry
out auxiliary calculations and, possibly, graphic constructions.

The research purpose is development of a graphical object
that simultaneously displays both the general characteristics
and the details of empirical data distribution. At the same time,
a generalization of the folded cumulative function is used.

Theoretical basis. 1f F(x) is a cumulative distribution func-
tion of a random variable X, then folded distribution function
(mountain plot) is defined as

~ Fx),  Fx)<s
F(x)= f . (1)
1= F(x), F(x)>2

Graph F(x) visualizes the distribution most clearly, dis-
playing its symmetry and the median of the distribution.

Based on the same cumulative function, let us introduce a
function

1
F(x), F(x)sZ
R l—F(x), l<F(x)£l
L > @)
F(x)—E, 7<F(x)SZ
1- F(x), %<F(x)£1

which we will call the folded cumulative function of the sec-
ond order (mountain graph of the second order). The graph of

this function has two extremes (two peaks, two mountains).
The abscissas of the extremes are the quantiles of the levels

11 . L . .
0, by %, 1. Fig. 2 visualizes the deviation with respect to the
symmetry of both the entire distribution and its two parts sep-

arately: the left part, where F (X)S%’ and the right part,
where F(x)>%.

To identify the details of the distribution, we will introduce
a folded cumulative function of the k” order (mountain graph

of the k" order), which we will denote as F(x).

Let us assume that F(x) is a monotonic nondecreasing
function for the interval [a, b] and F(a) =0, F(b) = 1.

This function could be considered “theoretical”. Graphs
of functions will be constructed in a rectangular coordinate
system xQOy, while putting the values of cumulative F(x) and

folded cumulative F«(x) distribution functions along the Oy
axis.
i1

Let us denote as x; quantiles of the levels T i=1,2%+1
cumulative function F(x). Then there are equalities
Feoy=""1 2125
(x,»)—zT, i=1,2"+1 3)

Graph Fr (x) is limited by points with coordinates (a, 0)
and (b, 0); it has 2~ ! maximums (“mountain peaks”) located

at points
1 . «
X,— |, i=2,4,...,2%,
1 2k

and 2~ + | minimums (“intermountain troughs” together
with the extreme points), which are located in points (x;, 0), i =
=1, 3,..., 2+ 1 (odd indices are applied for minimums; even
indices are applied for maximums).

For convenience, let us designate the abscissas of the max-

. + i -
imums as X; and minimums as X;

XH=x,,i=1251 x7=x,, ,i=1,2F"+1.

“Peak” number i (i=1,2¥") has maximum at the point
with abscissa x; and is limited by the points with abscissas

x; and x;,, (Fig. 1, a).
With the entered designations the curve equation at the in-

tervals of growth [x7,x7 |=[x,,_,x,;], i=1,2¥" looks like

2i-2
2k

y:IA’fk(x):F(x)—F(xlT):F(x)—F(le._l):F(x)—

5>

and at the intervals of decline [x;", X7, 1=[xy;,X,5;,,1, i=1,2%"
we have

y:?k(x):—F(x)+F(x,-’+1):—F(x)+F(x2,-+1):—F(x)+%-

Let us compile a general expression for the folded cumula-
tive function of the k" order

~ 2A 1 . . .
S L
i=1
4)
2 2i-1 2i
'{2/( - F(x)} . BOX[F(X)’zk’zk]}’

where Box(y, a, b) = H|y — a] — H[y — b] — “Boxcar” function,
H(x) — the Heaviside function.

Based on the same data and, accordingly, the same cumula-
tive function, it is possible to obtain folded functions of different
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Fig. 1. Construction scheme of the graph section F k(x) with

xelx;,x;,] (a) and diagram of a triangle face (b)

orders. Graph at k> 1 has a saw-looking shape. Let us construct

a graph of the cumulative function of the 1st order F1(x) in the
same coordinates and extend the lines of growth and decline of

the graph F«(x) to the intersection with the curves of the graph

Fi(x). The constructed lines form a grid. The intersection
points of the grid lines will be called nodes, the segments of
lines between adjacent nodes are called edges, and the area of
the plane bounded by adjacent lines is called faces.

Folded cumulative functions of different orders illustrate the
distribution of a random variable at different scales. That is why
for ease of visual perception it makes sense in addition to graphs

Fir(x) and Fi(x) also highlight graphs F2(x),..., Fr-1(x),
that are superimposed on part of the constructed grid. The
graphical object obtained in this way will be called a cumulative
triangle of the k" order (k — triangle), according to the highest

order of the function used, and marked as AF«.

When depicting a triangle, graphs Fi(x),..., Fx(x), and a
grid between them are first built. In this case, a dashed black

lineisused. Next, thelinesofthe graphs Fi1(x), F2(x), ..., Fr(x)
are drawn sequentially with a change in color. Thus, the graph
of the next function covers part of the previous one. Only the
graph of the folded cumulative function of the higher order

Fr(x) is fully in its own color.

As an example, Fig. 2 shows cumulative triangles of the 4th
order for uniform and beta distributions on the finite interval
[0, 1].

Let us consider the lines y = y(x) forming the grid in the
coordinate system. All the lines come from points with coordi-

nates (x;,0)=(x,_,,0),i=1,2*"+1. Two lines emerge from
each point in the middle of the interval (a, b). One line is par-

allel to the rising part of the graph ;7 1(x), and the second one
is parallel to the falling part of the same graph. We will use the
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b

Fig. 2. Cumulative triangles for uniform distribution (a) and
beta distribution with parameters o.= 0.5, $ =0.3 (b)

symbols “u” and “d” for y, respectively, and in addition iden-
tify the family of lines of the first type (increasing) with indices

i=1,2", and the second (decreasing) j=1,2"". Note that
the lines of different families with the same numbers cross the
Ox axis at different points, namely

(xjiao):(xz,;]ao)’i: 1’2/(71; (x;+1a0):(x2j+130)a j:1’2k71.

The equations of the lines look like
2i-2
2k

. 2j . oo
y =yd(x,/)=—F(X)+2—i, j=12k1 (6)

,i=1,281 (3)

y=y,(x,i)=F(x)-

The range of values x for the function y = y,(x, i) (5) is lim-
ited on one side by the point x,;_ ;on the Ox axis from which the
line begins, and on the other side, by the abscissa of the point
of intersection with line y = y,(x, 2~ '), which are the falling

part of ;7 1(x). From the latter we can state the following

Foo) -2 22 < P11,

2i -
2k

Whence, according to (3), we can write, that X < X,ci;.
Thus, equation (5) should be supplemented by the condi-

tion x e |:x2i—1’x2"" +,]'

Similarly, the condition for equation (6) is the following
X E[xj+1’x2j+l]'

Any node lies at the intersection of grid lines and its coor-

dinates x, = x.(i, j), ¥ = ¥.(i, j) are determined by a pair of
numbers (7, j). From (5) and (6) in the node (7, /) we have

Jj—i+l_r, J+i-1_s-1
2k Tk 2 ok

From the latter, considering (3), one can obtain that x, =

*

F(x.)=

=Xjtjr
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Thus, the node (7, j) on the plane xQOy is located at the

—i+1 r
point (xﬂ_,-,Jzk = xs,27 . It means that all nodes are

located only at the intersections of the horizontal

y:sz, r=0,1,2%"" and vertical x=x,,s =1,2% lines. Hori-

1
zontal lines correspond to quantile levels from 0 to 5 with a

1
constant step x Vertical lines pass only through the points
on the abscissa axis which are equal to the values x; of the
21 _
quantiles of levels — TR i=1,2F+1.

If each node is identified by the quantile level (it coincides
with the coordinate y) and the quantile value, then the transi-
tion from any node along one edge to the adjacent one leads to
changes in both specified identifiers for a given value graph.

Any face has four nodes (Fig 1, b). Let us mark them as

A, ), Bi+1,)), CG+1,j-1), D@, j—1).

In the system xQOy, these nodes have coordinates

r r—1 r-2 r—1
AEXS’zk]’ B[xﬁl’zk]’ C[xs,zk], D[xsl,zk],
and the edges are described by the equations

. 2j
AB:y=yy(x.)=-F)+ 25, xe[xx,

, 2i
BC:y=y,(x,i+])= F(x)—z—k, xe[xs,xw];

CD:y=y,(x,j-D)=-Fx)+ 22 & e[xnx,;

DA:y=y, 21_2, xe[xs s }
The face is symmetrical with respect to the diagonal BD,
g
lying on the straight line y= 2k —= Jzk Another diagonal

AC lies on a straight line x = x,. The diagonal AC divides the
face into two parts. Considering the symmetry with respect to
the horizontal diagonal, we find the areas of the left .S, and
right S, parts of the face

% 2i-2
SI:ZJ[F(x)— % ‘y}d -

K j+j-2
:2{ [ Flodx-- 2Jk (xs—xs_l)};

Sz_zjf[ F(x)+—.2k}d -

_2[ ]:]F(x)dx-# o (XS+I_XS)1.

Using the relation

b b
j G(x)dx =(b—a)G(a) + j (b—x)G'(x)dx =

b
:(b—a)G(b)+I(a—x)G’(x)dx,

and taking into account (3), one can obtain

8,=2|(x,-x, )F(x, l)+j(x x)F(x)dx—z—(x -x,,)|=

st

=2 )j (x,—x)F'(x)dx;

o1

S, = 2[(%” —X)F(x,,)- j (x, —X)F'(x)dx +2ik(xs+1 -x, )1 =

=2 I (x—x,)F'(x)dx.

Then

S, =5+5,= 2j b=, [ F ) )

X1

AS.=S,-5, :2{ [ c-x)Fax— [ (x, —x)F’(x)dxl -

s X5t

2 1 X (8)
zzle(xH)—F(xH)xI XF'(x)dx— xsl'

For a random value in the interval [x,_,, x,_ ] the value x;
v
F(xg )= Fx.)
ue. Therefore, it follows from (7 and 8) that for values from the
interval [x,_,, X, ] with accuracy up to the constant factors for
the given triangle (with given k) can be stated: the face area is
equal to the mean of a random variable deviation from the me-

dian; the difference in the areas of the left and right parts of the
face is equal to the difference between the mean and median.

X

is a median, and I xF'(x)dx is a mean val-

Thus, the area of the face S, can be used as a characteristic
of the concentration of random variable values near the abscissa
of the upper node x: the smaller is the area, the higher is the
concentration. The sign of the Pearson asymmetry coefficient is
determined by the sign of the difference between the mean and
median [15]. Hence, the difference in areas AS; can be used to
estimate the asymmetry of the distribution on the interval [x;_,
X, 1]. If the difference is zero, then the distribution is symmet-
ric. If the difference is greater than zero, then the distribution
has positive asymmetry, that is, the density of the distribution is
shifted to the left border of the range. In the opposite case,
when the difference is less than zero, the asymmetry is negative
and the density of the distribution is shifted to the right border.

Both values S; and AS; are easily visually evaluated and
compared at different S.

Similarly, we can use the amalgamation of faces and draw
conclusions about larger intervals. If the vertex of the constitu-
ent face is at the node (x;, y.), extreme left and right nodes have

m m
coordinates [xsm,y*—zkj and (xﬁm,y*—zkj respectively,

m
and the bottom node has coordinates [xs,y*—zk_]J, then

conclusions about the distribution properties can be made rela-
tive to the interval (x,_,,, X;. ,,) and the point x,. It is easier to do
this along the edges formed by folded cumulative functions of a
lower order and depicted in the appropriate color (Fig. 2).
Application to sampling of a modulated random variable.
When experimentally investigated, the cumulative function is
calculated from a set of data zy;,2, %y, ---»Zy,- In most cases,
all elements in the sample are considered equal while the Val—
ues of different elements may coincide. The elements are ar-
ranged in the order of increasing their values. An element
whose value is equal to the previous one is deleted. Thus, the
data set 7, < 7, < 3 < ... < Zy, where N < N, is obtained. Each

1
value observed in the initial set is assigned a value N 1
0
once, and each value observed n times is assigned a value
%. Dividing by N, + 1, and not by N, ensures the exact
+
0
calculation of the median, and in addition, eliminates the con-
tradictory equality of the cumulative function of unity at the
experimentally observed farthest point zy.
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Denoting the constructed numerical sequence f,, /5, f3, ...,
[, the empirical cumulative function can be defined as

F(x)=Y_ f, xe&(-,0). 9)
Z;<x
Graph (9) has a stepped form. Assuming that N is not too
small, instead of (9) we will use a lattice function with a vari-
able discreteness interval

F)=Yf, i=LN, (10)
Jj=1

and form an envelope from segments of linear interpolation
between adjacent nodes. This function is continuous and non-
decreasing in the interval [a, b] =[z;, zy], which corresponds to
the requirements for the theoretical cumulative function con-
sidered above. The differences are that the quantiles of the lev-

. 1 . . .
els of multiples % do not coincide with the discrete z; ones

and the conditions F(a) = 0, F(b) = 1 are not fulfilled at the
ends of the interval.

To solve the first of the mentioned problems, auxiliary
counts were introduced into the lattice function (10) at the
points that are quantiles of the required level, found along the
interpolation segments. These counts were used when con-
structing the lines of the graph, but, unlike the points related
to the data, they were not clearly marked on the graph.

The second of the mentioned differences requires some
change in the calculation relationships used above.

For the sake of generalization, let us allow some arbitrary
deviations at the ends of the domain of the cumulative func-
tion, that is, we assume that

Fa)=F,>0; Fb)=F<]1.

It should be noted that the same conditions must be taken
into account in the case of the theoretical cumulative func-
tion, when it is defined in the infinite interval. Instead of (4)
now we use

1.7 18

22 x

o~ 241 .
Fk<x>=z{[F<x>—¢,-]-Box[F(xm-,%}
i=1

01, -F) - Box[F(xx%,m)},

where
F,
o =]F,
2i-2
2k
To satisfy the requirement of obtaining 2¢ 'maxima
(“peaks™) the following restrictions should be put on the high-

est order ﬁ,{ (x)

i=1

i=2¢"4+1.

1 2k-1

0< F;l < 2_k’ o

From the latter, the maximum possible order value is
s = min[-log, F,, —logy(1 - F,)] 1=

=—| max[log, F,, log,(1 - F,,)]J - 1.

<F(b)<l.

All other relationships and the methodology of construct-
ing a triangle remain the same.

Fig. 3 shows cumulative triangles constructed from a data
set obtained as a mixture of an equal number of elements taken
from two normally distributed random variables with means
equal to 1 and 2, and variances equal to 1 and 0.2, respectively.
The sample consisted of 60 elements. For the triangle shown
in Fig. 3, a, only the first 20 elements of the sample were used,
and for the triangle in Fig. 3, b all 60 elements were involved.
The difference in images illustrates the selective variability. An
increase in the sample size naturally leads to an increase in the
range of values and, at the same time, to a stabilization of the
overall shape of the triangle. Zones of concentration of values
are quite simply determined, especially if, in addition to the

Fig. 3. Cumulative triangles: (a, b) and their parts (c, d), which are constructed from a simulated sample of a random variable of 60 elements:

a, ¢ — involving the first 20 values; b, d — involving all sample
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reduction of the face area, the asymmetry of the neighboring
faces is taken into account. Thus, Figs. 3, ¢, d show enlarged
parts of triangles in the same zone of values x obtained with
different sample volumes. In the case of a larger sample
(Fig. 3, d), to determine the zone of increased concentration
of a random variable, it is sufficient to involve only the area of
faces. The smallest area refers to x = 2. In the case of a smaller
sample (Fig. 3, ¢), the faces that are tangent to the vertical line
x = 2 are too large and the concentration of values is mani-
fested in the asymmetry of the neighboring faces. Only those
adjacent faces whose top node is close to x = 2 are taken into
account. In the figure, these faces are marked with letters. In
the faces to the left (A, C), the area of the right part is much
smaller than the area of the left part, which means that the
distribution on the interval covering this face has a negative
asymmetry and the density of the distribution is shifted to the
right border, i.e. to x ~ 2. In the faces on the right (B, D), the
area of the left part is much smaller than the area of the right
one, accordingly, this face has positive symmetry and the den-
sity of the distribution is shifted to the left border, i.e. again to
x ~ 2. Thus, based on the constructed cumulative triangle, it is
possible to draw conclusions regarding the features of the em-
pirical data distribution.

Results. Application to empirical data. An additional con-
venience of using the cumulative triangle is the simplicity of
the calculation and visualization algorithm. The graphs pre-
sented in this article are obtained as the results of a simple code
written in the Matlab software of “The MathWorks” company.

The proposed approach to visualization of experimental
data, in particular, was applied to the analysis of seismoacous-
tic signals used to assess the stability of mining excavations un-
der the impact of working destructive mechanisms. Predictive
estimation of the excavation state is based on the power spec-
tral density of the registered acoustic signals [16, 17]. Fig. 4
shows the dependence of the unilateral power spectral density
G on the signal frequency f. The spectra are computed based
on the signals obtained in the same excavation, but at different

G ;
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Fig. 4. Spectral densities of mine seismoacoustic signals power:
a — signal No. 1; b — signal No. 2

time intervals in segments of different durations: signal No. 1
matches to duration of 38 s, signal No. 2 matches to duration
of 21 s. The different duration of the signals is due to the un-
regulated time of the rock-destroying mashine action, which is
the source of the generated oscillations. Full spectra occupy a
much larger frequency range than shown in Fig. 4, namely
from 0 to 5,512.5 Hz (Nyquist frequency). Counts G at fre-
quencies not shown in the graph have much smaller values, but
the number of such counts is significant and must be taken into
account when calculating the cumulative function. The spec-
tra shape indicates the noise-like nature of the signal with a
rather complex spectral structure, and individual outliers (ex-
trema) of the spectral density are variable and strongly depend
on the parameters of the spectral evaluation procedure [18].
The use of a cumulative triangle to represent the distribution
of signal power simplifies the systematization and analysis of
signals, at least in the initial stages of research. Fig. 5 shows
cumulative triangles of the fifth order for the same signals,
whose spectra are shown in Fig. 4.

The comparison of triangles obviously indicates not only a
change in the frequency interval and medians of the power dis-
tribution, but also changes in the structure of the power distri-
bution. Moreover, the features of changes can be observed at
different scale levels based on the area and shape of faces with
different sizes.

Conclusions.

1. Folded cumulative function of the k" order Fi(x) is
introduced as a generalization of the commonly known folded
cumulative function.

2. A new geometric object called the cumulative triangle is
proposed for visualizing the empirical distrip\ution function.

Outside, the triangle is limited by the graph F1(x) and has in
its field the graphs of several folded cumulative functions with

increasing orders F2(x),..., Fx(x). Based on F«(x), an aux-
iliary grid of lines is applied to the triangle, which divides the
area of the triangle into curvilinear quadrilaterals (faces).

3. Itis shown that:

- the area of the face is equal to the average value of the
modulus of deviations of the random variable from the median
and, thus, can be used as a characteristic of the concentration
of the random variable values near the abscissa of the upper
end of the face;
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Fig. 5. Cumulative triangles of power distribution of mine seis-
moacoustic signals:

a — signal No. I; b — signal No. 2
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- the difference in the areas of the left and right parts of the
face is equal to the difference between the mean and the me-
dian and, thus, can be used to estimate the asymmetry of the
distribution on the interval, which is the projection of the face
on the axis of random variable;

4. As examples, cumulative triangles are developed for:

- samples of random numbers generated by the random
number generator;

- spectral power densities of seismo-acoustic signals,
which were registered during the observed state of the mining
excavation under conditions of working rock-crushing units.

5. Shortcomings. Developing a cumulative triangle is more
difficult than constructing a histogram or box plot. If there is a
significant number of samples, it may be more appropriate to
use other types of visualization to compare their distributions.
The redundancy of the geometric image, manifested in the
duplication of faces in the vertical direction should be noted.

At the same time, the cumulative triangle makes it possible
to simultaneously detail and generalize the properties of ex-
perimentally obtained data at different scale levels. Therefore,
it should be preferred when studying data with complicated
and varying distributions.
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KymyagaTuBHuii TPUKYTHHMK /151 Bi3yaJbHOTO
aHAJI3y eMIipUYHUX JAHUX

FO. M. Tonosxo, O. O. Cosunckosa”
HauioHanbHuii TexHiYHUI yHiBepcuteT «/IHiMpoBChbKa IO-
JliTexHika», M. JIHinpo, Ykpaina
* ABTOp-KOpecnoHaeHT e-mail: sdvyzhkova.o.o@nmu.one

Merta. Po3pobka rpacdiyHoro 06’eKkTy mIsl BizyaabHOTO
aHaJli3dy, 1110 AaBaB O MOXJIMBICTb OTHOYACHO OLIiHIOBATH SIK
3arajibHi XapakKTepUCTUKM, TaK i 1eTajli po3noaiy eMITipuy-
HUX JaHUX.

Mertomuka. OOTrpyHTYBaHHS IOUUIBHOCTI i1 TOCTimOB-
HOCTi CTBOPEHHSI KyMYJISITUBHOTO TPUKYTHUMKA, a TAKOX J10-
BEIECHHS IOT0 BIACTUBOCTEN BUKOHYBAJIOCH i3 3aTydyeHHSIM
reoMeTpUYHUX MOOYIOB, y3araJlbHEHUX i pelliTyacTuX PyHK-
wiii. [ToOynoBa KyMyJassTUBHOTIO TPUKYTHUKA 3liliCHIOBa1acs
nporpaMHo y cepenoBulli «Matlab». Bubipku BunaakoBux
BEJIMYMH 3 BITOMUMM 3aKOHAMU PO3IIONLTY OTPUMYBAJIUCS 3
BUKOPMCTAHHSIM TeHepaTopa ICEeBIOBUMAIKOBUX YHUCEI.
VY gKocCTi eMIMipUYHUX JaHUX BUKOPUCTaHi MOMepeaHbo 00-
YUCJIeHI 3aIeXKHOCTI CMEKTPaIbHOI IIIJIBHOCTI MOTY>KHOCTI
CeNCMOaKyCTUYHUX IIYMOMOIiOHUX CUTHATIB.

PesyabraT. YBeneHa 3ropHeHa KyMyJasITUBHA (DYHKIList
k-TO TIOPSIIKY SIK y3araJbHEHHS BillOMOi 3rOPHEHOI KyMYJIsi-
TUBHOI (pyHKIIiI. BUKOpUCTOBYIOUM 3ropHeHi KyMyJSITUBHI
(YHKIIi1, MOOYI0BaHO TeOMETPUIHUI 00’ €EKT — KYMYJISITUB-
HUM TPUKYTHUK, MPU3HAYEHUIA IUIs1 Bidyastizallii eMImipuyHoi
¢yHKil po3noaiy. Ha TpuKyTHUK HAHOCSITbCS JIiHil, 110
pO30MBalOTh MOro Ha IMJIOCKI KPUBOJIHIMHI YOTUPUKYTHUKU.
IMokazaHo, 110 TUIOIIA TpaHi MOXe BUKOPUCTOBYBATHUCS SIK
XapaKTepUCTUKA KOHLIEHTpaLlil 3HaueHb BUITaJKOBOI BEJIM-
YUHU Oij1s1 aOCLIMCU BEPXHbOTO By3J1a I'paHi, a Pi3HUIIS TLIOLL
JIIBOT Ta MpaBoi YaCTUH I'paHi Ja€ OLIIHKY aCUMETpil po3Iofii-
JIy Ha TIPOMIKKY, 110 TIOKPUBAE TPaHb.

HaykoBa HOBHM3HA. 3anporoHOBaHO HOBMII rpadiuHuit
00’€KT JIJIS1 Bi3yaJIbHOTO aHaIi3y pO3MOAiTY eMITipUIHUX Ja-
Hux. [lokazaHo, SIKUM YMHOM, CIMPAIOYMCh Ha MOro BHI,
MOXHa pOOUTU BUCHOBKH SIK BiTHOCHO XapaKTEPUCTUK YCiel
BUOIPKH, TaK i OKpeMUX IMPOMIXKKiB (DyHKILIIT po3nomiy.

IIpakTnyna 3HaumMicTs. KyMyJnaTUBHUI TPUKYTHUK
MOXe OyTHM KOPUCHUM JOIMOBHEHHSIM J10 rpadiyHuX 3ac00iB
Bisyasizanii. loro BUKOpUCTaHHS 1a€ MOXUIUBICTD Bi3yasb-
HOI OJHOYACHOI JeTai3allii Ta y3araJbHeHHs BJIaCTUBOCTEM
€KCIIePUMEHTATbHO OTPUMAHUX NAHUX Ha Pi3HUX MaclITad-
HUX PIiBHSX, 11O € OCOOJMBO LIIHHMM, KOJM JaHi MaloTb
YCKJIaJHEHi 1 MiHJIMBI pO3TOALIN.

KirouoBi caoBa: eizyanizayia, ananiz danux, ynkyis pos-
noaoiny, 320pHyma KymyasmueHa QYHKYis, CReKmp HOMYNCHOCI
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