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OPTIMAL PARAMETERS OF BLASTING DESTRUCTION IN THE BEN AZOUZ
QUARRY BASED ON STUDY OF STRENGTH LIMESTONE ROCK

Purpose. This paper highlights the importance of taking into account the evaluation of the strength properties of limestone
rock in the Ben Azzouz quarry. The purpose is to achieve optimum blasting quality based on the information on petro-physical and

mechanical characteristics of the rock.

Methodology. Models have been developed to estimate physico-mechanical properties of limestone rock. The models are based
on the results of many laboratory tests by petro-physical and mechanical methods. Statistical analysis was performed on simple and

multiple regression equations.

Findings. Linear regression models have a higher estimated success rate, as expected. The best model for estimating the com-
pressive strength of the rock (UCS, Uniaxial Compression Strength) based on simple regression is the model containing P-Veloc-
ity as an independent variable with a coefficient of determination R? of 0.81 and P-value = 0.000000003.

Originality. To benefit from the enormous reserves in the quarry of Ben Azouz, knowing that there is no evaluation of the
physico-mechanical characteristics of the rock, a set of the tests in the rock mechanics laboratory of polytechnic faculty of Mons
in Belgium was carried out and limestone rock strength was estimated.

Practical value. to Solid understanding of the physical and mechanical characteristics of the rock mass and the mechanism of
blasting the rock is an essential step that must be taken gradually according to the development of mining works with the aim of
minimizing the disadvantages in blasting and obtaining an optimal effectiveness.

Keywords: Ben Azouz quarry, Algeria, Uniaxial Compressive Strength, multiple regression, blasting destruction, punching resistance

Introduction. Controlled methods such as drilling and
blasting can be used to fragment rock using explosives in min-
ing and quarrying industries, as well as civil engineering works
like tunnels and dams [1].

Although blasting is a more effective method of breaking
rocks, it does have several drawbacks such as instability caused
by vibration, damage and displacement of surrounding and
flying rocks (rocks projected after blasting) [2].

To decrease these disadvantages in blasting and to obtain
optimal blasting quality, it is essential to have a thorough com-
prehension of the physical and mechanical characteristics of
the rock mass and the blasting mechanism [2].

Presentation of the study area. The study site represents a
carbonate aggregate deposit, the Ben Azzouz quarry is located
48 km of Skikda (North East of Algeria). This deposit belongs
to the Djebel Safia which extends north into the Djebel Filfila.
Its Lambert coordinates are: X = 905.1 and Y= 400.0.

The region of Ben Azouz represents part of the alpine pleat-
ed area of North Africa whose structure is extremely complex.
The geology of the region is conditioned by the existence of sev-
eral complexes which are the formations of different facial struc-
turo-zones, in most cases superimposed or strongly brought to-
gether by tectonic movements (Fig. 1). It belongs to the Tellian
geological domain of the Tellian atlas. It is the domain of the
great charriages, belonging to the Maghrebid Alpine Range (Vil-
la, 1978), [3]. Limestone reserves for lime, all categories com-
bined, were estimated at 33.32 and those of “Red dolomite” at
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26.05 million tons. This gives a total of 59.37 million tons.

Methods and materials. The physical and mechanical
characteristics of intact rocks are of great importance in the
construction of mining, civil and oil, engineering projects that
deal with rocks include tunnels, deep trenches, underground
mines, caverns, rock slopes, rock foundations, dams, etc. [4].

Strength properties are very important for rock classifica-
tion and the development of failure criteria. For this reason,
the precise determination of rock properties is essential for the
successful construction of the structures mentioned above to
provide the optimal performance required of the project in
terms of time, cost and safety [4].

To ensure a homogeneous quality of the aggregates ex-
ploited, it is crucial to pinpoint the areas where there are sig-
nificant changes in strength. To do this, it is necessary to find
a practical method for evaluating the UCS (Uniaxial Com-
pression Strength) and Young modulus (E), based on physical
properties that are easy to determine.

Laboratory tests of limestone were carried out, which al-
lowed progress towards this goal. The tests carried out made it
possible to determine the interdependence between the differ-
ent physical and mechanical characteristics. The models used
in this study are inspired by the methods of evaluation of phys-
ical and mechanical properties published in the scientific liter-
ature, among which simple and multiple regressions were used.

At the microscopic scale, petrographic analysis was used
to study the characteristics of rocks. Aggregate quality can be
estimated by evaluating microscopic features, such as grain
size or mineralogy composition [5].
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Fig. 1. Structural map at 1/500,000 of the Eastern Algerian Al-
pine Range (Villa, 1978), |3]

Physical and mechanical properties are strongly related to
the mineralogy and the internal structure of the rocks that
form the aggregates [5].

Petrographic study of Ben Azouz limestone. Roughness is an
important petro-physical property of rock. Roughness refers to
the texture of the surface of a rock, including its irregular sur-
face or the presence of protrusions and depressions. This prop-
erty can have a significant impact on the petro-physical prop-
erties of a rock, including its porosity, permeability, and ability
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Sample 3. Red dolomitic limestone

Fig. 2. Surface texture of limestone rock

Sample 1. Greyish limestone

Sample 2. Whitish limestone

Sample 3. Red dolomitic limestone

Fig. 3. 2D profiles of roughness of limestone’s samples

to retain or release fluids. The surface texture of the limestone
and the 2D profiles of the samples are shown in Figs. 2 and 3.

Fig. 2 shows that greyish limestone (Sample /) has a
rougher surface than whitish limestone (Sample 2) and red do-
lomitic limestone (Sample 3); this is confirmed by the pres-
ence of a higher number of peaks with protrusions and depres-
sions than (samples 2 and 3). And from Fig. 3, it can be seen
that the red dolomitic limestone (Sample 3) has on the profile
3 larger dimensions of peaks and troughs than greyish lime-
stone (Sample /) and whitish limestone (Sample 2). And ac-
cording to Table 1, the highest roughness value is obtained by
Red dolomitic limestone (Sample 3) equal to 2.17 pm.

The roughness of rocks, including limestones, can be in-
fluenced by their mineralogical composition and petrographic
properties. Here are some ways roughness can be assessed
based on these factors:

1. Microscopic Analysis: Microscopic examination of
limestone samples helps identify the mineralogical composi-
tion and detect petrographic features that may influence
roughness, such as the presence of hard minerals or clasts.

2. Hardness Measurements: some minerals present in
limestones may have different hardness, which can influence
surface roughness.

Petrographic analysis by polarized light microscopy. The po-
larizing microscope or microscope polarizer analyzer is an op-
tical microscope equipped with two polarizing filters, called a
polarizer and an analyzer. It is used in petrography for the ob-
servation and identification of minerals in rocks. The working
principle is based on the use of a polarized light beam (by the
polarizer). The sample of rock to be observed is prepared in
order to obtain a thin blade, that is, the rock is cut into a thin
block glued to a glass blade, the whole being thinned by pol-
ishing to a thickness of 30 micrometers precisely.

When cold, these rocks react to the HCI test by producing
a great effervescence and take a very dark pink color on the
alizarin test.

Following the analysis of the four samples, Fig. 4 shows
the different facies of the rocks studied.

1. The rocks studied have a greyish color (Sample /) in fine
grain (up to 100 pm) with calcite and dolomite crystals and clay
minerals (< 10 %). Net stratification plane and absence of pores.

2. The rocks examined have a whitish color (Sample 2), com-
posed of fine grains (~ 10 pum) arranged according to stratification

Table 1
Value of roughness of limestones samples
Sample / | Sample 2 | Sample 3
Roughness Ra in (um) 1.89 0.12 2.17

Fig. 4. Observation of facies in thin sections by microscopy in
polarized light
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(in thin parallel layers). The rock has micrometric voids parallel to
stratification. The nature of carbonates is calcite and dolomite.

3. The rocks studied have a red color (Sample 3), dolo-
mitic limestone with medium grains (100 to 200 um) frac-
tured, and the fractures are filled by iron oxides (furriginised).
The centimetric voids in the rock are filled with dolomite and
ankerite crystals (after the formation of limestones). These
minerals are millimeter-sized.

4. The rocks studied have a pink color (Sample 4), micritic
limestone with bioclaste (fragments of the heads of microor-
ganisms and microfossils). It is characterized by intense poros-
ity and fracturing where fractures and pores are filled with cal-
cite in micrometric to millimeter ranges.

In conclusion, the rocks examined have a white and chalky
appearance.

Laboratory tests. Punching resistance is a key parameter in
the planning and implementation of blasting and firing mechan-
ics, as it influences how explosives interact with rock or materials
to be demolished. Accurate knowledge of the punching resis-

tance of target materials is essential to ensure the efficiency and
safety of these operations. It remains to be resolved once and for
all despite the efforts of many scientists. It seems very important
to evaluate the characteristics of the rocks that can be examined
in the laboratory after preparation of the cylindrical samples [6].

Laboratory tests were performed using the suggested
methods of the International Society for Rock Mechanics.
The different tests were carried out to determine material den-
sity and porosity [7], to test uniaxial compressive strength
(UCS) [8], to determine ultrasonic P-wave (P-velocity [9] and
to determine Shore’s hardness (SRH) and resistance of
punching according to the Mons laboratory procedure. The
samples were prepared at the laboratory of Rock Mechanics,
polytechnic faculty of Mons in Belgium (Fig. 5). The tests re-
sults are presented in Table 2.

The data processing was carried out by the language R. It is
statistics programming established by Ross IThaka and Robert
Gentleman. It is a computer language and a working midst,
the commands execution process is performed through in-

Fig. 5. Cylindrical samples, Shore’s Hardness, UCS machine and punching test

Table 2
Results of laboratory tests
Samples, Density, Porosity, W, SRH UCs, E, Rp, Fd,

S 1,000 kg/m? % 1,000 m/s MPa GPa MPa GPa
S-CR1 2.629 6.51 6.352 48 69.17 23.869 1,988 59.02
S-CR2 2.621 6.5 6.387 48.75 68.41 32.169 1,975 80.14
S-CR3 2.564 4.28 6.11 47.916 66.89 30.207 1,945 73.34
S-CP4 2.655 2 6.987 51.666 197.76 43.06 2,169 89.42
S-CP5 2.646 2.66 6.775 50.666 120.48 40.509 2,012 90.18
S-CP6 2.647 2.55 6.801 48.75 138.85 40.469 2,053 90.87
S-CP7 2.647 1.522 6.932 53.765 141.43 45.841 2,078 94.4
S-CG8 2.626 4.9 6.556 48.666 81.89 40.886 1,990 84.44
S-CG9 2.639 4.61 6.588 51 98.688 40.434 2,028 85.27
S-CG10 2.642 4.31 6.581 50.33 85.93 45.725 2,002 85.09
S-CGll 2.641 3.8 6.641 51.25 104.95 41.146 2,046 86.22
S-CBG12 2.696 0.652 7.057 58.333 152.512 44.357 2,123 98.99
S-CBG13 2.624 4.98 6.540 52.75 71.24 38.947 1,988 63.57
S-CBG14 2.646 3.2 6.719 51.916 120.18 41.784 2,070 88.73
S-CBI15 2.645 2.92 6.755 50.333 124.374 41.338 2,098 89.64
S-CBI16 2.648 1.21 6.977 55.333 150.26 42.874 2,151 95.63
S-CB17 2.468 7.34 5.936 45 40.687 29.63 1,997 70.61
S-CBI8 2.672 0.709 7.031 56.248 141.54 36.952 2,079 96.24
S-CGR19 2.644 4.1 6.592 52.75 89.36 38.693 2,027 85.37
S-CGR20 2.63 4.65 6.579 49.083 85.76 41.297 2,023 85.03
S-CBR21 2.647 0.812 7.015 56.248 151.982 43.986 2,214 96.68
S-CBR22 2.698 0.511 7.223 59.833 152.622 43.615 2,169 102.5
S-CRG23 2.623 5.12 6.487 49.45 75.81 39.721 2,092 64.44
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Table 3

Descriptive statistics of the studied samples (Realized by the language R)

Min. 7 Qu. Median Mean 37Qu. Max. Stal.‘ldfird Coefficient of Variation,
deviation %
Density, 1,000 kg/m? 2.603 2.627 2.644 2.642 2.647 2.698 0.023301 1.699
Porosity, % 0.511 1.761 3.800 3.472 4.775 7.340 2.015083 58.038
Vp, 1,000 m/s 5.936 6.548 6.641 6.679 6.955 7.223 0.311145 4.658
SRH 45.00 48.92 51.00 51.65 53.26 59.83 3.618794 7.006
UCS, MPa 40.69 78.85 104.95 110.03 141.49 197.76 | 38.85376 35.311
E, GPa 43.87 58.82 60.89 59.46 62.97 65.84 5.527831 14.008
Rp, MPa 1,945 2,000 2,046 2,057 2,095 2,214 71.3157 3.466
Ed, GPa 59.02 82.29 86.22 85.04 92.64 102.50 | 11.69287 13.749

Where: UCS (Uniaxial Compressive Strength), SRH (Shore’s Hardness), Vp (P-wave velocity), E (Young’s Modulus), Ed (Dynamic Modulus

of elasticities) and Rp (punching resistance)

structions encoded in a comparatively simple language. This
software is utilized for manipulating data, plotting graphs, and
performing statistical analysis [10].

Descriptive statistics of different physico-mechanical param-
eters are shown in Table 3. Depending on the values of the stan-
dard deviation, it can be seen that the greatest data dispersions
were given by the results of the punching resistance and the UCS
tests; conversely, the lowest dispersion of the data occurred in the
P-velocity and density tests. However, for greater accuracy, the
dispersion of the data can be compared by the coefficient of varia-
tion. The greatest dispersion is given by porosity and UCS tests.

To graph the correlation matrix (Fig. 6), we used the
CORRPLOT package by the R software. It creates a correla-
tion matrix with colored squares and black labels. It may also
be useful to display labels representing the correlation coeffi-
cient on each square of the matrix. We had to make a clearer
palette for the text to be readable, and we had to remove the
color legend because it is redundant. The coefficient of corre-
lation (r) of the different physical and mechanical properties of
limestone is presented in Fig. 6. Where r is the Pearson corre-
lation coefficient (= —1 to 0) is a negative correlation and (=
=0to 1) is positive correlation.

All physical and mechanical parameters have a negative
correlation with porosity, this means that an increase in poros-
ity results in a decline of all other parameters. Pores act as
weak points in the rock, creating areas of stress concentration
that can lead to breakage. Therefore, an increase in porosity
tends to decrease the compressive strength.

The UCS has a higher correlation with density with (r =
= 0.77), porosity with (r = —0.9), and velocity Vp with (r =
=0.9). E (Young’s Modulus) has a higher correlation with po-
rosity with (r=-0.67) and P-velocity Vp with (»=0.73), and a
moderate relation with remainder of the properties. Porosity
has a very strong interdependence with density with (r=—-0.82)
and P-velocity Vp with (r = —0.92). SRH hardness is also
strongly correlated with density with (» = 0.87), porosity with
(r=-0.84) and P-velocity Vp with (r=0.86). There is a strong
correlation between punching resistance Rp and UCS with (r=
= 0.83) and P-velocity Vp with (r = 0.81). Young’s modulus
dynamic Ed has a strong correlation with porosity (»=—0.85)
and P-velocity Vp with (r=0.82).

Estimation models of UCS and E (modulus of elasticity). In the
last few years, rock engineering approaches have seen a signifi-
cant rise in the use of numerical modeling which has become an
essential tool in research and project designing. This tool was
employed in the field of rock mechanics research to model real
cases and recreate various tests performed in the laboratory [11].

To evaluate the UCS and modulus of elasticity £ in this
work, models based on simple and multiple regressions were
realized. To do this, the R language was used, allowing for the
possibility of the establishment of regression models.

Simple regression models. The Uniaxial Compressive Strength
and Young’s modulus F are estimated by simple regression equa-

tions including specific relationships while considering that these
parameters are dependent variables founded on the tested value
of another property which is an independent variable [12].

The independent variables are taken from the parameters
mentioned in Table 2, the density, porosity, SRH, Rp, E, Ed
and P-velocity. The degree of success of a model is usually as-
sessed by the coefficient of determination R?. The modelling
results are given in Fig. 7 for the UCS and Fig. 8§ for Young’s
modulus £ and in Table 4.

Out of all the simple models that were performed, equations
(1, 2, 3 and 6) are the best models to estimate the UCS, which
use density with (R?=0.5789 and P-value = 0.0000151), porosity
with (R? = 0.7947 and P-value = 0.000000007), P-velocity Vp
with (R?=0.81 and P-value = 0.000000003) and punching resis-
tance Rp with (R? = 0.6733 and P-value = 0.0000009882) as in-
dependent variables. The best model for estimating £ 'is present-
ed in equation (9), which uses the P-velocity with (R? = 0.5137
and P-value = 0. 00007181) as an independent variable.

Modelling with Multiple regression. In statistical regression
analysis, multiple regression technique is a commonly used
method in which the output variable(s) can be estimated using
a predictive equation based on the corresponding input (inde-
pendent) variables. Many researchers have used the multiple
regression approach widely in geosciences, especially in min-
ing construction and rock mechanics [4].

Multiple regression models are represented by equation

Y= B0+I31X1+B2X2+...+B,-Xk+8, (13)
= =
2 g T 0
@ e o @ O o ke
(&) o > w D 7LLI EK »Lu s
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= g 0.8
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- PPV -
s - s e 0.2
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= = = 0
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- @B
-0.8
g

K

Fig. 6. Correlation between physico-mechanical parameters of
limestone (Realized by the R language). The positive cor-
relation is strong, the more the color is blue. The negative
correlation is strong, the more the color is red
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Fig. 7. Simple regressions for UCS estimation (Performed by the R language)

E(Gpa)

E(Gpa)

E(Gpa)

T T T
262 284 286

Density (1000 kgim3}

268 2.70 1 2 3 ¢ 5 3 7

Vp (1000 mis) Ed (Gpa) Rp (l4pa)
Fig. 8. Simple regressions for Young’s Modulus F estimation (Performed by the R language)
Table 4
Simple regression equations for UCS and Young’s modulus E estimation

szri?;b(izgt In(\i/zrr)izrl;(li:nt Simple regression equations qu]l\?.(t)lol’l R? P-value
ucs Density UCS=-3,297.2 + 1,289.5p (1) 0.5789 0.0000151
UCS Porosity UCS =170.056 — 17.29n (2) 0.7947 0.000000007
ucs P-velocity UCS =-644.59 + 112.98Vp 3) 0.81 0.000000003
ucs SRH UCS=-274.088 + 7.436 SRH 4) 0.455 0.0002494
ucCs E UCS=-156.114 + 4.476 F (5) 0.3773 0.001084
ucs Rp UCS =-819.752 + 0.451Rp (6) 0.6733 0.0000009882
E Density E=-297.12 + 134.95p (7) 0.2914 0.004618
E Porosity E=65.86—1.844n (8) 0.4261 0.0004394
E P-velocity E=-27.405 + 13.005Vp ) 0.5137 0.00007181
E SRH E=13.96 + 0.88SRH (10) 0.3007 0.003975
E Ed E=31.069 +0.333Ed (11) 0.4748 0.0001663
E Rp E=-35.711+0.046Rp (12) 0.3255 0.002645

where Y'is the dependent variable; X, et X;... X, are the inde-
pendent variables; f3; represent the contribution of the inde-
pendent variable X;; ¢ is the random error [12].

The results of multiple regression modelling are presented
in Figs. 9 and 10 and in Table 5.

The model that included porosity and SRH with a coefficient
of determination (R? =0.8006 and P-value = 0.00000003831) and
the model that included density and velocity Vp with (R? =0.8058

and P-value =0.00000002935) and the model that included P-ve-
locity Vp and punching resistance Rp with (R?> = 0.8322 and
P-value = 0.000000006819), shows that they are best for estimat-
ing the uniaxial compressive strength UCS.

Concerning the estimation of Young’s modulus E using
multiple regression proved that the model that included density
and P-velocity Vp is the best with (R?> = 0.5255 and P-val-
ue = 0.000223). It should be noted that it is represented by a
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Fig. 10. Multiple regressions for Young’s modulus E estimation
(Performed by the R language)

higher coefficient of determination than that determined with
simple regressions by the model that includes the P-velocity Vp.

Results and discussion. Rocks play a significant role in
mining design, construction, and analysis through their uni-
axial compressive strength (UCS) and Young’s modulus (£).
These parameters show the strength and deformation charac-
teristics of rock, which are the main factors that affect the sta-
bility of any mining engineering structure. The specific energy
of drills is predicted using (UCS) and (£), also to determine
the rock factor when determining the size of muck pile frag-
ments from blasting operations [13].

For these reasons, it is necessary to determine the physico-
mechanical properties of limestone rock in the Ben Azzouz
quarry, models to estimate UCS and Young’s modulus £ have
been developed based on laboratory tests. We had to find a
simple model based on feasible tests. Density, porosity and
SRH tests can be easily evaluated. These are the preferred pa-
rameters for evaluating UCS and E.

After analysis of the results obtained, it was determined
that the best model for estimating the UCS based on a simple
regression is the model including the P-velocity Vp as an inde-
pendent variable which has a coefficient of determination (R?
of 0.81 and P-value = 0.000000003), and the best model to es-
timate £ is the one with an independent variable P-velocity Vp
with (R? = 0.5137 and P-value = 0.00007181). More complex
models of multiple regressions can be considered more suc-
cessful if they have an R? value higher than the above-men-
tioned values. So, we can consider that the model that includ-
ed the P-velocity Vp and Rp proved to be the best to estimate
UCS with a coefficient of determination (R?> = 0.8322 and
P-value = 0.000000006819) and as the punching and ultrason-
ic tests are not simple tests, therefore, it is assumed the model
that included porosity and hardness SRH as better with (R> =
=0.8006 and P-value =0.00000003831), and the best model of
its kind to estimate E'is the one with density and P-velocity Vp,
independent variables with (R> = 0.5255 and P-value =
=0.000223).

Referring to the (P-value) values of the obtained equations
are all less than 0.05. So all models are globally significant.
This means that the results of the study can be considered sta-
tistically relevant.

Conclusion. Although laboratory tests can be expensive
and take a long time to determine the physical and mechanical
properties of rocks, they still have high precision. Also, prepar-
ing core samples for direct testing is a very difficult task that
demands high accuracy. From all the above, it can be seen that
indirect and non-destructive methods can be used as appro-
priate alternative for determining rock characteristics. To
achieve this objective in this study, relations between physical
and mechanical properties of limestone have been examined.

Table 5
Multiple regressions for UCS and Young’ modulus F estimation
Depfsndent Indepgndent multiple regression R P-value
variables variable

ucCs Density, Porosity UCS =-321.044 + 183.566p — 15.543n 0.7888 0.00000006812
ucCs Porosity, SRH UCS =308.265 — 20.973n — 2.428SRH 0.8006 0.00000003831
ucCs Density, SRH UCS=-2,997.5+ 1,156.771p + 0.987SRH 0.5602 0.0001044
ucCs Density, £ UCS=-2,689.185 + 1,013.335p + 2.047F 0.6209 0.00002361
ucCs Density, P-velocity UCS = -82.89 — 255.65p + 130.02Vp 0.8058 0.00000002935
ucCs P-velocity, Rp UCS=-773.311 + 84.132Vp + 0.156 Rp 0.8322 0.000000006819
E Porosity, SRH E=63.251 -1.775n + 0.045SRH 0.3977 0.002422
E Density, P-velocity E=179.685—94.254p + 19.287Vp 0.5255 0.000223
E Density, SRH E=-141.301 +65.947p + 0.5131SRH 0.287 0.01309
E P-velocity, Rp E=-28.692+12.716Vp + 0.0015Rp 0.4896 0.0004629
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Through development of estimation models in mining, it
is essential to take into account the possibilities of the easiest
application in situ. Therefore, simple regression methods
should not be overlooked, even if their success parameters do
not give better results than multiple regressions, as they have
the advantage of simplicity of application.

Moreover, multiple regression methods that have a linear
generalized form have been shown to be more effective than the
nonlinear form of simple regression, and this remains valid only
with the use of two parameters in modeling. Beyond two pa-
rameters the coefficients of determination R? will be decreased.

According to the coefficient of determination R?, resulting
from the relationships developed above for different parame-
ter, the equations with a maximum R? in this study were the
best proposed. The model that included the P-velocity Vp and
Rp (Punching resistance) proved to be the best to estimate
UCS with R? of 0.8322 and P-value = 0.000000006819, which
shows that the model is very significant.

Finally, regression equations between compressive
strength and other rock properties provide an assemblage of
empirical relationships that can be used in mining engineering
practice.
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Mera. VY wiii poOOTi aKLIEHTYETbCSI yBara Ha BaXKJIMBOCTI
BpaxyBaHHSI OLIIHKY BIACTUBOCTE! MilTHOCTi BaITHSIKOBOI ITOPO-
11 B yMOBax Kap’epy beH A3y3. MeTa — TOCSITHEHHSI ONTUMAJTb-
HOI SIKOCTi BUOYXOBOTO pyiHYBaHHSI, IPYHTYIOUMUCH Ha iH(hOp-
Mallii mpo neTpodiznyHi it MexaHiyHi XapaKTepUCTUKH ITOPOIU.

Metoauka. bynu po3pobaeHi Mozedi 115 OLiHKY (i3uKo-
MeXaHiYHUX BJIACTMBOCTEI BaITHSIKOBOI rmopoau. Mogjeni 6a-
3YIOTbCSI Ha pe3yJibTaTax 0araTtbox JJabOpaTOpHUX BUIIPOOY-
BaHb MeTpodiznUHNMU I MexaHiYHUMU MeTonamu. byB npo-
BEICHUI CTATUCTUIHUI aHAITi3 TTPOCTUX i MHOKUHHUX perpe-
CIfHUX piBHSIHb.

PesyabTaTu. JliHiliHi Mozeni perpecii MaloTb BUILMK Tie-
pendadyBaHUit YCIIIIHUI BiICOTOK, SIK i odikyBajnocs. Haii-
Kpauia MoJesb ISl OLIHKM MIITHOCTI TipChbKOI MOpOAU MpU
cruckaHHi (UCS, BunpoOyBaHHSI Ha HEOOMEXKEHMI CTUCK) Ha
OCHOBI ITPOCTOI perpecii — 11e MOJieJIb, 1110 MiCTUTh IIBUIKICTb
P-xBuib Ik He3asiexkHY 3MiHHY 3 Koe(dillieHTOM aeTepMiHaLiii
R? piBunm 0,81 Ta 3HaueHHAM P-pisHs = 0,000000003.

Haykosa HoBu3Ha. 11100 BUTiIHO BUKOPUCTATH BEJIUYE3HI
pe3epBU B yMoBax Kap’epy beH A3y3, ypaxoBylouu BimcyT-
HiCTb OLIHKYU (Di3UKO-MeXaHIYHUX XapaKTEePUCTUK TOPOIU,
OyJ10 TIPOBEAEHO PSif TECTIB y JIabopaTopil ripHUYO1 MEXaHiKU
MoJliTexHiyHoro (paxkyabreTy B MicTi MoHc y besbrii Ta naHa
OLIiHKa MIITHOCTi BalTHSIKOBOI TTOPOJIN.

IIpakTiyna 3HaunMicTh. [TTMOOKe po3yMiHHS hi3MUHUX i
MEXaHIYHUX BIACTUBOCTEH TipChKOTO MAcUBY, a TAKOX MeXa-
Hi3My BMOYXOBOI'O pyiHYBaHHS TipChbKOi MOPOIM, € BaXKJIM-
BUM KPOKOM, IIIO CJIiJl pOOUTH TTOETAITHO 3 YpaXyBaHHSIM PO3-
BUTKY TipHUYMX POOIT 3 METOIO MiHiMi3allii HeCITPUSITIMBUX
YMOB IIiIl 4ac BUOYXOBOTO pYHYBaHHS Ta OTPUMAaHHS OTO
OINTUMAJILHOT pe3yIbTaTUBHOCTI.

Kmouosi cioBa: xap'ep ben Azy3, Aaxcup, miynicme Ha
CMUCKaHHA, bazamogakmopHa peepecis, eudyxoee pyiHy8aH-
Hs, cmilikicmb do ydapie
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