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Introduction. Existing highly advanced robotic systems op
erating on the basis of artificial intelligence, according to the 
prerequisites of the industrial revolution, envisage a human
centered approach [1]. Furthermore, classical directions in 
robotics, where the research object encompasses elements of 
robotic platforms or auxiliary equipment, are gaining further 
development [2]. The results of the literature analysis for 
2021–2023 using VOSViewer, SciVal tools, allowed the identi
fication of the most discussed criteria for predicting the effi
ciency of robotic platforms. Various criteria are used to moni
tor the efficiency of robotic platforms, including minimization 
of time costs, maximization of profit, reduction in failures, 
and enhancement of safety. Limitations of existing approaches 
lie in the subjective elements in selecting the structure of ma
chine learning models, neural networks, and so forth.

The optimal selection of components for robotic platforms 
is a key factor in efficiently accomplishing tasks, affecting both 
the cost of construction and the correlated functional capa
bilities. For instance, powerful equipment might be employed 
for elementary tasks, while simpler equipment is used for more 
complex tasks. Finding a balance between the level of equip
ment in robotic platforms and the tasks they perform requires 
understanding and defining the platform’s efficiency level.
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IMPROVEMENT OF THE METHOD FOR OPTIMIZATION OF PREDICTING 
THE EFFICIENCY OF A ROBOTIC PLATFORM

Purpose. Improving the optimization method for predicting the efficiency of a robotic platform (using the gradient boosting 
method as an example).

Methodology. The process of refining the optimization method for predicting efficiency has been investigated using robotic 
platforms as complex systems comprising hardware components, data exchange technology, security systems, and navigation, along 
with user interaction methods. The optimization method relies on a linear equation, whose mathematical model, through the triple 
interaction of factors, consolidates assessments of subsystem elements into an efficiency index for the robotic platform. The out
comes of the proposed optimization algorithm result in regression models from machine learning. These acquired models are em
ployed for predicting the efficiency of a specific configuration of a robotic platform designed to perform particular practical tasks.

Findings. The optimization method for predicting the efficiency of a robotic platform has been enhanced by utilizing evalua
tions of the robotic platform efficiency index as input data. In comparison to existing methods, the proposed index demonstrates 
minimal values of root mean square deviation at 0.1794, 0.14 and 0.1245, respectively. This particular characteristic has enabled the 
development of a more accurate optimization method for predicting the efficiency of robotic platforms. This assertion is supported 
both theoretically and empirically through criteria such as Root Mean Square Error, Mean Absolute Error, and Maximum Abso
lute Error on experimental datasets.

Originality. The optimization method for predicting the efficiency of a robotic platform differs from existing approaches 
through its modelbuilding process, which consists of two iterations and incorporates different sets of input evaluations. The first 
iteration involves primary and indexbased evaluations of the robotic platform’s efficiency, while the second iteration incorporates 
primary, indexbased evaluations, and predicted indexbased evaluations.

Practical value. Selection of the optimal configuration of a robotic platform for addressing tasks in the energy sector. Cost re
duction through a finely tuned combination of robotic platforms. The proposed solutions will contribute to the Development 
Concept of Artificial Intelligence in Ukraine.

Keywords: robotic platform, linear equation, dual interaction, triple interaction, efficiency index, optimization method

The problem is partially addressed, which is associated 
with the peculiarities of the input assessments, whether pri
mary or indexbased, that do not fully consider the optimiza
tion process. Hence, it is pertinent to resolve the issue of creat
ing a methodology for optimizing the predict of robotic plat
form efficiency, which would enable cost reduction.

Literature review. Existing research on the development of 
tools for optimizing robotic manufacturing processes includes 
both new optimization ideas and improvements to existing 
methods. For instance, in the work [3], a process of iterative 
optimization of robotic assembly productivity is proposed, en
hancing the wellknown Bayesian optimization algorithm. 
The reliability of the obtained results is confirmed experimen
tally within an enterprise, demonstrating a reduction in pro
duction costs per unit.

An approach to optimizing path planning for robots is de
veloped and studied in work [4]. The proposed solution is 
based on a heuristic multidirectional rapidly exploring tree, 
allowing the robot to effectively navigate and avoid obstacles 
during movement. Experimental verification was conducted 
using a created general obstacle environment, as well as maze 
and cluttered environments. Consequently, the robot selects 
an optimal route while moving.

Authors in [5] have proposed the Chaotic Bat Algorithm 
for predicting the complex motion of floating platforms. To 
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decompose the data concerning the motion of a floating plat
form, an algorithm for decomposing the empirical mode en
semble is suggested.

The approach proposed in [6] relies on a predictive model 
of human movement compared to the planned trajectory of 
the robot and online monitoring with the enforcement of safe
ty requirements using formal methods.

A deep model enabling a robot to predict the consequences 
of its manipulative actions based on its own experience inter
acting with objects of various shapes was studied in the work 
[7]. It involved an iterative process where the robot learned 
from data collected from sensors. The development of such 
robots relies on the necessity of predicting and compensating 
for the deformation of industrial robots’ rigidity [8], as well as 
exploring robotic platforms for complex setups capable of op
erating on vertical, curved, and uneven surfaces [9]. However, 
these scientific works did not delve into the process of aggre
gating assessments into indices, using only primary assess
ments or signals obtained from sensors.

It is also important to distinguish the optimization ap
proaches of the authors, such as those in [10], which involve 
developing control system diagrams, justifying control princi
ples, and implementing software on the respective elementary 
basis of the robot. In other words, optimization is achieved by 
selecting specific components of the robotic platform.

In this field, there are classical optimization methods that 
are differentiated into various categories, including onedi
mensional, multidimensional, or universal optimization 
methods aimed at solving different types of optimization prob
lems [11] and identifying errors [12].

The scientific work by Oleksandr Laktionov [13] involved 
studying the process of constructing index methods used to 
describe humanmachine systems but did not address the de
velopment of optimization algorithms for predicting the effec
tiveness of robotic platforms.

Unsolved aspects of the problem. The existing approaches 
to optimizing the predicting efficiency of robotic platforms 
[3–13] address various tasks. However, in the structure of 
these developments and model constructions, the complete 
utilization of index assessments (first iteration) and the inte
gration of index and predicted index assessments of robotic 
platform efficiency (second iteration) are not fully anticipated. 
Therefore, the research focus should be directed toward find
ing a path to improve predicts of robotic platform efficiency 
and developing a corresponding method to achieve this goal.

Formulation of the article’s goal and setting tasks. The goal of 
the study is to refine the method for optimizing the prediction 
efficiency of robotic platforms, using the principles of gradient 
boosting as an example. This enhancement aims to enable the 
optimal selection of robotic platforms for specific tasks.

To achieve the set goal, the following tasks were outlined:
 to select an optimal linear equation whose mathematical 

model will combine the assessments of subsystem elements 
into an efficiency index of the robotic platform;

 to propose an enhanced method for optimizing the pre
diction of the efficiency of a robotics platform (using an ex
ample) that takes into account the Development Concept of 
Artificial Intelligence in Ukraine (Cabinet of Ministers of 
Ukraine order dated 02.12.2020 No. 1556r);

 to implement software realization and experimental veri
fication of the optimization method for predicting the efficien
cy of a robotics platform.

Description of the methodology for conducting research on 
optimizing the prediction of the effectiveness of a robotic platform. 
Let us create a formal task statement regarding the enhance
ment of the optimization method for predicting the efficiency 
of robotics platforms.

Given RP – a set of robotics platforms. S = {x1, x2, x3, x4} – 
set of component platforms. L = {l1, l2, l3, l4, l5} – the set of 
assessment levels for each component. The formal task is as 
follows:

1. To create a survey to determine the levels of components 
of the robotics platform for collecting primary assessments, 
where xi belongs to set L, and RP belongs to the set of robotics 
platforms.

2. To select the optimal linear equation f (x1, x2, x3, x4), a 
mathematical model that consolidates the ratings of subsystem 
elements into an index of robotics platform efficiency. The lin
ear equation should characterize the interaction of factors. 
The criteria for selecting the optimal model include the root 
mean square deviation (minimum value) and a method for de
termining the normality of the distribution – the Anderson
Darling test at p > 0.05.

3. To enhance the existing method for optimizing the pre
dicting efficiency of robotic platforms (using gradient boost
ing, for instance) by employing a twoiteration approach.

First iteration. Input assessments: initial evaluations xi and 
the efficiency index assessments (rp). Building machine learn
ing models.

The result obtained from the first iteration – predicted 
new values of the efficiency index. EIRP pred (rp). Investigating 
the predicted values of EIRP pred (rp) using metrics like RMSE, 
MAE, MAX, R2.

Second iteration involves using previous arrays of input as
sessments along with an additional set of evaluations. Input 
assessments include initial ratings xi, efficiency index ratings 
EIRP (rp), and predicted new values of the efficiency index 
EIRP pred (rp). Building machine learning models.

The result obtained from the second iteration involves ad
ditional predicting of efficiency based on updated input assess
ments. The predicted values were studied using metrics such as 
RMSE, MAE, MAX, R2.

The research structure aimed at refining the method for op
timizing the efficiency predict of robotic platforms involved two 
stages. The first stage comprised a comparative analysis of index
ing methods integrated into the optimization algorithm and con
sidering the Development Concept of Artificial Intelligence in 
Ukraine (Cabinet of Ministers of Ukraine order dated 02.12.2020 
No. 1556r). The second stage involved constructing the optimi
zation algorithm and conducting experimental verification.

Based on the results of the first stage, two existing and 
seven proposed linear equations were considered. The mathe
matical model of these equations combined the assessments of 
subsystem elements into an efficiency index of the robotic 
platform. Identifying the optimal linear equation involved 
forming theoretical and experimental samples representative 
of the population model. The theoretical samples were deter
mined using combinatorial methods, finding all possible com
binations of primary assessments. Experimental sample sizes 
were determined based on a 99.7 % confidence level, with a 
confidence interval of ±5 % from a population of 501 robotic 
complexes within Ukrainian industrial enterprises. Surveys 
containing lists of assessment levels for robotic platforms were 
used to collect primary assessments. The proposed survey for
mat was implemented programmatically using PHP, HTML, 
and CSS. The consolidation of primary assessments into indi
ces was executed through PHP and MySQL tools.

The diagnostics of the distribution law were performed us
ing SciPy at a significance level of p > 0.05. Comparative anal
ysis of the investigated methods was conducted based on the 
criterion of root mean square error (RMSE). Consequently, 
the diagnosed values of the index assessments were used as in
put estimations for the respective optimization algorithm.

During the second stage of the research, the toolkit of the 
Sklearn library was utilized, particularly machine learning 
models without hyperparameter tuning for regression tasks. 
Models included Gradient Boosting, Random Forest, KN, 
Bagging, and Bagging (base_estimator = KN). Comparative 
analysis of the models was conducted using metrics such as 
Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE), Maximum Absolute Error (MAX), and coefficients of 
determination for the training and testing datasets.
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Since multiple machine learning models were examined 
during the research, lists were employed to expedite the pro
gram text creation. The creation of training and testing datas
ets utilized the train_test_split method, where test_size = 0.35 
was used.

The ultimate outcome of the research is a dashboard con
structed using Streamlit, programmatically implementing ma
chine learning models for user interaction.

Results. The text discusses robotics platforms in industrial 
enterprises, highlighting four components: hardware, techno
logical subsystems, safety subsystems, and interaction subsys
tems. The description of the elements of the robotics platform 
involves the existence of initial assessments, as demonstrat
ed in Table 1.

Ratings of combinations of elements within the robotics 
platform are used to select the optimal linear equation based 
on specific criteria. To select the optimal linear equation, a 
mathematical model, which combines the ratings of subsystem 
elements into an index of robotics platform efficiency, consid
ered nine models as demonstrated in Table 2.

The proposed methods M3, M4, M5 and M6, M7, M8, M9 are 
built on the principle of double and triple interaction of factors 
based on four levels of primary assessments. The total number 
of all combinations, n = 4 elements with m = 2 and m = 3, is 
determined by a known combinatorial method. Let us examine 
each method in detail and assess their adequacy using a theo
retically formed set of assessments (N1 = 256 assessments). 
The adequacy of the methods is determined by the Anderson
Darling criterion at p > 0.05. The accuracy level of the methods 

is determined using the root mean square deviation. The sum
marized research results are presented in Table 3.

Based on the criterion of supporting the normal distribu
tion condition and minimal root mean square deviation values, 
M5 and M9 stand out, while other methods do not support the 
normal distribution condition. We will choose M9 as the basis 
for the linear equation, where M9 = EIRP, merging the assess
ments of subsystem elements into the index of robotics plat
form efficiency. In contrast to existing methods [13, 14], the 
proposed index is constructed based on triple interaction ideas 
among factor combinations. This particular concept ensures 
the minimization of the root mean square deviation values.

The efficiency index of robotics platforms (EIRP) is utilized 
as a component of the algorithm for optimizing the predicting 
of robotics platform efficiency, which includes the following 
blocks.

Block 1. Inputting the initial features of robotics platform 
elements xi and the target variable (efficiency index of robotics 
platforms) EIRP.

Block 2. Preparing assessments for building machine 
learning regression models.

Block 3. Creating a list of machine learning regression 
models – Model 1, Model 2, Model n.

Block 4. Establishing a for loop to iterate through the list of 
machine learning regression models.

Subblock 4.1. Training regression models.
Subblock 4.2. Predicting the efficiency of robotics plat

forms (EIRP).
Subblock 4.3. Determining quality metrics of the obtained 

machine learning models. Investigating the quality of the re
sults based on R2 criteria (for training and testing sets), RMSE, 
MAX, MAE. The research results are documented in Table 4.

Block 5. Displaying the results of model construction to 
the user for intermediate decisionmaking.

Block 6. Preparing initial ratings xi, efficiency index ratings 
EIRP from Block 1, and predicted new efficiency index ratings 
EIRP pred for the second iteration (second cycle of building ma
chine learning models with updated input assessments).

Block 7 – Block 9. Execution of instructions similar to 
Blocks 2–4.

Table 1
A proposed experimentally formed list of assessment levels 

for elements of the robotics platform

The studied 
components of the 

robotic platform
Levels of assessment Assessment

Hardware component 
by data processing 
level (hardware 
subsystem) x1

Without data processing 1

Microcontroller for data 
processing

2

Minicomputer for data 
processing

3

Cloud processing 4

Distributed systems 5

Data exchange 
technologies 
(technological 
subsystem) x2

Optical channels 1

Radio frequency systems 2

Cable connections 3

Ultrasonic communication 4

Geolocation systems 5

Security and 
navigation systems 
(security subsystem) x3

Without security and 
navigation systems

1

Inertial systems 2

Cameras and computer 
vision

3

Groundbased positioning 
systems

4

Lidar 5

User interaction 
method (interaction 
subsystem) x4

Touchscreens 1

Gestures and motion 2

Monitors 3

Wireless interfaces 4

Artificial intelligence systems 5

Table 2
The existing (M1, M2) [13] and proposed by the authors of the 
study (M3, M4, M5, M6, M7, M8, M9) methods for combining 
assessments of four elements of robotics platform subsystems 

into an efficiency index

No. The investigated method

1 M1 = x1x2 + x2 x3 + x3 x4 + x4 x1, where xi is assessments of 
subsystems of the robotic platform [14]

2 M2 = x1α1 + x2α2 + x3α3 + x4α4, where xi is assessments of 
subsystems of the robotic platform; αi – weight coefficients 
[14]

3 M3 = (x1x2 + x1x3 + x1x4 + x2x3 + x2 x4 + x3 x4), where xi is 
assessments of subsystems of the robotic platform

4 M4 = x1x2 + x1x3 + x1x4 + x2 x3 + x2x4 + x3 x4, where xi is 
assessments of subsystems of the robotic platform

5 M5 = (x1x2 + x1x3 + x1x4 + x2 x3 + x2 x4 + x3 x4)1/2, where xi is 
assessments of subsystems of the robotic platform

6 M6 = x1x2 x3 + x1x2 x4 + x1x3 x4 + x2 x3 x4, where xi is 
 assessments of subsystems of the robotic platform

7 M7 = ((x1x2 x3) + (x1x2 x4) + (x1x3 x4) + (x2 x3 x4))/4, where xi is 
assessments of subsystems of the robotic platform

8 M8 = (x1x2 x3 + x1x2 x4 + x1x3 x4 + x2 x3 x4)1/2, where xi is 
assessments of subsystems of the robotic platform

9 M9 = (x1x2 x3 + x1x2 x4 + x1x3 x4 + x2 x3 x4)1/4, where xi is 
assessments of subsystems of the robotic platform
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Block 10. Displaying the final results of modeling and de
cisionmaking. Optimal models are selected based on criteria 
such as RMSE, MAX, MAE, R 2 (for both training and testing 
datasets).

Let us conduct an experimental verification of the pro
posed algorithm based on the theoretical (N2 = 625 rows of 
assessments of robotics complexes) and experimental samples 
of index assessments. Initial assessments for establishing the 
research base were gathered using previously provided ques
tionnaires. The experimental sample was formed from a mod
el of the population consisting of 501 robotics complexes in 
industrial enterprises. With a confidence probability of 99.7 % 
and a confidence interval of ± 5 %, the studied sample size 
amounted to N3 = 322 robotics platforms, representing the 
population model. The initial assessments of robotics plat
forms are presented in Table 5.

The mentioned assessments are used for constructing the 
proposed optimization algorithm. Machine learning models 
were used according to the research methodology. The results 
of studying regression models based on assessments of the ex
isting and proposed indices (first, second iterations, theoreti
cal, experimental samples) indicate the superiority of models 
built using the proposed approach. This is evidenced by the 
comparative analysis of models using criteria such as RMSE, 
MAX, MAE, where the values are lower in models constructed 
based on assessments of the proposed index.

The results of investigating the quality of the optimization 
method for predicting the efficiency of robotics platforms 
based on index assessments (first iteration) and the theoretical 
sample are presented in Table 6.

The Gradient Boosting model is favored based on the de
terminacy criterion for both cases, as there is a balance ob
served in the determination coefficients around 0.99 for both 
the training and testing datasets (a balance between bias and 
variance). Other models show signs of overfitting because 
there is a discrepancy observed in the determination coeffi

cients. The results of investigating the quality of the optimiza
tion method for predicting the efficiency of robotics platforms 
based on index assessments (second iteration) and the theo
retical sample are presented in Table 7.

Based on the results of the second iteration, the Gradient 
Boosting model appears to be overfitted for both investigated 
cases, as indicated by the determination coefficients for the 
training and testing datasets, which are 1.0/0.95 and 1.0/0.98, 
respectively. Models like KN and Bagging (base_estimator = 
KN) exhibit low determination coefficients of 0.4/0.24; 
0.37/0.22 and 0.37/0.21; 0.36/0.2, respectively. The models 
with the best quality metrics are Random Forest and Bagging, 
showing slight signs of overfitting with determination coeffi
cients of 0.99/0.96; 0.99/0.98 and 0.99/0.96; 0.99/0.98, respec
tively. The reason behind these quality metrics of the models is 
attributed to the limitations posed by the theoretical sample, 
restricting the extent of the research but allowing for theoretical 
confirmation of the research hypotheses. For practical valida
tion of the proposed ideas and experimental confirmation, an 
experimental sample was utilized. During the experiment, 
achieving an ideal balance between determination coefficients 
for the training and testing datasets was not possible.

The results of investigating the quality of the optimization 
method for predicting the efficiency of robotics platforms 
based on index assessments (first iteration) and the experi
mental sample are presented in Table 8.

The results of the first iteration showed the advantage of 
models built based on assessments of the proposed index, as 
their metric indicators are lower. According to the MAE metric, 
the Gradient Boosting model prevails with 0.012723, while the 
Random Forest, KN, Bagging, Bagging (base_estimator = KN) 
models demonstrate 0.021989; 0.025401; 0.020376; 0.023401 
respectively.

Similarly, according to the MAX metric, the Gradient 
Boosting model also has an advantage with a value of 0.043743, 
compared to Random Forest, KN, Bagging, Bagging (base_
estimator = KN) with values of 0.080916; 0.099443; 0.079732; 
0.103964 respectively.

A similar situation is observed with the RMSE metric. 
Gradient Boosting shows 0.016786, while Random Forest, 
KN, Bagging, Bagging (base_estimator = KN) demonstrate 
0.029383; 0.032921; 0.028086; 0.031178 respectively, which 
correlates with the level of overfitting.

The results of investigating the quality of the optimization 
method for predicting the efficiency of robotics platforms 
based on index assessments (second iteration) and the experi
mental sample are presented in Table 9.

The obtained determination coefficient values for the KN 
and Bagging (base_estimator = KN) models are negative 
(-0.36; -0.17), indicating issues with these models, so they are 

Table 3
The research results on the adequacy and accuracy of methods (M1, M2 – existing [13]; M2, M3, M4, M5 and M6, M7, M8, 

M9 – proposed) with a theoretically formed sample of assessments (N1 = 256 assessments)

Criterion name M1 M2 M3 M4 M5 M6 M7 M8 M9

р p < 0.05 p < 0.05 p < 0.05 p < 0.05 p > 0.05 p < 0.01 p < 0.01 p < 0.01 p > 0.05

RMSE 0.1794 0.14 0.1779 0.1779 0.143 0.175 0.175 0.169 0.1245

Table 4
The results of the research on the quality of the proposed method for optimizing the prediction of the efficiency of robotic 

platforms

Model 1 Model 2 Model n

R2train/R2test R2train/R2test(Model 1) R2train/R2test(Model 2) R2train/R2test(Model n)

RMSE RMSE(Model 1) RMSE (Model 2) RMSE (Model n)

MAX MAX (Model 1) MAX (Model 2) MAX (Model n)

MAE MAE(Model 1) MAE (Model 2) MAE (Model n)

Table 5
The experimental sample of assessments of robotic platforms 

(N3 = 322 robotic platforms)

No. The name of the 
robotics platform x1 x2 x3 x4 EIRP

1 Robotics platform 1 1 5 5 5 0.828

… … … … … … …

322 Robotics platform 322 2 2 5 4 0.723

The sum 965 991 943 962 215.84
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Table 6
The results of the study on the quality of the method for optimizing the prediction of robotic platform efficiency based on index 

assessments (first iteration), theoretical sample

The models constructed based on assessments of the existing index, first iteration

The investigated 
criterion

Gradient
Boosting

Random
Forest KN Bagging Bagging

(base_estimator = KN)

R2train/R2test 0.99/0.99 0.99/0.68 0.98/0.97 0.99/0.96 0.98/0.96

RMSE 0.00963 0.0224 0,01971 0.02413 0.02084

MAX 0.0119 0.0269 0.0257 0.029 0.0261

MAE 0.0334 0.0615 0.08 0.075 0.089

The models constructed based on assessments of the proposed index, first iteration

The investigated 
criterion

Gradient
Boosting

Random
Forest KN Bagging Bagging

(base_estimator = KN)

R2train/R2test 0.99/0.99 0.99/0.97 0.97/0.96 0.99/0.96 0.97/0.96

RMSE 0.00834 0.01684 0.01947 0.0188 0.02033

MAX 0.0105 0.0208 0.0247 0.0235 0.0254

MAE 0.0266 0.0534 0.0747 0.064 0.0855

Table 7
The results of the study on the quality of the method for optimizing the prediction of robotic platform efficiency based on index 

assessments (second iteration), theoretical sample

The models constructed based on assessments of the existing index, second iteration

The investigated 
criterion

Gradient
Boosting

Random
Forest KN Bagging Bagging

(base_estimator = KN)

R2train/R2test 1.0/0.95 0.99/0.96 0.4/0.24 0.99/0.96 0.37/0.21

RMSE 0.0139 0.0121 0.0575 0.0126 0.058

MAX 0.05 0.05 0.15 0.05 0.16

MAE 0.00385 0.0036 0.043 0.00375 0.044

The models constructed based on assessments of the proposed index, second iteration

The investigated 
criterion

Gradient
Boosting

Random
Forest KN Bagging Bagging

(base_estimator = KN)

R2train/R2test 1.0/0.98 0.99/0.98 0.37/0.22 0.99/0.98 0.36/0.2

RMSE 0.0063 0.0067 0.0512 0.0071 0.051

MAX 0.0224 0.0179 0.1605 0.0201 0.1506

MAE 0.00292 0.00409 0.04003 0.00451 0.0407

Table 8
The results of the study on the quality of the method for optimizing the prediction of robotic platform efficiency based on index 

assessments (first iteration), experimental sample

The models built based on assessments of the existing index, first iteration

The investigated 
criterion

Gradient
Boosting

Random
Forest KN Bagging Bagging

(base_estimator = KN)

R2train/R2test 0.99/0.98 0.99/0.95 0.96/0.94 0.98/0.93 0.96/0.94

RMSE 0.0191 0.0325 0.0359 0.0369 0.0348

MAX 0.0495 0.105 0.11 0.1 0.109

MAE 0.01475 0.02334 0.02664 0.0285 0.02542

The models constructed based on assessments of the proposed index, first iteration

The investigated 
criterion

Gradient
Boosting

Random
Forest KN Bagging Bagging

(base_estimator = KN)

R2train/R2test 0.99/0.98 0.99/0.95 0.95/0.94 0.98/0.96 0.96/0.95

RMSE 0.016786 0.029383 0.032921 0.028086 0.031178

MAX 0.043743 0.080916 0.099443 0.079732 0.103964

MAE 0.012723 0.021989 0.025401 0.020376 0.023401
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excluded from consideration. The Gradient Boosting model, 
which was dominant after the first iteration, seems to be over
fitted. Therefore, the final decision regarding predicting the 
efficiency of robotic platforms should be based on the metrics 
of the Random Forest and Bagging models.

Let us consider a specific example of practical application 
of the proposed approach to predicting the efficiency of a ro
botic platform. The researched model is Random Forest. With 
hardware subsystem level at 1, technological subsystem at 5, 
security subsystem at 4, and interaction subsystem at 4, the 
efficiency index stands at 0.559.

The obtained results regarding the predict of the effective
ness of the robotic platform using the enhanced proposed ap
proach are more promising than those using the existing one. 
Evidence of this is the obtained results of the comparative 
analysis between the proposed and existing approaches on 
samples of varying sizes.

The proposed approach consists of two iterations. Accord
ing to the modeling results of the first iteration, certain ma
chine learning models dominate, while others take precedence 
after the second iteration. This is attributed to the peculiarities 
of the sample used in the second iteration. On the one hand, a 
new variable is added to the sample – the predicted values of 
effectiveness indices. This allows for a more precise predict of 
the efficiency of the robotic platform. On the other hand, this 
process limits the sample size, where not all machine learning 
models work adequately. Consequently, the effectiveness level 
of selecting components for the robotic platform is increased 
by employing the proposed approach. From a practical stand
point, it enables the selection of components of the robotic 
platform to fulfill specific client tasks.

Conclusions. During the research, the task of improving the 
optimization method for predicting the efficiency of robotic 
platforms was addressed. The objective of selecting the optimal 
linear equation, a mathematical model uniting the subsystem 
elements’ assessments into an efficiency index, is achieved by 
choosing an equation based on the triple interaction of factors. 
This equation minimizes the root mean square deviation com
pared to existing methods, resulting in values of 0.1245 and 0.143 
or higher, respectively, while demonstrating more robust adher
ence to the conditions of normal distribution. The obtained re
sult indicates a scientific novelty in further development.

The task of developing an enhanced method for predicting 
the efficiency of robotic platforms, considering the Develop
ment Concepts of Artificial Intelligence in Ukraine, is accom
plished by building predicting models. Unlike existing models, 
the proposed ones consist of two iterations, with the second 

iteration considering primary, index, and predicted index 
evaluations as input estimations.

The superiority of the proposed approach over the existing 
one has been confirmed on an experimental sample, particu
larly with the Random Forest model. Following the second 
iteration, the Random Forest model constructed using evalu
ations from the proposed approach demonstrated the follow
ing metric values: RMSE, MAX, MAE as 0.0056, 0.0206, 
0.00329, respectively. In contrast, a similar model constructed 
using evaluations from known indices showed RMSE, MAX, 
MAE as 0.0299, 0.0765, 0.02313, respectively, with a tendency 
towards overfitting (R2train/R2test = 0.98/0.8).

The practical application of this approach lies in the ener
gy sector and industrial machinery enterprises, where existing 
robotic equipment can be optimally selected for specific 
equipment installation tasks.
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Удосконалення методу оптимізації 
прогнозування ефективності 
робототехнічної платформи
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ні Юрія Кондратюка», м. Полтава, Україна
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Мета. Удосконалення методу оптимізації прогнозу
вання ефективності робототехнічної платформи (на при
кладі ідей методу градієнтного бустингу).

Методика. Досліджено процес удосконалення методу 
оптимізації прогнозування ефективності на прикладі ро
бототехнічних платформ як складних систем, що склада
ються з апаратної складової, технології обміну даними, 
системи безпеки й навігації, способу взаємодії з користу
вачем. Основою методу оптимізації є лінійне рівняння, 
математична модель якого, за рахунок потрійної взаємо

дії факторів, об’єднує оцінки елементів підсистем у ін
декс ефективності робототехнічної платформи. Резуль
татами роботи запропонованого алгоритму оптимізації є 
регресійні моделі машинного навчання. Отримані моделі 
використовуються для прогнозування ефективності ро
бототехнічної платформи певної конфігурації, що вико
нуватиме конкретні практичні завдання.

Результати. Удосконалено метод оптимізації прогно
зування ефективності робототехнічної платформи за ра
хунок використання оцінок індексу ефективності робо
тотехнічної платформи в якості вхідних даних. Порівня
но з існуючими запропонований індекс характеризується 
мінімальним значенням середньоквадратичного відхи
лення 0,1794; 0,14; 0,1245 відповідно. Саме ця особли
вість дозволила отримати точніший метод оптимізації 
прогнозування ефективності робототехнічних платформ. 
Це підтверджено як на теоретичній, так і на експеримен
тальній вибірках за критеріями Root Mean Square Error, 
Mean Absolute Error, Maximum Absolute Error.

Наукова новизна. Метод оптимізації прогнозування 
ефективності робототехнічної платформи відрізняється 
від існуючих процесом побудови моделей прогнозуван
ня, що складається із двох ітерацій і враховує різні набо
ри вхідних оцінок. Перша ітерація включає первинні та 
індексні оцінки ефективності робототехнічної платфор
ми, а друга – первинні, індексні оцінки та прогнозовані 
індексні оцінки.

Практична значимість. Підбір оптимальної конфігу
рації робототехнічної платформи для вирішення завдань 
у сфері енергетики. Зниження витрат за рахунок опти
мально підібраної комбінації робототехнічної платфор
ми. Запропоновані рішення сприятимуть Концепції роз
витку штучного інтелекту в Україні.

Ключові слова: робототехнічна платформа, лінійне 
рівняння, подвійна взаємодія, потрійна взаємодія, індекс 
ефективності, метод оптимізації
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