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INFLUENCE OF RELAXATION ON FILTERING MICROFLOWS
UNDER HARMONIC ACTION ON THE LAYER

Purpose. Investigation of the velocity fields of non-equilibrium fluid filtration in a layer under harmonic action on it and as-
sessment of the influence of relaxation effects on the attenuation of the amplitude of initial disturbances within the framework of
mathematical modeling of non-equilibrium plane-radial filtration.

Methodology. A mathematical model of non-equilibrium plane-radial filtration with a generalized dynamic Darcy law in the
form of a boundary value problem in a half-space with a harmonic excitation law at its boundary is considered. Based on the exact
solutions of the boundary value problem, the attenuation of the amplitude of initial disturbances under the model’s parameters
varying and influence of parameters on the size of the disturbed region are investigated.

Findings. A differential equation modeling non-equilibrium filtration processes in the massif in the cylindrical reference frame
was obtained. Using the method of separation of variables, a solution was constructed, bounded at infinity, to the model differen-
tial equation subjected to harmonic action at the layer boundary. The solution’s asymptotic approximation was constructed for
large values of the argument. Using the asymptotic solution of the boundary value problem, the damping of velocity field during
non-equilibrium filtration was analyzed depending on the frequency of the harmonic action, the ratio of the piezoconductivity
coefficients of the layer, and the relaxation time. Profiles of the dependences of the size of the influence zone on the model param-
eters were plotted and the choice of parameters for optimal influence on the bottom-hole zone of the well was analyzed.

Originality. On the basis of the non-equilibrium filtration model, it is shown that harmonic disturbances applied to the bound-
ary of a semi-infinite layer can penetrate the reservoir over a greater distance under the conditions of manifestation of the relax-
ation mechanism of the fluid-skeleton interaction, compared to the equilibrium filtration process. Such an effect is observed at a
finite interval of disturbance frequencies, while at high frequencies relaxation contributes to a more significant damping of distur-
bances. In the parametric space of excitation frequency — relaxation time, there is a locus of points that corresponds to the maxi-
mum size of influence zone of disturbances.

Practical value. The obtained results are relevant for research on the impact of wave disturbances on the layer with the aim of
intensifying filtration processes, as well as for creation of new wave technologies to increase the extraction of mineral resources
from productive layers.

Keywords: non-equilibrium filtration, Darcy’s generalized law, porous medium, wave action, attenuation, filtration velocity fields

Introduction. At the present, the energy stability of Ukraine
is connected with the increase in the production of energy
both due to the development of new promising hydrocarbon
deposits and the use of new technologies for the enhancing
their production.

Under developing oil and gas fields, the filtration charac-
teristics of the rocks serving as oil and gas collectors deteriorate
significantly, which leads to a decrease in the flow rate of wells
and the degree of mineral resources development.

Most of the highly productive fields of the oil and gas com-
plex of Ukraine have entered the final stage of development,
which is characterized by the progressive depletion of forma-
tion energy, the watering of wells, and the increase in the share
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of hard-to-extract reserves. The development of fields with
difficult-to-extract oil reserves is carried out at a low rate, and
the final yield of oil in such cases does not exceed 30—40 % of
the initial balance of their reserves [1].

In this regard, the most important scientific and technical
problem that arises during the exploitation of deposits is the
most complete extraction of oil while ensuring high rates of
development. Therefore, the tasks of applying new oil produc-
tion technologies that allow one to significantly increase the
oil yield of the layers being developed and from which it is no
longer possible to extract significant residual oil reserves using
traditional methods, are urgent.

To extract these remaining oil reserves, various modern
methods of intensification of oil production are used, in par-
ticular, thermal, chemical, physical, biological and others.
Among these methods, physical methods for increasing the
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flow rate of production wells play a leading role. They also in-
clude methods of wave action on the near wellbore zone
(NWZ) and on the formation as a whole.

Methods of wave action can be divided into several groups:
acoustic (ultrasonic, hydraulic), shock wave and vibroseismic
ones [2].

Knowledge of physical processes and phenomena that are
responsible for restoring the filtration properties of reservoir
rocks and fluid mobility is necessary for a well-founded choice
of the method of wave action on the reservoir and increasing
its potential oil extraction capabilities. The rate of filtration,
which is determined using methods of mathematical modeling
of filtration processes, is used to quantify fluid mobility.

Therefore, the study of the mechanisms of the influence of
the wave field to restore the filtration properties of the forma-
tion, to solve the problems of increasing oil recovery is an ur-
gent task. The advantages of the methods of wave action on the
formation are considered to be, firstly, the possibility of adjust-
ing the parameters of the emitter of acoustic waves (intensity,
frequency, duration of treatment); secondly, ecological purity
of the method; thirdly, its high efficiency.

Literature review. To study the mechanisms of wave action
on saturated porous reservoir media and reservoir fluids, as
well as to identify the peculiarities of the propagation of elastic
waves in heterogeneous media, many experimental studies
have been performed. In particular, in works |3, 4], the effect
of ultrasonic waves on the rheological characteristics of vari-
ous samples of oil and its processing products was experimen-
tally investigated. Experiments proved that the viscosity of all
liquid samples decreased during the action of ultrasonic dis-
turbances. It was found [3] that a higher power of ultrasound
leads to a more intense decrease in the viscosity of the liquid.

The results of laboratory studies [4] also showed that the
mobility of fluids increases under ultrasonic action, while the
authors of the studies [5], in addition to a decrease in fluid
viscosity, also observed an increase in reservoir permeability.
The effect of increasing the absolute permeability of saturated
porous reservoir media under the influence of high-amplitude
pressure fluctuations in the liquid was experimentally proven
in [6].

The research [7] provides experimental studies on model
heterogeneous media with the aim of confirming the increase in
oil mobility under ultrasonic action in porous media. According
to the results of these studies, it was established that the oil ex-
traction coefficient is proportional to the power of the wave
emitter and depends on the frequency of ultrasonic action.

In order to achieve the maximum efficiency of the wave
action on the formation and NWZ, it is also advisable to use
pulse-wave methods with the formation of shock pulses in a
fluid-filled well, starting from the wellhead, using special de-
vices — pulse generators. In [8], it is proposed to implement
pulse-wave action using a hydraulic generator with a repetition
frequency of pressure pulses 1—-50 Hz, which are less inten-
sively absorbed by the reservoir at distances exceeding 2 m
from the well. As a result of the pulse-wave action on the pro-
ductive layer, an optimal level of depression is formed, which
contributes to the process of oil extraction and purification of
NWZ. To do this, special pumping equipment is used, which
allows one to smoothly change the pressure on the wellbore
over a wide range. As a result, the joint use of a pump and a
hydraulic pulse generator ensures the minimum content of
clogging substances and the optimal mode of extracting reser-
voir fluids [8]. For the purification of NWZ from colmatant,
work [9] proposes a method of shock-wave treatment, which is
effectively used in the fields of Kazakhstan. The basis of the
method is the use of a special device that forms rarefaction
waves. The use of the shock-wave treatment method together
with chemical compounds showed high efficiency in the pro-
cess of cleaning the near-breakout zone of the formation from
clogging substances and increasing the acceptability of injec-
tion wells several times (from 20 to 160 m3/day).

In order to study the mechanism of interaction of elastic
waves with the porous medium of the formation, the effect of
elastic oscillations on the change in fluid filtration in the bulk
model for the formation is considered in [10]. The results of
experimental studies indicate a significant influence of the
field of elastic oscillations on the filtration of the oil-water
mixture. In addition, during the experiments, other effects
were observed: a decrease in the effective friction between the
rock and the fluid, and as a result, an increase in the mobility
of the fluid. During the passage of an elastic wave, stretching
and compression phases are observed, which together with vi-
bration of the skeleton and liquid causes the effect of a vibra-
tion pump; a change in the shape of the meniscus at the
boundary of the separation of two phases and, as a result, a
change in capillary pressure [10].

Understanding the wave process patterns occurring in the
well-reservoir system is incomplete without theoretical re-
search. Such studies are based on the analysis of the equations
of the continuum mechanics for models of the real medium
where a wave process is observed.

The authors of [11] developed a mathematical modeling of
the method of acoustic stimulation of wells. The model takes
into account the following physical processes: reduction of liq-
uid viscosity due to mixing and heating; excitation of elastic
waves on the walls of the well (to reduce the adhesion forces
between formation fluids and rock); excitation of natural fre-
quencies associated with the vibration of the liquid inside the
porous medium. Using numerical modeling, the optimal ra-
diation frequencies were determined. It is shown that the well’s
productivity can be significantly improved due to the correct
selection of operating frequencies of the acoustic emitter.

The paper [12] deals with the problem of pulse-wave influ-
ence on a branched horizontal well, which is modeled by
branched waveguides of a certain radius, in each of which the
fluid movement is described by a wave equation. It is shown that
there are resonant frequencies in branched wells, at which the
pressure value can exceed the amplitude of the applied pressure
pulse by several orders of magnitude. It was established that af-
ter pulse-wave treatment of injection wells in the fields of
Oman, their acceptability increased almost three times.

On the basis of a model differential equation that takes into
account the oscillation damping, the propagation of ultrasonic
waves in a viscous liquid was studied in [13] using the integral
Laplace transform. Mathematical modeling of ultrasonic wave
propagation made it possible to highlight the mechanisms of
wave absorption and to study the influence of various param-
eters (temperature, relaxation time) on the propagation of
waves in viscous liquids. The results of theoretical studies were
verified experimentally by studying the change in the velocity
of ultrasound propagation and the damping parameter in glyc-
erol depending on temperature and frequency.

The results of the research on the pulsating steady motions
of a viscous fluid in the pore channels of the reservoir under
the harmonic action of acoustic waves on them are presented
in [14]. To solve the problem, differential equations describing
the laminar motion of a viscous liquid in a cylindrical pore
channel were used. On the basis of the obtained solution, nu-
merical calculations of dynamic processes in the pore channels
of the formation were carried out. It was found that in the case
of acoustic action on the formation, the speed of fluid move-
ment in pore channels reaches maximum values in a certain
frequency range, depending on the size of the pores and the
kinematic viscosity of the fluid.

The article [15] is devoted to the pulsating movements of a
viscous fluid in the filtration channels of capillary-porous bod-
ies under the action of harmonic waves. Pulsating movements
are accompanied by compression-discharge waves and sign-
changing filtration flows in the filtration channels of capillary-
porous bodies. According to the results of theoretical studies,
the most effective mode of pulse-wave loading was selected
depending on the radius of the pore channel.

26 ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2024, N° 2



It should be noted that the studies on this topic known in
the literature were conducted mainly on the basis of the classi-
cal Darcy filtration law without taking relaxation processes
into account. However, to date, a considerable amount of ex-
perimental evidence of deviations from Darcy’s linear law has
been collected [16], especially in relation to non-equilibrium
high-intensity processes, when the strengthening of non-local
effects is observed [17].

To eliminate this gap, the articles [18, 19] proposed a
mathematical model for the elastic mode of liquid filtration
with a generalized dynamic Darcy filtration law, which in-
cludes a description of nonlocal and nonlinear effects. Within
the framework of this model, the influence of relaxation and
the ratio of permeability coefficients of the reservoir rock on
the phase speed of propagation of small wave disturbances was
analyzed.

Thus, on the basis of the analysis of recent publications
and research on this problem, it was established that a signifi-
cant part of them is devoted to the elucidation of physical
mechanisms and phenomena that affect the restoration of the
filtration characteristics of the porous medium of the reservoir,
the fluid rheological parameters and the increase of fluid mo-
bility under wave action.

At the same time, the survey of scientific information
proved that the study of the attenuation of filtration oscilla-
tions, which are formed in the process of acoustic action and
the study of the influence of relaxation effects on the processes
of non-equilibrium filtration, are at the initial stage of their
study and are insufficiently covered. And these factors play a
significant role in the development of methods of wave action
on the porous medium of the formation in order to intensify
the filtration processes in them. In this regard, the purpose of
the research is to study on the basis of generalized dynamic
filtration Darcy law the pulsating damping filtration micro-
flows of a fluid in a porous semi-bounded medium of an oil-
bearing formation under harmonic action on it and to deter-
mine the critical frequency of the wave action, which ensures
the minimum of the reduced attenuation coefficient depend-
ing on the ratio permeability coefficients and the relaxation
parameter.

The problem statement. The porous medium is considered
with specified initial porosity m,, pores of which are filled with
fluid. Let the emitter of acoustic harmonic waves acting on the
formation be located in the well of the radius r, at the forma-
tion level. Then the fluid, located at a distance r > r, from the
source of oscillations, perform a one-dimensional axisymmet-
ric radial non-stationary periodic motion according to the law
determined by the solution of the non-equilibrium filtration
equations written in cylindrical coordinates

k, k
Tl u, +u-u, +——(p,+up,) |+u+—=p.=0;
0 0

(mp), +up, + p[u, + u] =0;
r

p = po + PoBo(p — Po)s (D
m = my+ By(p—po);

w(p, T)=const, k(p,r)=const,

where u is the filtration velocity, m/s; p, p, are the variable and
initial pressures respectively, Pa; p, p, are the variable and ini-
tial fluid densities, kg/m?; m, m, are the variable and initial
rock porosities; B, B, are coefficients of volume compressibil-
ity of oil and rock skeleton of formation, 1/Pa;  is the coeffi-
cient of dynamical viscosity of oil, Pa - s; k,, k,are the steady
and frozen coefficients of permeability, m?; t is the time of re-
laxation, s.

Thus, using the non-equilibrium filtration model (1), we
consider the problem of the effect of a harmonic disturbance
applied at the reservoir boundary on the filtration processes in

it. In particular, the aim of the research is to estimate the size
of the acoustic influence zone and its dependence on the
model parameters, especially on the parameters of nonequi-
librity.

Description of the research methodology. System (1) is a
generalization of classical equations of filtration theory. In
particular, using the relaxation formalism [18, 19], the classi-
cal Darcy law is supplemented with a description of the non-
equilibrity of filtration flows.

Since the system of equations (1) is significantly nonlinear,
its analytical solutions are not known. However, for small de-
viations from the equilibrium state (u, p, p) = (0, py, py), Occur-
ring under acoustic wave action on the layer, filtration pro-
cesses with relaxation in the first approximation with respect
to small disturbances can be described using the following
linearized equations

k
tfu+-Lp, +u+£p,:0; Bp,+u,+E:0, (2)
n M r

where 3 = myf, + B,-

Differentiating the first equation of system (2) with respect
to time and excluding the variable p from it with the help of the
second equation, we obtain from system (2) a model equation
describing non-equilibrium filtration processes of a fluid dur-
ing planar radial motion

Ky, + K, + th%urt + KeMT’— Ke:—z—

| 3)
—TU, —U, (1+ ¢ rzj =0,

where K, :é%, m/s%; K, =kff, m/s? are the coefficients of
piezoconductivity of formation in equilibrium and frozen
states respectively.

Next, equation (3) subjected to boundary conditions is
solved by the method of separation of variables, which allows
one to reduce it to a boundary value problem for the Bessel
equation with respect to the spatial component. The obtained
boundary value problem possesses an analytical solution;
however, for large argument values, it is appropriate to use so-
lution’s asymptotic representation. Using the asymptotic solu-
tion, in the research, the acoustic influence zone, which is
determined by the solution of the transcendental equation, is
evaluated. Using the methods of mathematical analysis, the
existence of a unique root to the algebraic equation is proven
and a convergent algorithm is built for root calculation by the
method of simple iteration. Numerical calculations were car-
ried out using the Mathematica package.

Presentation of research results and discussion. To study
the effects of wave harmonic action on filtration in the porous
medium of an oil-bearing reservoir, it is necessary to deter-
mine the solution of equation (3) with the following boundary
condition

u(r,t)=Asinot at r=r.. 4)

The constraint providing boundedness of equation’s solu-
tion at infinity reads as follows
limu(r,t)=0.

r—w

It is convenient to look for the solution of the boundary
value problem in the class of complex-valued functions (with
the appropriate modification of the boundary condition) by
the Fourier method (method of separation of variables) in the
form

a(r,t)= R(r)-e, (5)

where o is the circular frequency, s™'.
Inserting (5) into equation (3), we obtain the Bessel equa-
tion with complex argument

ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2024, N2 2 27



d’R 1dR

1
er+rdr—R[a2+2]:0’ (6)

o i-ot
here a’>=— do=K/K,.
where Ke[lﬂcore] an /Ko

In general, the parameter O can be regarded as a measure
of how far relaxation can take the system from the equilibrium
state or how much the systems can differ in the equilibrium
and frozen states. Let us recall that 6 < 1 according to thermo-
dynamic constraints (A. V. Kosterin, 1980).

Thus, the solution of equation (6) with modified boundary
condition R(r) = A at r = r, and condition at infinity R(r) — 0
has the form
K, (ra)
Kl(rca)’
where K;(-) is the modified Bessel function of the second kind
of the first order.

The number a in (7) is defined by the well-known relation
a= ¢+ io,where [19]
20-D .

® 1+22
= [— + >0;
¢ \/21(8\/ 1+0% | 1+0%2 ®
B / ® 1+z2 z(B-1)
TV, \/\} 14022 140%2% @

and z = ot is the dimensionless frequency.

From relations (8) and (9) it follows in particular that in
limiting cases when z — 0 the quantity ¢ — @, :\/0)/ 2K,,
oa—o, =\/(D/2Ke and when z — oo, the quantity ¢ — ¢, =
:1/0)/21( s a—)otf:.l(o/2Kf.

Hence, taking into account (7), we arrive to the following
expression for solution (5)

R(r)=A

(7)

K, [r((p+ia)]
K,[r(g+io) |

which satisfies the boundary conditions and allows one to
identify corresponding solution of the problem (3—4) in the
real domain

a(r,t) = Ae™ (10)

u(r,t)=Imi(r,t).

For further studies, assessing the influence zone of pulsa-
tions of filtration microflows on colmatant region, we need an
asymptotics of modified Bessel function K, (s) for its argument

greater than one
K (5)~ |~ (11)
2s

Substituting (11) into expression (10), we lead to the fol-
lowing relation

i(r,t)= A\/Ze’“”e‘("’f)("’”“). (12)
r

Then, evaluating the imaginary part of (12), we obtain the
real-valued solution at large argument of the Bessel function
K, (s) for nonequilibrium filtration

u(r,t) = A\/Zsin[cot—(r—i'c)oc]e(’ﬁ)‘*’. (13)
r

Such solutions describe a pulsating standing damping
wave, under the influence of which oscillating pulsating mi-
croflows are formed, which help to increase the permeability
of the formation, washing out the pore channels [5, 6].

It is worth noting that similar pulsating fluid oscillations
were observed during experimental studies [10] and in theo-

retical investigations of the movement of a viscous fluid in the
medium’s pores under the influence of harmonic wave action
[14, 15].

The size of zone of influence of wave fields is not large due
to their significant attenuation, but such a size is sufficient to
affect colmatant area of the NWZ, where the filtration fluid
flow is most significantly suppressed. Therefore, an important
objective is to estimate the attenuation of filtering pulsating
oscillations in NWZ in a wide range of frequencies, depending
on the parameter 6 and parameter .

Next, based on the theoretical studies outlined above, let
us estimate the NWZ size, which is under the influence of the
wave action caused by the operation of the acoustic emitter
mounted directly in a well.

As an estimate of the size of this area, we choose the dis-
tance ry, at which the attenuation of the initial disturbance
reaches a predetermined value. In other words, attenuation (or
the size of the influence zone) is conveniently characterized by
the following quantity

A - max, u(t,rV).
max, u(t,r,)
Taking into account solution (12), we get A =
= \/’2/7 e 7% or in relative units % =7, /7.

1 -
A:ﬁ e, (14)
14

If we fix the value of A, then the derived expression can be
regarded as an algebraic equation with respect to the parame-

ter 7, . It is convenient to rewrite equation (14) in the follow-
ing form
Oy)=Iny+2yr,p—2InM, (15)
where y=7, >0, M=A""e".
. oo 1 . .
Since —=—+2r.¢>0, then the function ® is mono-

tonically increasing. Let us show that it can take values of dif-
ferent signs. To do this, we derive

O(M?) =2M?*r,¢ > 0.

Next, let us estimate the value of the function at the point
®(M™), where the exponent k > 0 is chosen from the condition
that (M) <0.

Hence, let M > 1, then

DM =~k In M+ 2M*r,p -2 In M.

Choose k in such a way that the term 2M*r,¢ = ¢ is such
In2r.¢ / €

n
<In M?. Therefore, taking 0 < & < min{2r,¢, In M?}, we evaluate
k and, moreover, it is valid ®(M™*) < 0.

Thus, the function ® is the continuous at the interval
v € (0; ) and admits the values of different signs on the inter-
val [M™; M?]. Then by the Intermediate Value Theorem, this
function possesses a root on the specified interval; moreover,
due to monotonic increasing this root is unique.

This root can be evaluated by the simple iteration method.
To apply this method, equation (15) can be rearrange, for in-
stance, in the form

that e — 2 InM < 0. Then k= >0, and also 0 < ¢ <

_2InM-Iny _
o =y(»), (16)

for which the iteration scheme is as follows y,, ; = y(»,). Let us
note that for a simple iteration, a sufficient condition for con-
vergence is the constraint
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d d
Y121, Since [“X{=——, then on the interval y € [M%;
dy dy| 2re
d MF 1
M?] the derivative V1
dy| 2ro e

In other words, taking into account the constraints for ¢
mentioned above, the process of simple iteration is convergent
for arbitrary initial data if it is possible to choose ¢ such that
1 <& <min{2r., InM?}.

It is worth noting that at low frequencies it is possible to
occur the case when min{2r,¢, In M?} < 1 and then application
of algorithm is impossible.

But the condition € > 1 can be eliminated if we choose an-
other form of representation (16). In particular, let us multiply
equation (15) by a number (—A) (here A is positive), add y to
both parts and finally obtain

y—AIny+2yr.o—InM) =y.

The quantity X is chosen from the condition that

1—7»(1+ ZI'C(pJ
y

1
Since 0 < M* < y, then l—k(y-r 2rc(pj <1 is valid for all

|d(y—Miny+2yro—InM))|
dy

<1.

positive A. Another part of inequality

—1<1—k[1+21;(p]:>k[1+2rc(pj<2
y y

is valid if we take A= . Indeed,

M*+2ro
Al Lo <#(M" +2r,0)=2
y T 21,0 P=s

Thus, the iteration process

2z
Mk +2r

c

Vot =Vn— (P(lnyn+2ynrc(p—lnM) (17)
is convergent for arbitrary initial data without auxiliary con-
straints for €.

Similar studies can be performed also for the case M < 1.

To show the algorithm’s work, let us fix the parameter val-
ueso=100s",t=0.035,0=0.05, K,=2m/s%, r.=0.1 m and
A=0.1.

Then the quantity M = 13.385 > 1. Since min{2r.¢, In M?} =
=min{0.583, 5.188} = 0.583 < 1, we can choose ¢ for instance
as ¢ = 0.5 and apply algorithm (17). The process of algorithm
convergence is shown in Fig. 1 for different initial data. Analy-
sis of Fig. 1 indicates that the algorithm is convergent for a
wide range of initial data (as it should be in accordance with
the fulfillment of the sufficient convergence condition) with
quite good rate of convergence (in fact, the third iteration pro-
vides the root).

Using the results obtained above, the relative influence ra-

dii %, are calculated for different values of perturbation fre-
quency o, time of relaxations t and the parameter 6 when
other parameters are fixed: , = 0.1 m, K, = 2 m?/s and the pa-
rameter A =0.1.

Thus, Fig. 2 represents the solutions of equation (14) as a

function 7, (®;7,0) of frequency w, when t and 0 take discrete
values, e.g. T =0 (absence of relaxing effects), t=0.01, t=0.03,
while 6 = 0.05 and 6 = 0.1 (dashed curves).

The behavior of graphs at the edge points of domain of the
function is quite interesting. When o — 0 (t is fixed), the

curves 7, approach the point 7,(0)=A"2. When o — o, then
equation (14) reduces to the form

20| ©
15
>
10 o
------------ O PSP
5| @
0 X
1 2 3 4 5 6

n

Fig. 1. Iteration process for finding the solution of equation (14)
by means of algorithm (17) at fixed parameter values:
®=100s5";1=0.035;0=0.05; K,=2m/s* and r,= 0.1 m. Dashed
line corresponds to the root value evaluated numerically by the
tools in-built in Mathematica package

2
1 200 400 600
w, 57!
7=0.0 7=0.01s, 6=0.05 --.-.- 7=0.03 s, =0.05
----- 7=0.01s,6=0.1 ... 7=0.03s, 6=0.1

Fig. 2. The dependence of ¥, on the frequency o at fixed © and
0. The other parameters are:

K,=2m/s* r.=0.1m

J5 =A"exp((1-7 )ro),
in which @ — @,—> o at @ — 0. In this case the equation pos-

sesses the bounded solution if 7, — 1. Thus, we encounter the
0 - oo uncertainty, which can lead us to bounded result. There-
fore, if solution (14) exists at ® — oo, then this can be realized

at 7, =1 only, that is confirmed by the asymptotics of the

graphsin Fig. 2. Hence, we can state that all curves 7, (®) pos-
sess two common points: ® =0 and o = oo.
No less interesting is the behavior of the graphs at varying

1. Near o = 0 for each curve 7, (o) there exists the interval (its
size decreases when t grows), on which the curve is close to
equilibrium curve 7, (®;T=0). This indicates the weak influ-
ence of relaxation on the system’s dynamics at low frequen-
cies. Moreover, the amplitude of initial perturbation attenu-
ates slowly such that its 10-fold decrease is observed at dis-
tances of 6—8 well radii .. However, for higher o the values
7, (w) attenuates quickly and for o > 200 s™' the radius of influ-
ence zone is about 3r,, i.e., high-frequency disturbances do
not penetrate far into the formation, which is consistent with
classical results.

As o increases, relaxation plays a more prominent role,
i.e. the more t, the more 7,. However, due to the faster de-

cline of the function #,, the intersection points of the curves
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corresponding to different t appear. This means that only in a
limited range of frequencies relaxation effects contribute to the
growth of the influence zone, that is, the size of 7,. For fre-
quencies beyond this interval, relaxation behaves as an addi-
tional mechanism for dissipating the energy of oscillatory mo-
tion. As can be seen for the curve 7, (w;t=0.03),, at high fre-
quencies the amplitude of the initial disturbance decreases by
a factor of 10 already at distances of the order of 2r,, which is
less than for relaxation processes with shorter t and under
equilibrium conditions.

Fig. 3 exhibits the graphs of dependence 7,(7;®,0) on the
time of relaxation t at fixed ® = 50 and ® = 150 s™! (solid curves)
when 6 = 0.05.

In contrast to the graphs in Fig. 2, in intervals of small t,
the curves 7,(t) in Fig. 3 have local maxima on their profiles.
To calculate their coordinates, we use the necessary extremum
condition, applying it to equation (14) as an implicitly defined
function. If we assume that 7, =y = ¥(t) and also according to
(8) @ = ¢(7), then the derivative is as follows

vy, ANyt 0oyt dg
dv ¢ 1+2yro dr’
o o . dy
It is obvious that at the critical point t = 1., we get e =0,
T

d
when d—q) =0. From the last equation it follows the condition

T
of existence of the local extreme value [19]

o _\/3(1+e))—\/9+14e+9e2
[ P .

2 (18)

Using expression (18), it is easy to show that at increasing
0 the critical point shifts to the left.

If 0 increases to 0.1, we get graphs 7, marked with dashed
lines (Fig. 3). Note that the curves corresponding to different
0, intersect (compare the solid and dashed curves).

This means that increasing 0 affects differently 7, the
whole interval 1. In the most interesting interval t, growth 0
causes suppression of the maximum 7%, and its shift to small
values of 1.

The mutual influence of frequency and relaxation time is
clearly visible on the contour plot in Fig. 4. The solid curve
marks the locus of local maxima, which are determined by
condition (18) at 6 = 0.05.

0 0.1 0.2 0.3 0.4
7,8
— w=505"",6=0.05 —— w=1505",6=0.05
----- w=505"",6=0.1 ----- w=1505",6=0.1

Fig. 3. The dependence T, on time of relaxation t at fixed ®
and 0. The parameters are as follows:

K,=2m/s*r.=01m

0.06 o
~10.1

0.05 =
~9.02
0.04 =792
~6.82

[} ]

0,03 |
Ss72

|

0.02 .
462
0.01 352
242

0.00
0 100 200 300 400 500

w, s
Fig. 4. Contour plot for the function T, of ® and t. The graph of
function (18) is depicted by solid curve:

0=0.05K,=2m/s*r.=01m

Thus, the selection of frequency o for NWZ processing
should be carried out in such a way as to stay close to the local

maxima of the graph 7, (r;w,e) . This, in turn, requires more
detailed information about the reservoir and its saturating fluid.

Conclusions and prospects for further research. In the con-
ducted research, using the generalized dynamic Darcy law
with one relaxation parameter, a mathematical model of the
elastic regime of non-stationary non-equilibrium fluid filtra-
tion in a porous semi-bounded medium of a circular forma-
tion is considered.

The research deals with the boundary value problem of
non-equilibrium filtering with harmonic perturbation at the
boundary of a semi-confined reservoir and the additional con-
dition that the solution is bounded at infinity. By the method
of separation of variables, a non-stationary complex-valued
solution is obtained in the form of a product of a harmonic
function of time and a modified Bessel function of the second
kind of the first order with respect to the spatial coordinate.
Based on this solution, an asymptotic solution of the problem
for large values of the argument of the Bessel function is con-
structed. This solution determines the pulsating fluid motion
in a porous formation.

Using the derived solution, the damping of pulsations dur-
ing non-equilibrium filtering is analyzed depending on the fre-
quency of the wave action, the ratio of the piezoconductivity
coefficients K//K,, and relaxation parameter.

Graphs of the dependences of the size of the influence
zone on the model parameters are plotted and the choice of
parameters for optimal influence on the NWZ is analyzed. It is
established that the sizes of the zones affected by vibration
during non-equilibrium filtration exceed the sizes of these
zones during equilibrium filtration processes.

A mathematical model of non-equilibrium fluid filtration
is proposed, and the results of theoretical studies are obtained,
which are relevant for the development of wave technologies
for the intensification of mineral resource extraction [21].

In the future, studies of non-equilibrium filtration in the
case of a larger number of relaxation processes, as well as in the
case of the dependence of formation permeability coefficients
on the spatial coordinate, are of scientific and practical interest.
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Merta. JlocimKeHHs MoJIiB IIBUAKOCTEM HepiBHOBAXKHOT
dinpTpaltii ¢Joiny y miacTi 3a rapMOHIYHOI [ii Ha HbOTO Ta
OlLIiHKA BIUIMBY pejlakcaliiiHUX e(peKTiB Ha 3aracaHHsT aMILTi-
TYIU TIOYaTKOBOTO 30ypeHHST B paMKax MaTeMaTHYHOTO MO-
JIeJIIOBaHHST HEPiBHOBAXKHOT MJIOCKOpaaiaJibHOI (hibTpallii.

Metonuka. Po3risinaeTbcsi MaTeMaTUuHa MOJIENIb HEPiB-
HOBaXXHOI TJI0CKOpaiaibHOI (hiJIbTpallii 3 y3araJbHeHUM I1-
HaMivHUM 3aKoHOM Jlapci y hopMi KpaitoBoi 3amavi y HamiB-
MPOCTOPi 3 FTApMOHIYHUM 3aKOHOM 30yI3KEHHST Ha 1Oro Mexi.
Ha ocHOBi TOYHMX PO3B’SI3KiB KpailoBoi 3a1adi TOCTiIKYETh-
Cs1 3racaHHsI aMILUTITYAX NTOYaTKOBOTO 30ypEeHHs BiJl mapame-
TpiB MOJIeJIi Ta iX BIUIMB HAa po3Mipu 30ypeHoi 001acTi.

Pesyabratn. OTpuMaHe audepeHiaibHe piBHSHHS, 1110
MOJIETIOE B UWJIIHAPUYHIN CUCTEMi KOOPAMHAT HEPIBHOBAX -
Hi (inbTpaLiiiHi mpolecu B MacuBi riacta. BukopucroBylo-
YU METOH PO3MiJICHHS 3MiHHUX, 3HAIEHO pPO3B’SI30K MO-
JIeJIBHOTO AU(PEepeHIIiHHOTrO PiBHSIHHS 3 TApMOHIYHOIO Ai€l0
Ha MeXi ItacTa Ta 0OMEXKEeHICTIO PO3B’SI3Ky Ha HECKiHUEH-
HocTi. [ToOymoBaHe acCMMNTOTUYHE HAOJMXKEHHST PO3B’SI3KY
IUTSI BEJTUKUX 3HAUYeHb apryMeHTy. BukopucToBytoun acum-
TOTUYHUM PO3B’I30K KpaioBoi 3a1aui, TpoaHalizoBaHe 3ra-
CaHHSI MyJbCalliif MoJIiB IBUAKOCTEH MPU HEPiBHOBAXKHIM
(inpTpanii B 3aJ1eKHOCTI Bill YaCTOTU FrapMOHIYHOI [ii, CITiB-
BiTHOIIECHHST Koe(DillieHTiB I1’€30IPOBIMHOCTI I1acTa i yacy
penakcartii. IToOGymoBaHi rpacdiku 3ajexHOCTeil po3Mipy
30HMU BIUIMBY Bijl TapaMeTpiB MOJIEJIi Ta MpoaHali30BaHO BU-
0ip mapameTpiB ISl ONTUMAJILHOIO BIUIMBY Ha MpuU3abiiiHy
30HY CBEPUIOBUHU.

Haykosa HoBu3Ha. Ha ocHOBi Mofies1i HepiBHOBaXKHOI (hiJib-
Tpalil MokKa3aHo, 1110 TApMOHIUHI 30ypeHHsI, MPUKIAAeHi Ha
MeXi HariBHECKiHUEHHOTO TJ1aCTa, MOXYTb TPOHUKATH Y IJIacT
Ha OUIbIITY BiZICTaHb B yMOBaX IPOSIBY peJlakcalliifHOro MexaHi3-
My B3aeMOil (IIOILy Ta CKeJleTa, MOPIBHIHO 3 PiBHOBAXKHUM
dinbTpaiiitnumM mporuecoM. Takuit ehekT criocTepiraeTbesl Ha
CKiHYEHHOMY iHTepBaJli 4YaCcTOT 30ypeHHsI, TOMi SIK Ha BEJTMKUX
YaCcTOTaX pesiakcallis CIpUsi€ OUTbILI CyTTEBOMY 3aTyXaHHIO 30y-
peHb. Y MpocTopi mapaMeTpiB «4acTOTa HABAHTAXKEHHSI — Yac»
penakcatiii iCHye TeOMETpUYHE MiClle TOUOK, 1110 BilITOBIIAlOTh
MaKCUMaJIbHUM PO3MipaM 30HU BIUTUBY 30ypPEHHSI.

IIpaktnyna 3HaunMicts. OTpUMaHi pe3ynbTaTH € aKTy-
QTBHUMU [UTSI AOCTIKEHb 111010 BIUIMBY XBUJIBLOBUX 30ypeHb
Ha TuIacT 3 MeTOolo iHTeHcudiKalii GinbTpalliiHUX MPOLIECiB,
a TaKOX IUIsSI CTBOPEHHSI HOBUX XBMUJIBOBUX TEXHOJOTIH M-
BUILIEHHSI BIJTYYeHHST MiHEpaTbHUX PECYPCiB i3 MMPOMYKTUB-
HMX TUIACTiB.

Kimouosi cioBa: nepigrnogascna ginempauis, y3aearvHenuil
3akon [apci, nopucme cepedosuuje, xeunvoga 0is, 3aeacamHs,
hinompauiiini noas weudkocmel
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