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HEURISTIC CONTROL OF POWER CONSUMPTION BY UP TO 1000 V 
ELECTRICAL LOADS AT MINING ENTERPRISES

Purpose. To develop a method for synthesizing the structure and algorithm of the system for automated control of power con-
sumption by up to 1000 V electrical receivers at mining enterprises with iron ore underground mining methods. This enables direct 
control of the load connection to the industrial power grid to ensure minimum power costs depending on its cost per day ahead.

Methodology. The problem of controlling power consumption of electrical receivers at iron ore underground mines is formalized as 
a binary form of mixed integer programming. To solve it, a binary implementation of the heuristic genetic algorithm is used. The math-
ematical modeling method analyzes the impact of genetic algorithm settings, such as the number of phenotypes in the population, the 
number of elite phenotypes that pass unchanged to the next generation, and the method of phenotype crossover on its quality.

Findings. As a result of the research, it is found that the most effective way to control the process of power consumption based 
on an evolutionary genetic algorithm is to use the Laplace crossover function and keep the percentage of elite phenotypes in the 
population at 10 %. Moreover, at the smallest population size, the best accuracy is observed when using the Laplace function, 
while at one- and two-point crossover functions, it worsens, but not significantly (no more than 0.2 %). However, as the number 
of elite phenotypes increases, the duration of the evolutionary search in the control process is reduced by almost a factor of two in 
the case of one- and two-point crossovers.

Originality. For the first time, the structure of a heuristic system for automated control of power consumption by underground 
electrical receivers with a supply voltage of up to 1000 V at iron ore underground mines has been developed on the basis of an evo-
lutionary genetic algorithm. Depending on the designed volumes of ore production and the daily power cost per day, this allows 
determining the optimal power load schedule of underground distribution substations in advance, which, subject to the accepted 
limits on hourly and daily power, minimizes the cost of purchasing power, and thus reduces the cost of the final product.

Practical value. The architecture of a heuristic system for controlling power consumption by electrical receivers with a voltage 
of up to 1000 V based on an evolutionary genetic algorithm is developed and recommended when optimizing the power load sched-
ule of transformer substations of mining and metallurgical enterprises, in particular, of iron ore underground mines operating in 
this voltage class.

Keywords: power, up to 1000 V electrical receivers, heuristic algorithm, genetic algorithm, underground mine

Introduction. The enactment of the Law of Ukraine “On the 
Power Market” [1] creates conditions for a fundamental change 
in the operation of the Integrated Power System of Ukraine. At 
the same time, the modernization of the power system as a 
‘power producer-power consumer’ complex can and should be 
implemented in two key areas. One is the creation of small-scale 
distributed generation power plants to decentralize the power 
grid, and the other is the transformation of the wholesale market 
model with a single buyer into a competitive one. While the first 
direction is only stimulated by the Law of Ukraine, the other is 
mandatory and has already been put into effect.

It should be noted that a competitive market implies a 
complete change in the approach to mutual settlements for 
consumed power between power supply companies and con-

sumers. Thus, the Law creates an intraday segment of the 
power market with hourly pricing, i.e. the day-ahead tariff sys-
tem. Moreover, prices change each day depending on the re-
sults of the market’s buying and selling trades. This ‘variable’ 
approach to tariff setting introduces significant uncertainty 
into consumers’ operations that plan their work for a long 
time, such as mining and metallurgical enterprises. Such a 
group of enterprises includes, among others, those engaged in 
underground mining (underground mines). To reduce the 
level of power consumption payments, enterprises artificially 
modify consumption modes of mainly energy-intensive con-
sumers in a primitive form, by increasing power consumption 
during economic hours of the day and decreasing it during 
peak hours. This gives a certain material effect, but also adds a 
number of negative aspects [2, 3]. In order to achieve the de-
sired effect in the power and energy sector of operating iron 
ore mining enterprises, it is necessary to change available ap-
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proaches to both labor organization and management of con-
sumed power during the day [4, 5].

Traditionally, underground mines rely on electrical equip-
ment to extract ore, which can potentially be adjusted within a 
fairly narrow timeframe, as it depends on monthly production. 
Under the three-zone tariff system differentiated by time of 
day, which was in effect before the introduction of the Law of 
Ukraine “On the Power Market”, power consumption was re-
duced during peak tariff hours, whenever possible. After the 
creation of the intraday market, when the price of electricity 
fluctuated hourly and the high price hours did not coincide 
from day to day. So, it became quite difficult to save money 
because power consumption was not controlled as such or was 
controlled manually, not automatically. Thus, there is an ur-
gent need to develop such a control system.

Literature review. The issue of controlling power consump-
tion by domestic and industrial facilities is considered in a fairly 
wide range of works. Of these, [6, 7] are devoted to a comprehen-
sive review of the problem, analyzing advantages and disadvan-
tages of ways to solve it using common science-based methods.

Three main areas can be distinguished according to the 
conditions for setting tasks for solving the problem of power 
consumption control and the methods for solving them. The 
first is the application of classical methods of mathematical 
programming, as defined in [8, 9]. The second involves the use 
of heuristic methods and the third includes methods based on 
artificial intelligence principles. What they all have in common 
is that they are controlled on the consumer’s side, outside the 
balance sheet, i.e. in their own power system.

A significant amount of research is devoted to the use of 
heuristic methods. They formalize the problem of power con-
trol as an optimization problem of planning operation periods 
of electrical equipment over a certain time period. The major-
ity of the research is based on algorithms that determine the 
optimal solution by imitating the principles by which wildlife 
systems function, like genetic algorithms [10, 11], the particle 
swarm method [12, 13], the ant colony algorithm [14], the ant 
lion algorithm [15], the cuckoo search algorithm [16], the gray 
wolf hunting optimization algorithm [17], the symbiotic or-
ganisms search algorithm [18], the hybrid genetic-air optimi-
zation algorithm [19], and the whale search algorithm [20].

[21] compares the quality of solving an optimization prob-
lem of power consumption control using a cockroach colony, a 
sparrow search algorithm, and a binary orientation algorithm. 
We would like to highlight the works that propose heuristic algo-
rithms that do not involve the principles of biological systems. 
These are [22, 23]. The former deals with a multi-agent optimi-
zation system, and the latter with a two-stage iterative algorithm.

Recently, other approaches to solving the problem of pow-
er control have also become widespread, in particular, those 
that apply the neural-fuzzy principle in building control sys-
tems. Moreover, artificial neural networks are mainly used to 
predict power consumption [24, 25] in a hybrid system, and 
fuzzy logic [26, 27] is used to regulate the power receiver ca-
pacity or to decide whether to disconnect it from the power 
grid or reconnect it to it.

However, the literature analysis shows that the issue of op-
timizing power consumption by electrical receivers in ore un-
derground mines, in particular, those with voltages up to 
1,000 V, has not been studied to date. This is what makes this 
research relevant.

Main material presentation. Substantiation of the methods 
used. To solve such problems, the optimization method of 
mixed-integer linear programming (MILP) is used. This ap-
proach has a high speed of solution and accuracy. However, these 
advantages mostly apply to cases where there are no restrictions 
or they are not strict enough. Also, the method is not very suit-
able for operational control, which will be required to implement 
the smart grids concept in the industrial power system with its 
smart metering and smart switching approaches. The genetic al-
gorithm, which belongs to the class of evolutionary algorithms, 

does not have these disadvantages. In solving optimization prob-
lems, it uses the mechanisms of selection, crossover, reproduc-
tion, and mutation, similar to biological evolution in living na-
ture, and is well suited for solving MILP problems [28].

We synthesize a heuristic system for controlling power 
consumption by technological equipment at an iron ore un-
derground mine and analyze its quality indicators. We con-
sider electrical equipment of several blocks of an underground 
mine level as an object. The list of equipment and its technical 
data is shown in Table 1.

An analysis of the list of equipment (Table 1) shows that 
the equipment can be divided into two categories: with a float-
ing (variable) and fixed work schedule. The former include 
those that create conditions for the safe work of mine employ-
ees, such as local ventilation fans and lighting, while the latter 
category includes all other equipment.

Results and discussion. Let us set an optimization problem of 
controlling power consumption of the mine level to solve it with 
an optimization algorithm. As a variable for each technological 
unit, we use a binary value that determines the state of connection 
to the power grid, which will take one of two values: 1 – electrical 
equipment consumes power from the industrial power system, 
0 – electrical equipment is disconnected. Thus, the MILP prob-
lem is reduced to a binary form (Binary MILP). The involvement 
of a genetic algorithm becomes even more relevant because the 

Table 1
Electrical equipment of the mine level

No Consumer Total 
power No Consumer Total 

power

Block 1 Block 3

1 Scraper winch 
30LS-2S 120 19 Scraper winch 

30LS-2S 60

2 Scraper winch 
55LS-2S 110 20 Scraper winch 

55LS-2S 55

3 Scraper winch 
17LS-2S 74 21 Scraper winch 

30LS-2S 90

4 Scraper winch 
30LS-2S 60 22 Fan SVM-6M 14

5 Fan SVM-6M 28 23 Drilling rig 
NKR-100M 8

6 Drilling rig 
NKR-100M 24 24 Vibro-manhole 

AShL 30

7 Vibro-manhole 
AShL 60 25 Welding transformer 

STN-500 33

8 Welding transformer 
STN-500 33 26 Other 5

9 Lighting 10
Block 2 Block 4

10 Scraper winch 
30LS-2S 120 27 Scraper winch 

30LS-2S 60

11 Scraper winch 
55LS-2S 110 28 Scraper winch 

55LS-2S 55

12 Scraper winch 
17LS-2S 37 29 Scraper winch 

17LS-2S 37

13 Scraper winch 
30LS-2S 30 30 Scraper conveyor 

KS-2 120

14 Fan SVM-6M 14 31 Vibrating machine 
VL-2 (PVS) 90

15 Drilling rig 
NKR-100M 8 32 Drilling rig 

NKR-100M 8

16 Vibro-manhole 
AShL 45 33 Fan SVM-5M 27.5

17 Welding transformer 
STN-500 33 34 Fan SVM-6M 28

18 Other 7.5 35 Lighting 18
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most common type of phenotype encoding is two-bit, i.e. when 
one gene in a phenotype chromosome can be either 0 or 1.

The objective function whose extremum is to be deter-
mined has the following form
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where NL is the number of consumers of the mine level; NT is 
the number of gaps in the time interval under consideration; i 
is the index of the time period; j is the consumer index; xij is a 
variable of the state of connection of the j th electrical equip-
ment to the industrial power grid at the ith time interval; Ci is 
the power price at the ith time interval, UAH/kWh; Pij is the 
installed power of the consumer, kW.

According to the objective function (1), the optimization 
algorithm establishes a schedule of electrical loads at the un-
derground mine substation to ensure the minimum daily cost 
of purchasing power from the power supply company.

According to the Law of Ukraine “On the Power Market”, 
the power market segment is intraday with hourly pricing, so as 
a time period, the research will consider a day with hourly inter-
vals. It is also convenient to plan production for the day ahead.

When solving the optimization problem of power con-
sumption control, the following restrictions are imposed:

1. The daily consumption power should not exceed the 
volumes ordered the day before from the day-ahead distribu-
tion (DAM) operator
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2. The total power of consumers simultaneously connect-
ed to the grid should not exceed the total rated capacity of mo-
bile sectional underground substations (MUS), i.e. the trans-
former load factor should not exceed one
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where Pij is the power of the jth consumer in the ith time interval.
3. To ensure the required ore extraction productivity, each 

consumer should work for a set period of time
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where nj is the duration of the jth consumer’s operation during 
the day, hours.

The operating time allows considering the planned rock 
mass extraction productivity as a ratio of extraction volumes to 
the productivity of the j th unit. We assume that nj takes only an 
integer value over a period of time.

Thus, the form of the optimization problem indicates that 
the system for controlling power consumption of electrical 
equipment for stopping and preparatory workings has a MI-
SO-type. The input variables are the production rate and the 
hourly power price, the output variable is the daily cost of pur-
chasing power, and the state variable is the state of connection 
of the equipment to the power grid.

We evaluate the quality of the minimum search for the ob-
jective function (1) using an evolutionary genetic algorithm 
subject to constraints. Let us use the ga function from the 
MATLAB/Global Optimization Toolbox.

Let us analyze the impact of genetic algorithm settings on its 
quality. The number of phenotypes in the population, the num-
ber of elite phenotypes that pass unchanged to the next genera-
tion, and the method of phenotypes crossover is subject to 
change. These settings are proven to have the greatest impact on 
the quality of the limit search and are used for variation [29].

During the research period, the number of phenotypes in 
the population is defined as 100 and 200, the number of elite 

phenotypes that passed to the next generation without crossover 
or mutation is 0, 5, 10, 20 and the one-, two-point crossover 
functions and the Laplace crossover function [30], defined as
 x = p1 + b1 | p1 - p2 |; x = p2 + b1 | p1 - p2 |, (2)

where b1 is a random number obtained from the Laplace dis-
tribution.

The Laplace crossover function is considered to be the most 
adapted for solving mixed integer linear programming problems.

The conditions for the evolutionary algorithm to terminate 
are the achievement of either the maximum number of genera-
tions or the average relative change in the lowest value of the 
objective function. They are set at 300 and 10-8, respectively.

The average power value always remains constant at 
377.958 kW. This because the power consumption of the pro-
cess plants is not regulated, only the distribution of their op-
eration over time.

During the experiments, the power cost is considered as a 
random variable with a normal probability distribution law. Its 
parameters are chosen based on the following assumptions. 
According to the analytical materials of the power market op-
erator [31], the peak cost of power as of the current date of 
March 06, 2023 is 3,949.48 UAH/MWh and this price re-
mains for most of the day from 07.00 to 24.00. The power sup-
ply company takes this value as a basis and adds its own mark-
up to it. Therefore, the mathematical expectation is set to 
M[X ] = 5,000 UAH/MWh. Also, looking at the trends, it can 
be argued that the peak value on the day-ahead market will 
increase to this value, since, for example, a year before, on 
March 05, 2022, the peak price was 2,646.25 UAH/MWh, i. e. 
the increase is 49.25 % over the specified period. This is ex-
plained by the state of Ukraine’s Integrated Power System. 
The situation has stabilized, so we can predict that growth will 
continue, but at a slower pace. The cost allocation will have its 
own peak values, which will model either force majeure cir-
cumstances of the power system or a deliberate price increase 
by the power supply company to increase profits.

To adequately compare the efficiency of the heuristic control 
system with different settings, the pseudorandom number genera-
tor is fixed in the same state, so the cost distribution is the same.

Indicators of power consumption control by the electrical 
equipment of preparatory and stopping workings are shown in 
Table 2 and Figs. 1–8.

Genetic algorithm parameters: the population includes 
100 phenotypes, the number of elite phenotypes is 10. First, let us 
apply the following settings to the genetic algorithm: popula-
tion size per generation is 100 phenotypes, the number of elite 
phenotypes in the population is 10 (10 % of the total pheno-
types), and the crossover function is one-point. In Fig. 1, a, 
the results of optimizing the electrical load schedule using the 
objective function (1) are presented.

The minimum value of the criterion during the test made 
42,516.6 UAH/day. The schedule of changing the objective 
function value, produced by the best phenotype in each gen-
eration (Fig. 1, b), indicates that the evolution begins with the 
value of 43,303.3 UAH/day. This is calculated for the start 
population. Also, it is obvious that the populations’ evolution 
ends at population 114, when the change in the objective func-
tion value is almost absent. The genetic algorithm control sys-
tem cuts electric power costs for the underground mine by 
1.817 %. Apart from that, after generation 24, when the value 
of 42,599.7 UAH/day is reached, i. e. decreased by 1.625 % 
from 43,303.3 UAH/day, the algorithm reduces the costs in-
significantly, only by 0.195 %. Totally, 164 generations are 
needed to implement the condition of algorithm termination.

The power load schedule (Fig. 2, a) shows that the peak 
power consumption of 708.5 kW after the final planning of 
working hours occurs at 5 a.m., while the minimum power 
consumption of 217.5 kW occurs at midnight. It should be not-
ed that during these specific hours, the power price is neither 
highest, nor the lowest. The most expensive and the cheapest 



ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2024, № 1 87

tariffs are used at 4 p.m. and at midnight respectively, with the 
power consumption of 310.5 kW, i.e. 93 kW higher than the 
minimum and 460 kW, i. e. 248.5 kW lower than the maximum.

Let us find a two-point crossover function without changing 
the sizes of population and the number of elite phenotypes, and 
compare the results of controlling power consumed by the elec-
tric equipment at the underground mine level (Figs. 1, b; 2, b).

According to the schedule (Fig. 1, b), under such settings of 
the genetic algorithm, the best phenotype in the initial popula-
tion makes the objective function value of 43,535.8 UAH/day. 
Afterwards, generation by generation, the phenotype quality 
improves evolutionally and reaches 42,590.2 UAH/day when 
terminating the algorithm, i. e. the costs reduce by 2.172 %, 
which is higher in percentage expression than in the one-point 

crossover function. However, in this case the search lasts longer, 
namely 138 generations (114 for one-point crossover function), 
which is 24 generations or 21.053 %. Moreover, the algorithm 
termination occurs in generation 188. The final result is worse 
than that with the one-point crossover: 42,590.2 UAH/day 
compared to 42,516.6 UAH/day. Daily expenses are 0.1731 % 
greater, and so is the duration.

The power load schedule (Fig. 2, b) indicates that peak 
power consumption of 592.5 kW occurs at 9 p.m., and the 
minimum of 173 kW occurs at 4 p.m. Thus, the lowest con-
sumption rate is when the electric power price is the highest. 
The maximum power consumption does not coincide with the 
time of the minimum price. At noon, when the power price is 
the highest, the power consumption is 366.5 kW, being 

Table 2
Efficiency indicators of the heuristic system for controlling power consumption during the day at different settings of the genetic 

algorithm

Population size Number of elite 
phenotypes

Crossover 
function

Power costs, 
UAH/day

Final 
generation

s,
kW

Pmax,
kW

Pmin,
kW

100 10 One-point 42,516.6 114 104.12 708.5 217.5
100 10 Two-point 42,590.23 138 92.8202 592.5 173
100 10 Laplace 41,454.99 181 111.3152 654.5 199
100 5 One-point 42,337.16 131 114.7072 661.5 229
100 5 Two-point 42,681.84 108 96.6943 560 218
100 5 Laplace 42,499.92 46 101.265 566 214.5
200 20 One-point 42,515.63 54 95.3207 599 211
200 20 Two-point 42,518.40 80 117.9157 724 221.5
200 20 Laplace 41,661.27 91 102.3352 567.5 184
200 0 One-point 43,470.55 300 80.1435 574 264
200 0 Two-point 43,430.45 300 88.2164 624.5 237
200 0 Laplace 42,878.01 300 104.6009 669.5 232.5

Fig. 1. The dynamics of changes in the optimal value of the ob-
jective function during the evolutionary execution of a ge-
netic algorithm with a population size of 100 phenotypes 
and 10 elite phenotypes in the population:
a – one-point crossover function; b – two-point crossover function; 
c – Laplace crossover function

a

b

c

Fig. 2. Power load schedule in the course of power consumption 
control applying the genetic algorithm for a population size 
of 100 phenotypes and 10 elite phenotypes in the popula-
tion:
a – one-point crossover function; b – two-point crossover function; 
c – Laplace crossover function

a

b

c
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Fig. 3. Dynamics of changes in the optimal value of the objective 
function during the evolutionary execution of the genetic 
algorithm with a population size of 100 phenotypes and 
5 elite phenotypes in the population:
a – one-point crossover function; b – two-point crossover function; 
c – Laplace crossover function

a

b

c

Fig. 4. Power load schedule in the course of power consumption 
control applying the genetic algorithm for a population size 
of 100 phenotypes and 5 elite phenotypes in the population:
a – one-point crossover function; b – two-point crossover function; 
c – Laplace crossover function

a

b

c

38.143 % lower than the peak one. Compared to the one-point 
crossover algorithm, the two-point crossover demonstrates 
smaller peak and minimum consumption by 16.373 and 

Fig. 5. Dynamics of changes in the optimal value of the target 
function during the evolutionary execution of the genetic 
algorithm with a population size of 200 phenotypes and 
20 elite phenotypes in the population:
a – one-point crossover function; b – two-point crossover function; 
c – Laplace crossover function

a

b

c

Fig. 6. Power load schedule in the course of power consumption 
control applying a genetic algorithm with a population size of 
200 phenotypes and 20 elite phenotypes in the population:
a – one-point crossover function; b – two-point crossover function; 
c – Laplace crossover function

a

b

c

25.723 %, respectively. The standard deviation of 92.8202 kW 
indicates the greater grouping of power in relation to the mean 
value of 377.958 kW.
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Let us change the two-point crossover function into the 
Laplace crossover one (expression 2) and analyze the opera-
tion of the genetic algorithm (Figs. 1, c; 2, c).

Fig. 2, c proves that the start population has the most qual-
itative phenotype, producing the value of the objective func-
tion of 43,682.4 UAH/day at the Laplace crossover function. 
During evolutionary search for the optimum solution, the val-
ue of 41,454.99 UAH/day is reached. Thus, power costs are 
reduced by 5.099 %. Furthermore, there is the lowest index of 
the objective function of the all three analyzed crossover func-
tions, e. g. 2.497 % lower than at the one-point crossover and 
2.665 % at the two-point crossover. But the evolution process 
itself is the most long-lasting and enumerates 181 generations 
before obtaining the optimum result and 231 generations before 
reaching the condition for algorithm termination. It is 67 gen-
erations longer (37.017 %) than the one-point crossover and 
43 generations longer (23.757 %) than the two-point crossover.

The power values shown on the power load schedule 
(Fig. 3, c) obtained after genetic algorithm termination are 
654.5 kW at 5 a.m. and the minimum value of 199 kW at 4 p.m. 
It is worth mentioning that the lowest consumption is again, 
like at the two-point crossover, when the electric power price 
is the highest. The peak power consumption does not coincide 
with the minimum price hour, but it is the second cheapest. It 
can be claimed that the power load schedule is more optimal 
than that obtained at other crossover functions. The standard 
deviation here is the biggest – 111.3152 kW. This indicates that 
the algorithm adheres more to the daily price distribution, by 
increasing consumption at the low price and decreasing it at 
the high one. That is, the power load schedule becomes more 
uneven.

Genetic algorithm parameters: the population includes 100 
phenotypes and 5 elite phenotypes. Let us reduce the number of 
elite phenotypes in the population of up to 5, while maintain-
ing the population size of 100 phenotypes, and compare the 
quality of evolutionary optimization with three crossover 

functions. The results are shown in Table 2, Figs. 3 and 4. The 
entire series will be considered and compared at once.

Figs. 3, a–c shows the process of changing the objective 
function value produced by the highest-quality phenotype in 
the generation. A decrease in the number of elite phenotypes 
causes a deterioration in the quality control for the two-point 
crossover and the Laplace crossover functions. Costs in these 
crossover options increase by 0.215 %, from 42,590.23 to 
42,681.84 UAH/day, and by 2.52 %, from 41,454.99 to 
42,499.92 UAH/day respectively. However, the search itself 
becomes shorter: for the two-point crossover, it is reduced by 
30 generations (21.74 %), and for the Laplace crossover func-
tion – by 135 generations (3.93 times). The quality improves 
with the one-point crossover. Power costs decrease by 0.422 %, 
from 42,516.6 to 42,337.16 UAH /day. Moreover, the evolu-
tionary process is longer by 17 generations (by 14.91 %).

The change in the quality of populations has the same trends 
as in the cases when the number of elite phenotypes is 10 %. Due 
to the evolution, the one- and two-point crossover functions di-
vide the population into two groups. With the Laplace crossover 
function, the entire population becomes more qualitative.

Comparing the power load schedules obtained with the heu-
ristic control (Figs. 4, a–c), we can see that peak power con-
sumption decreases as the percentage of elite phenotypes in the 
population decreases: from 708.5 to 661.5 kW (6.634 % de-
crease) for the one-point crossover, from 708.5 to 661.5 kW for 
the two-point crossover, from 592.5 to 560 kW (5.485 % de-
crease) and from 654.5 to 566 kW (13.522 % decrease) for the 
Laplace crossover function. The minimum power of each cross-
over functions increases from 217.5 to 229 kW (5.287 %), from 
173 to 218 kW (26.012 %) and from 199 to 214.5 kW (7.789 %).

Parameters of the genetic algorithm: the population includes 
200 phenotypes and 20 elite phenotypes. Let us increase the 
population size to 200 phenotypes, maintaining a percentage 
ratio of 10 % (20 phenotypes) between the number of elite 
phenotypes and their total volume, and apply the three cross-
over functions. The results are shown in Figs. 5, 6 and Table 2. 
We compare the control indicators with the most effective case 

Fig. 7. Dynamics of changes in the optimal value of the objective 
function during the evolutionary execution of the genetic 
algorithm with a population size of 200 phenotypes without 
elite phenotypes in the population:
a – one-point crossover function; b – two-point crossover function; 
c – Laplace crossover function

a

b

c
Fig. 8. Power load schedule during power consumption control 

applying a genetic algorithm with a population size of 
200 phenotypes without elite phenotypes in the population:
a – one-point crossover function; b – two-point crossover function; 
c – Laplace crossover function

a

b

c
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when the population consists of 100 chromosomes and the 
number of elite phenotypes is 10.

As the schedules (Figs. 5, a–c) show, the power costs, after 
the algorithm terminates, decrease by 0.00228 and 0.169 % at 
one-point and two-point crossover types, respectively. The du-
ration of the evolutionary search is also reduced from 114 to 54 
generations (by 52.6 %) for the one-point crossover and from 
138 to 80 (42.03 %) for the two-point crossover. For the Laplace 
crossover function, there is a 0.498 % increase in power costs, 
but a 49.72 % decrease in the duration of the genetic algorithm 
execution (from 181 generations to 91). Given the slight increase 
in costs in the latter case, increasing the number of populations 
shows better results. However, the calculation time for a single 
generation increases, but since the interval for data calculation 
and control is long (up to 30 minutes in ASKOE systems), this 
moment does not impair the genetic algorithm operation.

As can be seen from the power load schedules (Figs. 6, a–c), 
for the one-point crossover and the Laplace crossover functions, 
both peak consumption and minimum consumption decrease 
when the population size is 200 units and the number of elite 
phenotypes is 20 units. For each crossover function, peak con-
sumption decreases by 15.46 and 13.29 %, while minimum con-
sumption decreases by 2.989 and 7.538 %.

Genetic algorithm parameters: the population includes 
200 phenotypes without elite phenotypes. Finally, we conduct an 
experiment when elite phenotypes are absent. The population 
size is 200 phenotypes. Figs. 7, 8 and Table 2 show the results 
of the algorithms’ operation for the three crossover functions.

Considering the dynamics of changes in the optimal value 
of the target function in each generation (Fig. 7), it is possible 
to notice that the genetic algorithm without elite phenotypes, 
especially at the one- and two-point crossovers is very unsta-
ble. As a result, the algorithm terminates only when the set 
maximum number of generations is reached.

Table 2 lists the cost values at the final moment of the al-
gorithm’s operation. They are the largest of all ever obtained. 
But these are not the minimum values recorded in the course 
of evolution.

For the one-point crossover, the lowest costs are with gen-
eration 270 making 42,792.1 UAH/day; for the two-point 
crossover - generation 12, which is very early, 42,363 UAH/day; 
and for the Laplace crossover function – generation 204, mak-
ing 42,619.6 UAH/day, which are not the worst results. Only for 
the last crossover function (Fig. 7, c), a gradual movement to 
the objective function minimum is observed.

The power load schedule (Fig. 8) for one-point and two-
point crossover types is more uniform, as evidenced from the 
lowest indicators of the standard power consumption deviation.

Thus, without elite phenotypes, the algorithm has poor 
performance indicators and therefore cannot be recommend-
ed for controlling.

Conclusions. In power consumption heuristic control, 
based on the evolutionary genetic algorithm, the use of the La-
place crossover function and the observation of 10 % of elite 
phenotypes in the population are the most effective. Moreover, 
for the smallest population size, accuracy improves when using 
the Laplace function, and worsens, though not significantly 
(less than 0.2 %), when using one- and two-point crossover 
types. With an increase in the number of elite phenotypes, the 
duration of the evolutionary search in the course of control at 
some crossover functions becomes almost twice as short.

As the percentage of elite phenotypes in the population 
decreases, the quality of the algorithm deteriorates for the 
two-point crossover and the Laplace crossover function, and 
improves for the one-point crossover, which is explained by 
longer evolution than in the case of a larger number of elite 
phenotypes in the latter case and shorter in the first two cases.

The option with no elite phenotypes at all demonstrates 
the worst quality. Such a genetic algorithm is not stable, the 
movement to the minimum of the objective function is not 
carried out at all for one- and two-point crossover types, and 

is very slow at the Laplace crossover function. This happens 
because the random generation is repeated at each generation 
without taking into account the previous state of the search, 
i.e. as in the start population, so the minimum value at each 
generation depends only on whether the randomly generated 
phenotype enters or does not enter the minimum region.

The hourly power consumption during the day is distrib-
uted by the genetic algorithm in such a way that it does not 
exceed the permissible limit of 800 kW. In none of the consid-
ered options for settings, the peak power consumption at the 
mine level does not coincide with the time when the power 
price is minimal. But, mostly, the minimum power consump-
tion is provided by the algorithm at the time of its highest cost. 
With the Laplace crossover function, the power load schedule 
corresponds largely to the daily distribution of the power price. 
Its application provides high quality to the genetic algorithm.

The conducted research reveals that the heuristic control 
system for connecting power consumers of mine levels to the 
industrial power grid allows determining the optimal power 
load schedule to minimize power costs and reduce this com-
ponent in the cost of iron ore underground mining.
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Мета. Полягає у розробці методу синтезу структури 
та алгоритму роботи системи автоматизованого керуван-
ня процесом споживання електроенергії електроприй-
мачами з напругою живлення до 1000 В гірничорудних 
підприємств із підземними способами видобутку залізної 
руди, що дозволить здійснювати пряме управління під-
ключенням навантаження до промислової енергосисте-
ми для забезпечення мінімуму витрат на придбання елек-
троенергії залежно від її вартості на добу наперед.

Методика. Задача керування споживанням електрое-
нергії електроприймачами залізорудних шахт формалізу-
ється як бінарна форма змішаного цілочисельного про-
грамування. Для її розв’язку застосовується бінарна реа-
лізація евристичного генетичного алгоритму. Методом 
математичного моделювання проводиться аналіз впливу 
налаштувань генетичного алгоритму, як от число фено-
типів у популяції, число елітних фенотипів, що перехо-
дять незмінними у наступне покоління, і метод схрещу-
вання фенотипів на його якість.

Результати. У результаті проведення досліджень уста-
новлено, що найбільш ефективними при керуванні про-
цесом споживання електроенергії на базі еволюційного 
генетичного алгоритму є застосування функції Лапласа 
для схрещування і задіянням дотриманням відсотка чис-
ла елітних фенотипів у популяції на рівні 10 %. При чому, 
за найменшого розміру популяції спостерігалася краща 
точність при застосуванні саме функції Лапласа, а при 
одно- і двоточковому схрещуванні – гірша, але не значно 
(не більше 0,2 %). Але зі збільшенням числа елітних фе-
нотипів скорочується тривалість еволюційного пошуку у 
ході керування, при одно- і двоточковому схрещуванні, 
практично, у два рази.

Наукова новизна. Уперше розроблена структура ев-
ристичної системи автоматизованого керування спожи-
ванням електроенергії підземними електроприймачами з 
напругою живлення до 1000 В залізорудних шахт на 
основі еволюційного генетичного алгоритму, що дозво-
ляє в залежності від планових обсягів видобутку руди і 
вартості електроенергії на добу наперед визначити опти-
мальний графік електричних навантажень підземних 
дільничних підстанцій, котрий, при дотриманні прийня-
тих обмежень на погодинну й добову потужність, забез-
печує мінімізацію витрат на придбання електроенергії, 
тим самим зменшуючи собівартість кінцевого продукту.

Практична значимість. Розроблена архітектура еврис-
тичної системи керування споживанням електроенергії 
електроприймачами напругою до 1000 В на базі еволю-
ційного генетичного алгоритму, котра рекомендується 
для застосування при оптимізації графіку електричних 
навантажень трансформаторних підстанцій гірничо-ме-
талургійних підприємств, зокрема, залізорудних шахт, 
що працюють на цьому класі напруги.

Ключові слова: електрична енергія, електроприймачі до 
1000 В, евристичний алгоритм, генетичний алгоритм, 
шахта
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