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Introduction. According to the results of emergency situa-
tions (ES) monitoring in 2019, as presented in the Reports of 
the State Emergency Service of Ukraine [1], more than half of 
them are natural and social ones, while the rest are techno-
genic ones. Whereas in 2016–2017, there was a tendency of 
decreasing the total number of ES, in 2019, compared to 2018, 
the total number of ES increased by 14.1 %. In 2021, compared 
to 2020, this number increased by 6.9 % [2].

Simultaneously, the number of technogenic ES increased 
by 12.8 % (resulting from fires and explosions, accidents in life 
support systems, and sudden building breakdowns), and the 
number of natural emergencies increased by 1.6 %. The reduc-
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TWO-STAGE PROBLEMS OF OPTIMAL LOCATION AND DISTRIBUTION 
OF  THE HUMANITARIAN LOGISTICS SYSTEM’S STRUCTURAL 

SUBDIVISIONS

Purpose. To ensure the rational organization of the evacuation of people from a region affected by an emergency by developing 
a mathematical and algorithmic toolkit that will allow for the early distribution of transport and material resources, maximizing 
coverage of the affected areas while minimizing evacuation time.

Methodology. System analysis of evacuation processes; mathematical modeling, the theory of continuous problems of optimal 
partitioning of sets, non-differentiable optimization.

Findings. The object of the study is the two-stage evacuation logistic processes that occur when serving the population of areas 
affected by emergencies of a natural or technogenic nature. The research considers the possibility of optimally distributing human 
flows within the transportation system, the structural subdivisions of which are first-stage centers (first aid stations that carry out 
the reception of citizens from areas affected by the disaster) and second-stage centers (specialized units of the emergency aid sys-
tem that provide further services to the evacuated population). The proposed mathematical model deals with the problem of opti-
mally partitioning a continuous set with the placement of subset centers and additional connections. Methods for its solution have 
been described. We demonstrate the versatility of these models, as they can be used to describe logistic evacuation processes, or-
ganize assembly points, intermediate locations, evacuation reception points, and those providing primary assistance to the af-
fected population. We calculate the appropriate number of essential products and deliver them from existing warehouses through 
distribution centers to the affected areas.

Originality. As preventive measures to increase the level of population safety during an emergency, we consider the optimal 
placement of rescue facilities and the zoning of the territory to distribute evacuation traffic. We also address the problem of the 
optimal distribution of human flows in the transport and logistics system.

Practical value. The presented models, methods, and algorithms enable the solution of many practical problems related to the 
development of preventive measures and the planning of rescue operations to ensure the population’s safety in case of emergencies. 
The theoretical results obtained are translated into specific recommendations that can be utilized when addressing logistical prob-
lems related to the organization of primary evacuation of the population from affected areas and their subsequent transportation to 
safer locations for further assistance.
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tion in the number of deaths due to natural disasters in 2016–
2018 provides grounds for concluding that certain measures 
were effective in preventing and mitigating the consequences 
of emergencies.

One of the primary methods for safeguarding the popula-
tion during a large-scale technogenic or natural emergency is 
evacuating them and relocating them to prepared safe areas 
outside the affected zones and the sources of the emergency. 
Evacuation planning is a crucial and intricate component of 
emergency management due to the high level of uncertainty 
and the involvement of numerous players and agencies. Natu-
rally, the selection of specific measures is determined by evalu-
ating all threats, the required speed of response, geographical 
location, and the infrastructure’s specific characteristics in the 
potential disaster zone. The combination of all actions to evac-
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uate the population can be either preventive or responsive in 
nature. If the possibility of extraordinary circumstances is an-
ticipated but not certain, population evacuation is executed as 
a preventive measure. In the event of an actual emergency, 
people and objects must be evacuated as swiftly as possible.

To reduce the number and scale of disasters through pre-
vention, early warning, and minimizing total losses in case of a 
specific emergency, it is necessary to determine the optimal 
number of territorially distributed structures in the civil de-
fense system. These structures should be equipped with trained 
personnel, specialized machinery and equipment, medicines, 
and life support resources, among others [3]. Planning evacu-
ation is a time-consuming process due to the objective nature 
of conditions formalization. It involves considering available 
resources and the multifaceted possibilities of their utilization.

Utilizing mathematical methods and models that accu-
rately describe the emerging problems allows for a quantitative 
assessment, not only of the evacuation process itself but also of 
the associated costs. This approach aids in developing effective 
management solutions aimed at cost minimization, reduction 
in evacuation time, and other factors, considering the avail-
able resources. Therefore, the problem of the rational territo-
rial distribution of elements within the civil protection system 
remains highly relevant.

Literature review. Studies on evacuation processes using 
mathematical programming models and methods are exten-
sively documented in [4, 5]. Among them, there are location-
allocation models for developing evacuation plans during hur-
ricanes or earthquakes [6, 7], the problem of identifying opti-
mal evacuation routes and shelters that arise in urban emer-
gencies [8], as well as deliberate actions or natural disasters in 
confined spaces such as stadiums, museums, conference halls, 
or shopping centers [9].

One of the most significant directions in modern scientific 
research in the field of life safety is humanitarian logistics 
(HL). Its purpose is to study problems related to possible di-
sasters or emergencies and to develop measures for mitigating 
these problems and managing the situation. In [10], a system-
atic review of scientific papers published between 2000 and 
2020 is provided. In the review, issues of HL, challenges in the 
stages before and after a disaster, and potential human and 
economic losses are examined from various perspectives. Ad-
ditionally, several mathematical models and algorithms are 
proposed to enhance the efficiency of logistics operations. The 
authors classify optimization problems into three groups based 
on the main problem under investigation: 1) object location 
and optimal coverage; 2) network models and transportation 
and distribution issues; 3) mass population evacuation, which, 
in turn, is studied from the perspectives of both governmental 
and private organizations.

Many models are inherently stochastic. In [11], a two-stage 
stochastic model for evacuation planning is discussed. The 
model is employed for the optimal placement of shelters and the 
assignment of evacuees to the nearest shelters while minimizing 
the expected total evacuation time. In [12], the authors propose 
an optimization model for the shelter location problem under 
conditions of uncertain demand. Using the central limit theo-
rem, they constructed a nonlinear deterministic equivalent 
model, which was subsequently reformulated by approximating 
the nonlinear components with linear functions. Thus, a mixed-
integer linear programming model with a maximin quality crite-
rion was derived. This model can be solved using standard 
methods. Having obtained various solutions to optimization 
problems for different parameter combinations, the authors em-
phasize the importance of considering aspects such as housing 
utilization ratio, level of service provision, and demand.

In general, scientific research related to emergency man-
agement can be categorized based on the planning stage being 
considered.

During the preparation stage for a natural disaster, prima-
ry attention is directed towards planning actions for emergency 

situations. This includes reinforcing buildings and infrastruc-
ture [13, 14], establishing aid centers, and setting up evacua-
tion shelters early on [15]. In [16], the stochastic problem of 
determining a set of shelter locations during the preparation 
stage for natural disasters was investigated. To address this 
problem, a genetic algorithm was proposed as a solution, par-
ticularly in cases with large dimensions.

Many of the existing emergency logistics models typically 
assume an evacuation process based on fixed and predeter-
mined destinations from a strategic perspective. However, the 
unpredictable and turbulent nature of a disaster can disrupt 
these predictions. Furthermore, the primary objective in 
emergency situations is to move people out of the affected 
zone to a safe location, regardless of where that may be.

In [17], a mathematical model is presented that combines 
decisions on shelter locations with the maximum flow problem 
to choose safe destinations and maximize the number of peo-
ple sent to them. In this paper, the authors develop a mixed-
integer linear programming model for selecting one or more 
destinations in a capacitive network. The solution methods are 
based on existing algorithms for finding the maximum flow, 
incorporating heuristics that utilize the concept of adding a 
super receiver to the network for quick upper limit estimation. 
The problem of determining the destination is considered 
across five levels of natural disaster severity.

At the post-disaster stage, the focus shifts to the process of 
evacuating the population to protective structures or safe 
zones, distributing aid, and transporting the wounded to shel-
ters [18]. The proposed mathematical models are either linear 
or involve problems of mixed-integer linear programming, or 
they are considered dynamic network flows [19, 17]. Optimi-
zation criteria include total time or evacuation distance, evac-
uee waiting time, or the cost of traffic flow [20].

To ensure timely evacuation from affected areas, decisions 
regarding shelter location and route destination should be 
considered simultaneously. In the context of emergency man-
agement, the problems of shelter location and evacuation 
routes have been investigated by numerous optimization re-
searchers, both individually and collaboratively. Two-level 
programming, in which decisions about shelter locations and 
route assignments are provided in the upper and lower layers, 
respectively, is one of the most common approaches to solving 
these two problems separately at an early stage.

For example, in [21], a bilevel multiobjective optimization 
problem for determining the evacuation location is proposed. 
The model focuses on two categories of decision-makers – 
city planners and evacuees. It involves determining the opti-
mal locations for placing shelters in such a way that the traffic 
distribution in the existing network is optimized for emergency 
routing. One of the optimization criteria expresses the mone-
tary equivalent of housing construction costs, while the sec-
ond describes the system of routes and represents the overall 
capacity of shelters. Thus, both the pre-disaster phase and the 
post-disaster phase are considered simultaneously.

In the upper-level decision-making, the simulated objec-
tives include minimizing construction costs and maximizing 
the coverage of residential areas by minimizing the total trans-
portation time in the evacuation process. At the lower level, the 
goal is to minimize individual evacuation time in the transport 
network while maintaining balance conditions in the system, 
preventing evacuees from further reducing their efforts to move. 
The authors claim that the proposed model can be effectively 
used to make decisions during the pre-crisis evacuation plan-
ning stages, but the study has several limitations. For example, 
background traffic in the network is not taken into account. 
Additionally, the nature of the disaster is considered generic, 
although the type of emergency may impact evacuee behavior.

The paper [22] presents a two-stage mathematical model 
for the improvement of post-earthquake conditions. In the 
first stage, they investigate the locations of shelters for the ini-
tial placement of people, the placement of first aid kits, as well 
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as the distances that people travel from crisis areas to shelters 
in the event of an earthquake. In the second stage, the reduc-
tion and coverage of needs after people are placed in shelters 
are studied.

Emergency evacuation is typically dynamic, as the inten-
sity and consequences of an emergency may change over time. 
Furthermore, traffic behavior during emergency situations can 
be unpredictable, leading to the necessity to manage dynamic 
situations such as panic, roadblocks, or a failure to respond to 
an evacuation warning, among others. Planning alternative 
evacuation strategies in advance is crucial.

In [23], they investigated the problem of dynamic route 
planning during evacuation in a confined space, specifically 
addressing the multi-objective dynamic planning of a route 
network. The authors modeled evacuation from multiple 
sources to various locations within a limited space, aiming to 
minimize overall delay and maximize evacuation efficiency. 
The problem was examined in 3D scenarios, offering an intui-
tive visualization of the geographical space and contributing to 
the development and implementation of an evacuation plan. 
Utilizing auxiliary graph transformation, they proposed a heu-
ristic algorithm that relates to the classical problem of mini-
mum weighted set covering.

Mass emergency evacuation is inherently a complex pro-
cess that can sometimes lead to chaotic situations and unfore-
seen consequences. In many emergency scenarios, mass evac-
uation becomes necessary to address serious public threats 
within tight space-time constraints. To gain a better under-
standing of complex phenomena like mass evacuation and to 
analyze potential outcomes, agent-based models simulating 
individual behavior have been developed. However, their im-
plementation, especially when applied to large geographical 
areas or complex behavior patterns, poses significant compu-
tational challenges.

The primary strategy for addressing such computational 
tasks involves dividing transport networks into smaller regions 
and reducing associated computational costs through the utili-
zation of modern cyberinfrastructure and cyberGIS. In [24], a 
new algorithm for network division was developed to enhance 
the scalability of agent-based simulations for mass evacuation. 
This algorithm is founded on modern computing infrastruc-
ture employing CyberGIS, which models spatial movement 
during an emergency evacuation.

Specifically, the algorithm, referred to as Voronoi cluster-
ing algorithm based on target shift (ViCTS), is constructed us-
ing Voronoi network diagrams. It is designed to tackle compu-
tational scalability issues arising from the unique characteris-
tics of evacuation traffic. As noted by the authors, results from 
computational experiments demonstrate that ViCTS outper-
forms known network distribution algorithms when modeling 
microscopic traffic. This improvement is achieved by balanc-
ing computing loads and reducing data exchange between 
high-performance parallel computing resources.

Models were developed to determine the optimal spatial 
distribution of emergency evacuation centers, such as schools, 
colleges, hospitals, and fire stations, to enhance flood emer-
gency planning in the Sylhet region of northeastern Bangla-
desh [25]. In the first step, flood susceptibility maps were gen-
erated using machine learning models, including the Leven-
berg-Marquardt Neural Network (LM-NN), Neural Network 
and Decision Trees (DT), and the Multi-Criteria Decision-
Making Method (MCDM). Mathematical approaches in GIS 
were proposed for addressing four well-known problems that 
impact emergency rescue time: maximum coverage, maxi-
mum attendance, p-median location, and set coverage.

In contrast to most of the considered problems, which are 
typically formulated as integer linear programming problems, 
the proposed mathematical model for the problem of placing 
the emergency evacuation system’s subdivisions in case of an 
emergency has a continuous nature. The formulation of such 
multi-stage transport and logistics problems is suitable when 

the population is very large, and residents continuously occu-
py the territory.

The purpose of research. Utilizing mathematical methods 
and models that accurately describe the problems that arise al-
lows for a quantitative assessment, not only of the characteristics 
of the evacuation process itself but also of the associated costs. 
This approach facilitates the development of effective manage-
ment solutions aimed at minimizing costs, evacuation time, and 
other factors, considering the available resources. Therefore, the 
issue of the rational territorial distribution of elements within the 
civil protection system remains undoubtedly relevant.

Hence, the research’s purpose is to enhance the level of pop-
ulation safety during emergencies by developing and substanti-
ating preventive measures through the optimal placement of 
rescue facilities and territorial zoning to manage evacuation 
traffic efficiently. Mathematical modeling is conducted with 
the utilization of the theory and methods for solving two-stage 
problems of optimal set partitioning as described in [26, 27].

The object of the research is two-stage evacuation logistic pro-
cesses that occur while assisting the population in areas affected 
by emergency situations of a natural or technogenic nature.

The subject of the research is mathematical models for solv-
ing problems related to the placement of emergency evacua-
tion system subdivisions in case of an emergency.

To achieve this goal, the following tasks need to be ad-
dressed:

- analyzing the evacuation logistic processes using a sys-
tems approach;

- developing a mathematical model for multi-stage trans-
port and logistics problems;

- demonstrating the feasibility of using the proposed ap-
proach for the development of preventive measures and the 
planning of rescue operations to ensure the safety of the popu-
lation in case of emergencies through solving model problems.

Materials and methods. Imagine an emergency developing 
(or potentially developing) in a specific territory, a situation 
that could endanger people’s health. The task at hand is to de-
termine suitable safe locations for establishing primary evacu-
ation centers (collection points) for the residents of the af-
fected area. These centers serve as staging points for their sub-
sequent transportation to designated population reception 
centers, such as hospitals or shelters, in the shortest possible 
time. Simultaneously, it is desirable to divide the affected ter-
ritory into zones and allocate each zone to the appropriate col-
lection point to ensure the swift transportation of evacuated 
residents from hazardous areas. Thus, the evacuation of the 
population is planned to occur in two stages: the first stage in-
volves moving individuals from the affected zone to the corre-
sponding primary collection point, and the second stage en-
tails transporting them from these locations to specially desig-
nated emergency aid centers (refer to Fig. 1). Of course, the 

Fig. 1. Scheme of the two-stage evacuation of residents from 
area Ω affected by the natural disaster
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allocation of the affected population to centers should take 
into account the capacity of these centers.

Mathematical model. We will use the following notations: 
W is the territory of some region that is (maybe) damaged as a 
result of an emergency, m2; �Ω ⊆ Ω  is a safe area where centers 
of the first stage (primary collection points for the affected 
population) can be accommodated, m2; r(x) is a function that 
describes the distribution of residents at point x of the set W, 
people/m2; N is the number of centers of the first stage; M is 
the number of centers of the second stage; S is total population 
in the given territory, people; r

it  are coordinates of the ith cen-
ter of the r th stage; r

ib  is a capacity of the ith center of the r th 
stage, r = I, II, people; I I,( )i ic x t  is evacuation time of a resident 
from point x ∈ W to the center I,it  which will be considered 
proportional to the distance between two points, hour/person; 

II I II( ),ij i jc t t  is a cost of transporting of an evacuee from center 
I
it  to center II,jt  UAH/person; I

ia  is a cost of setting up the 
primary population collection point at I,it  calculated for one 
evacuated person, UAH/person; II

ja − is fixed organizational 
cost of center II,jt  calculated for one person, UAH/person; nij 
is the number of evacuees transported from the first-stage cen-
ter I

it  to the second-stage center II,jt  people, 1, ;i N=  1, ;j M=

{ }1
1
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We need to find such a partition of set W into N subsets 
{ }1 2, ,..., N=ω Ω Ω Ω  (some of them may be empty), determine 
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where 2 2
1 2 1 2, 0, 0b b ≥ b + b ≠  are given coefficients that deter-

mine the priority of terms and take into account their normal-
ization and non-dimensionality.

When solving the problem (1–3) we can estimate the capac-
ity of the first-stage centers (the number of people that this cen-
ter can accommodate and ensure their further transportation). 
Let us denote these values I, 1, .ib i N=  If { } * * *

1 2, ,..., N
* Ω Ωω = Ω  is 

an optimal partition of the problem, then I ( , .) , 1
i

ib x dx i N
*Ω

= r =∫
Universality of the model (1–3). One of the tasks of civil 

defense and the Unified State System of Prevention and Elim-
ination of Emergencies is the primary life support of the popu-
lation affected by an emergency situation (ES) of a natural or 
technogenic nature. Life support of the population (LS) dur-
ing an ES encompasses a set of activities aimed at creating and 
maintaining conditions that are minimally necessary to save 

lives and support the health of people in emergency zones, 
along their evacuation routes, and in places where evacuees are 
accommodated. These conditions adhere to norms and stan-
dards established for emergency situations, developed and ap-
proved through the established procedure (Code of Civil Pro-
tection of Ukraine, dated 02.10.2012 No. 5403-VI, Regula-
tions on the Unified State System of Civil Protection, PKMU 
dated 09.01.2014 No. 11). Emergency life support activities 
encompass various aspects, including medical care, the provi-
sion of water, food, housing, communal services, essential 
supplies, transportation, as well as psychological and informa-
tional support.

To ensure the protection of the population, the environ-
ment, and economic assets from emergencies of natural and 
technogenic origins, a state reserve of material and technical 
resources, food, medical supplies, and other necessities is pre-
established.

The development of action plans for first-priority life sup-
port during an emergency is the responsibility of regional and 
territorial management authorities and should be carried out 
daily. These plans must take into consideration forecasts of 
potential emergency situations in the region, such as natural 
disasters and accidents (as per the confirmation of the Plan for 
responding to situations of national-level significance, PKMU 
dated March 14, 2018, No. 223). The unpredictability of emer-
gencies, particularly earthquakes and technogenic catastro-
phes, the absence of methods and tools for short-term fore-
casting of their occurrence time, the extensive affected areas, 
and the likelihood of mass population losses necessitate a high 
level of preparedness of regional services to mitigate their con-
sequences and organize first-priority life support (Regulations 
on the Unified State System of Civil Protection, PKMU dated 
01/09/2014, No. 11).

The proposed two-stage placement-distribution model 
(equations 1 to 3) is versatile, as it can be applied to mathemat-
ically describe the optimal location of resource warehouses, 
which serve as points of concentration for material goods with-
in emergency zones, storage facilities for emergency supplies, 
and distribution centers for essential items and personal pro-
tective equipment stations (Fig. 2). In this scenario, the re-
source flow follows a different path, from second-stage centers 
(state reserves, warehouses) to first-stage centers (personal 
protective equipment and essential items stations), and from 
there, it reaches the residents of affected territories, even those 
in the most remote areas, in the shortest possible time. Condi-
tions (2) and (3) set the capacity limitations for first- and sec-
ond-stage centers while allowing for the potential satisfaction 
(to a certain extent) of the needs of the entire population with-
in the affected area.

Fig. 2. Scheme of two-stage distribution of material and techni-
cal resources in emergency zones
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Considering the versatility of the model (equations 1 to 3), 
we will proceed with the assumption that in the subsequent 
theoretical descriptions of specific cases of the problems for-
mulated above and similar practical scenarios, the region 
where the population is distributed will be referred to as a set; 
intermediate or reception stations – first-stage centers; areas 
for collection (service)of the population, which correspond to 

I,it  – subsets; the capacity of the centers of any stage – their 
capacity, and the values of the flow of residents (or products) 
v11, …,vNM – the transportation volume. In addition, when de-
scribing practical problems, we will consider the words “terri-
tory”, “region”, and “area” as synonyms.

By specifying the initial conditions, it is possible to derive 
various distinct variations of the problem (equations 1 to 3). 
The presence or absence of additional constraints on the cen-
ters’ capacity or locations is determined by various formula-
tions [26], such as: the problem of optimal partitioning of sets 
with additional connections (OPSAC) with fixed centers and 
no restrictions on the capacity of the first-stage centers; the 
OPSAC problem with fixed centers and constraints on the ca-
pacity of the first-stage centers; the OPSAC problem involving 
the placement of centers and constraints on the capacity of the 
first-stage centers, among others.

We will explore the method for solving the problem (equa-
tions 1 to 3) in two variants – one with the placement of the 
first-stage centers on a continuous set and the other with their 
fixed coordinates.

Methodology. First, we will focus on a specific case of the 
problem (equations 1 to 3), which involves fixed first-stage 
centers. In this scenario, the centers are predetermined, and 
their capacities are known in advance. In this case, condition 
(2) should be replaced with the following constraints

	 I ;( ) , 1,
i

ix dx b i N
Ω

r = =∫ 	 (4)

	 I

1
, , .1

M

ij i
j

b i N
=

n = =∑ 	 (5)

In the context of the population evacuation problem, con-
straints (4) consider that the total number of residents in the 
zone corresponding to the ith center of the first stage equals its 
capacity. Condition (5) implies that the number of residents 
evacuated from the ith first-stage center equals the capacity of 
that center. According to conditions (3), the jth second-stage 
center can accommodate the entire population evacuated and 
transported to that center. Each intermediate evacuation cen-
ter has its own service zone, which does not intersect with oth-
ers and covers the entire territory affected by the emergency.

A necessary and sufficient condition for solving problem 
(1, 3–5) is the following dual equality [26]
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The separability of the target function and the fulfillment of 
conditions allow narrowing the solution of the original prob-
lem (1, 3–5) down to the sequential solution of two problems.

Problem A. (optimal partitioning of a set with fixed centers 
and constraints in form of equations)
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Problem A can be solved using the appropriate method 
from [28]. To solve problem B, the potential method, for ex-
ample, can be applied. Condition (6) ensures the possibility of 
solving both the transport and the OSP problems.

Next, we will consider problem (1–3) with unknown cen-
ters of the first stage without restrictions on their capacity un-
der the assumption that the following condition is met
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( ) ( )

( ) ,)

( )
N

i i i i
i

N M

ij i j j ij
i j

I c x a x x dx

c a

= Ω

= =

l ⋅ t n = b t + r l +

+ b t t + n

∑∫

∑∑

subject to

II

1
;, 1,

N

ij j
i

b j M
=

n = =∑

1
( ) , 1,( ) ;

N

ij i
i

x x dx i N
=

n = r l =∑ ∫

1

1

{ ( ) ( , , ): 0 1;

1, , 1 . . f

( ) ( ) (

o },

)

r( )

N i
N

i
i
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=

Γ = l ⋅ = l ⋅ … l ⋅ l = ∨

= l = ∈Ω∑

and then relax the vector function l(⋅), assuming that its com-
ponents can be changed to range from 0 to 1. Applying the ap-
paratus of duality theory via necessary and sufficient condi-
tions of the existence of the saddle point of Lagrange func-
tional we can obtain the solution {l*(⋅), tI*, n*} of the relaxed 
problem С in the following form: when function r(x) ≥ 0 al-
most everywhere for x ∈ W, and condition (6) is met for 

1,i N=  and almost all x ∈ W
I I I I I I

1 1
*

( ( ) ) ( ( ) )1, , ,
, . . for , 1, , then ,

0 otherwis
( )

e

i i i i k k k k

i i

c x a c x a
x i k e a x k N x

* * * *

*

 b t + + y ≤ b t + + y


l = ≠ ∈Ω = ∈Ω



where
I ,i
*t  , ,1i N=  1, , N

* *y y…  and 1, , M
* *h h…  is the optimal so-

lution of the next problem

	 G(y, h) → max,  y ∈ RN,  h ∈ RM;	 (7)

�I

I

{ , }
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N

NMR
G P
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y h = t n y h

I I I I
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1,

II I II II II
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k k k k
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P c x a x dx

c a b

=Ω

= = =

t n y h = b t + + y r +

+ b t t + - h - y n + h

∫

∑∑ ∑

	 II I II II
2( ( ) ), 0, 1, 1,, .j i j j j ic a i N j Mb t t + - h - y ≥ = = 	 (8)

The conditions (8) for I ,i
*t  ,ij

*n  , ,1i N=  , ,1j M=  
1, , N
* *y y…  and 1, , M

* *h h…  can be rewritten as following
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II I II II
2( ( ), 0 if 0;)j i j j j i ijc a* * * *b t t + - h - y > n =

II I II II
2 , 0 if 0( ( ) ) , 1, 1,, .j i j j j i ijc a i N j M* * * *b t t + - h - y = n > = =

Using them we can rewrite the function  P({tI, n}, y, h) in 
the following way

I I I I
1

1,

II I II II
2

1,1

( ) ( ( ( ) ) )

( ( ( )

, min , ( )

max , )).

k k k k
k N
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i Nj

c x a x dx

c a

P

b

=Ω

==

t y = b t + + y r +

+ y -b t t +

∫

∑

�

Iterative algorithms for solving emergency logistics problems. 
Algorithm 1 (for the problem (1–3) with fixed first-stage centers).

Initialization. We will specify the number of first-stage and 
second-stage centers N and M, its placement I II,,i jt t  the values 

  I II II, ,i j ja a b  , ,1i N=  1, ,j M=  the constants of priority b1, b2 ≥ 0, 
the function r(x) ≥ 0 for x ∈ W; e > 0. Region W is covered with 
a rectangular grid .Ω  We will specify the initial vector-function 

(0)( ), .x xl ∀ ∈Ω

1. We calculate the value of the (0)I
ib  by the following for-

mula
(0) (0)( )( ) , ., 1I

i ib x x dx i N
Ω

= r l =∫

2. Calculate (0),ijv  1 ,1, , ,i N j M= =  and potentials (0),iy  
, ,1i N=  and (0), 1, ,j j Mh =  by solving the next transport prob-

lem

	 II I II II

1 1
( , ) min;( )

N M

ij i j j ij
i j

c a
= =

t t + n →∑∑ 	 (9)

	 I

1
, , ;1

M

ij i
j

b i N
=

n = =∑ 	 (10)

	 II

1
;, 1,

N

ij j
i

b j M
=

n = =∑ 	 (11)

	 0, 1, , 1, ,ij i N j Mn ≥ = = 	 (12)

with I I(0), 1, .i ib b i N= =
We calculate the value of the objective function I(l(⋅), tI, n) 

according to the given centers by the formula and l(⋅) = l(0)(⋅), 
v = v(0).

After k = 1, 2, 3, … steps we got some vector-functions 
1( )k

i x+l  , ;1i N=  the values I( ) ( ), 1,k k
i ib i Ny =  and ( ), 1,k

j j Mh =  
as a result of the algorithm. Let us describe the (k + 1)th step of 
the algorithm.

The (m + 1)th step.
1. Calculate 1( )k

i x+l  by the formula

I I I ( 1)
1

I I I ( 1)( 1) 1
1,

1, ,
min , .

0 otherwise, 1,

( ( )

,

)
( ( ( ) ) )( )

k
i i i i

kk s s s si s N

c x a
c x ax

i N x

+

++
=

 b t + + y =
 = b t + + yl = 


= ∀ ∈Ω

2. Calculate the values ( 1)I k
ib +  with the formula

I( 1) ( 1)( ) , 1,( ) .k k
i ib x x dx i N+ +

Ω

= r l =∫

3. Find the values ( 1),k
ij

+n  , ,1i N=  , ,1j M=  ( 1), 1, ,k
i i N+y =  

and ( 1), 1, ,k
j j M+h =  solving the problem (9–12) with I I( 1),k

i ib b +=  
, .1i N=

4. Calculate the value of the objective function I( ( ), , )I l ⋅ t n  
with ( 1)( ,) ( )k

i ix x+l = l  ( 1),k
ij ij

+n = n  , ,1i N=  1,j M=  (tI – the 
fixed vector).

5. If a condition

	 ( 1) I ( 1) ( ) I ( )( , , )( ) ( )( , , )k k k kI I+ +l ⋅ t n - l ⋅ t n ≤ e  	 (13)

is not satisfied, we proceed to (k + 2)th step of the algorithm, 
otherwise go to step 6.

6. The completion of the iterative process. The best values 
are ( )( ) ( ),m

i ix x*l = l  ( ),m
ij ij
*n = n  , ,1i N=  , ,1j M=  ( ),m

i i
*y = y  

, ,1i N=  and ( ), 1 ,,m
j j j M*h = h =  where m is the iteration num-

ber at which condition (13) is performed.
7. Calculate the optimal value of the objective function 

I(l*(⋅), tI, n*). We visualize the partition of the set Ω of the 
correspondingly found optimal values of the components of 
the vector-function l*(⋅).

The end of the algorithm.
The error of the algorithm for solving approximately the 

problem (equations 1 to 3) with fixed centers consists of the 
absolute error of the algorithm (which depends on the accu-
racy of calculating I1(l(⋅), tI, n)), the error arising as a result of 
the approximate calculation of the integrals when evaluating 
the center’s capacity, rounding errors, and data inaccuracies.

Algorithm 2 below is designed for solving the problem 
(equations 1 to 3) when the first-stage centers are not given, 
and we need to find their optimal location. The algorithm uti-
lizes algorithm 1 in conjunction with the method of non-dif-
ferentiated optimization.

Let us rewrite problem (7) in the following form
I

1, ,
I

max ( , ) min min max { , }, ,

min ( ), 

( )
I NN M N M

NM

I N

v RR R R R
G G v

Q

+t ∈Ω ∈y∈ h∈ y∈ h∈

t ∈Ω

y h = t y h =

= t

where
I I

1,
( ) min max , ,{ } ,( ).

N M
NMv R R R

Q G v
+∈ y∈ h∈

t = t y h

At each fixed vector �I
N

t ∈Ω  we obtain the optimal value 
of the dual function Q(tI) constructed for the continuous 
problem of optimal set partitioning with the additional con-
nections with given centers formulated in terms of characteris-
tic functions of subsets. Therefore, Algorithm 1 is the struc-
tural part of the algorithm below. And to find optimal coordi-
nates of the first stage centers we use the r-algorithm. The one 
we consider with the constant coefficient of space expansion 
and adaptive method to regulate step factor [28].

Let the set �,Ω  where we locate the centers, be rectangular. 
If it were not, we could put area �Ω  within rectangular paral-
lelepiped Π, whose sides are parallel to the Cartesian axes; as-
sume that ρ(x) = 0, if � .x ∈P Ω

Algorithm 2. Initialization. Cover area W with the rectangu-
lar grid Ω  and specify the number of first-stage and second-
stage centers N and M, the coordinates of placement II,jt  the 
values   I II II, ,i j ja a b  , ,1i N=  1, ,j M=  the constants of priority 
b1, b2 ≥ 0; e > 0 the function r(x) ≥ 0 for .x ∈Ω  Specify the 
initial approximation of vector of coordinates I,it  , .1i N=

Put k = 0.
Calculate the values of vector-function l(0)(x) at the nodes 

of grid ,x ∈Ω  and corresponding values (0),ijv  1, , 1,i N j M= =  
using the algorithm 1.

Assume that as the calculation result after k, k = 1, 2, … 
algorithm steps, the coordinates of I( )kt  are obtained.

Describe the (k + 1)th step.
1. Using algorithm 1 calculate values ( )( ),k x xl ∀ ∈Ω  in 

terms of the grid nodes, and current values ( ),k
ijn  , ,1i N=  

, .1j M=   
2. Realize the current iteration of the r(α)-algorithm and 

define the vector t_qI(k + 1).
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3. Project t_qI(l + 1) on PN and obtain the next approxima-
tion of tI(k + 1).

4. If none of the conditions

	 |Q(k + 1) - Q(k)| < e  or  tI(k + 1) - tI(k) < e, 	 (14)

is met, then move on to (k + 2)th step of the algorithm; in other 
case, move on to point 5.

5. Assume that tI* = tI(m), ( )( ) ( ),m
i i
*l ⋅ = l ⋅  ( ),m

ij ij
*n = n  

, ,1i N=  , ,1j M=  where m is the number of the iteration at 
which condition (14) is met.

6. Calculate values I ( ) ,( )i ib x x dx* *

Ω

= r l∫  1,i N=  by any cu-

bature formula. Calculate the values of objective functional 
I* = I(l*(⋅), tI*, n*). Visualize the optimal partition of the set 
Ω  according to the found optimal vector-function ( ).i

*l ⋅  End 
of the algorithm.

Algorithm 2 is described.
Analysis of the model problems’ optimal solutions. The algo-

rithms, denoted as Algorithms 1 and 2, have been implement-
ed within the Visual Studio 2022 development environment 
using the C# programming language. As demonstrated in 
[26], the simultaneous redistribution of resources across all 
logistical stages plays a pivotal role in optimizing complex lo-
gistical processes. This is achieved by formulating the prob-
lems in the form of equations (1) to (3), thereby embracing a 
systemic approach to the analysis of such processes. Conse-
quently, these formulations facilitate a reduction in transpor-
tation and associated costs.

In the following sections, we will elucidate the operation of 
these algorithms through the use of model problems.

The preparatory stage of processing electronic maps is to 
remove places that do not belong to the territory of the region 
from the map drawing using a graphic editor. Next, we intro-
duce a rectangular coordinate system by choosing the origin 
and scale unit so that the region under consideration is com-
pletely contained in the rectangle P = {(x1, x2): 0 ≤ x1 ≤ 12; 
0 ≤ x2 ≤ 12}. In all figures we present a colorful partition of area 
W, where each color corresponds to certain zone. In the nu-
merical implementation of the algorithms, the given area is 
discretized with the steps h1 = h2 = 0.02. To calculate multiple 
integrals, we use the cubature trapezoid formula, the problem 
(16–19) is solved using the potential method. We set the fol-
lowing parameters and error values of the r(a)-algorithm: 
a = 3, b = 0.9, e = 0.0001. In all the tasks below, it is assumed 
that the total capacity of the centers of the second stage is 
1 conventional unit. And, therefore, in accordance with condi-
tion (9), the total number of the population covered in the ter-
ritory of Ω by all the centers of the first stage is also equal to 1.

To compute the distance between two points I ,( )i ic x t  and 
II( ),ij i jc t t  we use Minkovsky metrics c(x, y) = ((x1 - y1)p + (x2 - 

-  y2)p)1/p with certain value of parameter p. The function 
r(x) = 1 for all points in the area W; b1 = b2 = 0.5.

Problem 1. The continuous problem OSPAC with fixed cen-
ters of first stage.

The initial data: N = 7, M = 3;  I
1 (6.006;3.454),t =  I

2t =

= (7.392; 2.552), I
3 (8.074;3.916),t =  I

4 (9.372; 4.664),t =  I
5t =

=  (2.178; 9.064), I
6 (3.52;8.58),t =  I

7 (9.504; 6.82);t =  II
1t =

=  (6.67; 5.28), II
2 (2.266;5.038),t =  II

3 (5.258; 7.304);t =  bII = 
(0.416; 0.156; 0.428).

Fig. 3 shows the optimal partition of the area W into seven 
zones and the connections between centers of the first and sec-
ond stages in two cases:

a) when in I ,( )i ic x t  and II( ),ij i jc t t  p = 1 and p = 2 corre-
spondingly, I II0, 1,7; 0, 1,3;i ja i a j= = = =

b) p = 1 for I ,( )i ic x t  and II( , ;)ij i jc t t  aI = (1, 1, 2, 3, 1, 2, 3), 
II 0, .1,3ja j= =

The capacities of the first-stage centers calculated with the 
accuracy 0.001 are the following:

a) bI = (0.158; 0.129; 0.155; 0.146; 0.16; 0.096; 0.153);
b) bI = (0.172; 0.168; 0.15; 0.063; 0.19; 0.067; 0.19).
The optimal costs are 14.973 and 36.004, respectively.
Clearly, considering the additional costs for constructing 

or organizing centers in the first stage not only increases the 
value of the target function but also affects the capacity of 
these centers. This capacity relates to the number of resources 
they can accommodate, which, in the context of an emergency 
evacuation problem, translates to the number of people gath-
ered in these centers for organizing further movement. As 
shown in Fig. 3, not only do the zones of responsibility of the 
first-stage centers change (fixed territories can even become 
disconnected), but the connections between all centers also 
vary. The quantity of resources dispatched from the first-stage 
centers to the second-stage centers is provided in Table.

Problem 2. The continuous problem OSPAC with locating the 
centers of first stage.

We solved it in two variants.
Problem 2.1. The initial data: N = 7, M = 4; II

1 (5.302;t =  
6.314), II

2 (8.954; 6.094),t =  II
3 (2.464;3.784),t =  II

4 (2.134;t =

5.72); bII = (0.123; 0.413; 0.192; 0.272); ,4,0, 1ia i= =  pI = pII = 
=  2. The initial placement of the centers of the first stage is 
presented in Fig. 4, а.

The optimal solution: I
1 (6.297; 2.482),t =  I

2 (8.24;t =

4.064), I
3 (6.527;3.538),t =  I

4 (2.541; 9.016),t =  I
5 (7.689;t =

2.944), I
6 (9.314; 4.156),t =  I

7 (9.433; 7.096);t =  n31 = 0.0164, 
n51 = 0.107, n22 = 0.122, n52 = 0.004, n62 = 0.135, n72 = 0.153, 

Fig. 3. Optimal set partition of the area W and the scheme of 
resource transportation between centers of the first and sec-
ond stages

a b

Table
The structure of connections between the centers of two 

stages in the problem 1

Under conditions а Under conditions b

The ID 
number 

of 
I stage’s 
center i

The ID 
number 

of 
II stage’s 
center j

The ID 
number 

of 
I stage’s 
center i

The ID 
number 

of 
II stage’s 
center j

The ID 
number 

of 
I stage’s 
center i

The ID 
number 

of 
II stage’s 
center j

2 1 0.1291 1 1 0.0347

3 1 0.1561 2 1 0.1682

4 1 0.1305 3 1 0.1498

1 2 0.1562 4 1 0.0627

1 3 0.0023 1 2 0.1375

4 3 0.0156 5 2 0.0182

5 3 0.1605 5 3 0.1714

6 3 0.0961 6 3 0.0669

7 3 0.1533 7 3 0.1902
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n13 = 0.101, n33 = 0.091, n34 = 0.014, n44 = 0.2565. The optimal 
partition and additional connections are shown in Fig. 4, b. 
The optimal value of the functional is 12.182. As seen in Fig. 4, 
even if you initially try to locate the centers of the first stage at 
arbitrary points of the region under consideration, placing 
them on the territory of the area being divided will still be the 
best.

Problem 2.2. Initial data: the region and the divided area W 
are the same; N = 6, M = 9; II

1 (10.23;5.61),t =  II
2 (8.8;5.94),t =  

II
3 (4.86; 2.82),t =  II

4 (2.64; 4.49),t =  II
5 (0.75; 7.83),t =  II

6t =

=  (3.45; 6.69), II
7 (5.63; 7.33),t =  II

8 (5.24;5.08),t =  II
9 (7.5;t =

5.46); bII = (0.056; 0.047; 0.163; 0.046; 0.191; 0.134; 0.073; 0.171; 
0.114); aI = (0.9; 0.7; 0.3; 0.9; 0.5; 0.2), II 0, ,1,9ia i= =  pI,II = 1.

Fig. 5, а shows the initial location of the first-stage centers, 
the corresponding partition of W and the additional connec-
tions between centers of both stages obtained by solving the 
continuous OSPAC problem with fixed centers. The value of 
the functional (1) at these data is 26.786, and capacities of the 
centers of first stage are the following: bI = (0.212; 0.268; 0.162; 
0.093; 0.107; 0.154).

When we solved the OSPAC problem with locating centers 
we obtained such components of the optimal solution: 

I
1 (6.25; 2.98),t =  I

2 (7.58;3.20),t =  I
3 (2.17; 9.21),t =  I

4 (3.21;t =  
8.7), I

5 (9.38; 6.97),t =  I
6 (8.97; 4.37);t =  n51 = 0.012, n61 = 0.044, 

n62 = 0.048, n13 = 0.163, n64 = 0.047, n35 = 0.165, n45 = 0.027, 
n46 = 0.065, n56 = 0.07, n57 = 0.074, n18 = 0.017, n28 = 0.07, n68 = 
= 0.085, n29 = 0.114. The amount of gathered resource by cor-
responding centers of the located centers we calculated with 
precision 0.001. It was the following: bI = (0.18; 0.184; 0.165; 
0.092; 0.152; 0.224). Fig. 5, b demonstrates the optimal zoning 
of the territory and additional connections between centers. 
The functional equals to 23.639. As we can see, through the 
redistribution of some of the centers of the first stage and their 
connections with the centers of the second stage, it was possi-
ble to reduce the total costs by 12 %.

In the following examples, the area subject to zoning will 
be the one that is not shaded in Fig. 4, a. On light green we will 
place the centers of the second stage.

Problem 2.3. The initial data: N = 10, M = 5; II
1 (6.69;t =  

2.77), II
2 (9.13; 4.48),t =  II

3 (7.26; 6.69),t =  II
4 (2.46; 9.06),t =  

II
5 (0.9; 9.53);t =  bII = (0.292; 0.093; 0.311; 0.104; 0.197); aI = Q, 

aII = Q, pI = 8; pII = 2. The initial location of the centers of the 
first stage, the zones corresponding to them and the scheme of 
additional connections with the centers of the second stage are 
shown in Fig. 6, a. On the right in the figure, the used color 
palette is shown. They indicate the numbers of the centers to 
which they are assigned. The value of the objective functional 
(1) with such data is 41.978.

When we solved problem (1–3) with the locating the cen-
ters of the first stage with the same initial data, we got the fol-
lowing optimal solution: I

1 (0.95; 7.66),t =  I
2 (4.58; 7.87),t =  

I
3 (4.46; 6.0),t =  I

4 (9.23;5.85),t =  I
5 (4.67; 2.53),t =  I

6 (2.75;t =

7.09), I
7 (4.65; 4.31),t =  I

8 (2.51;3.87),t =  I
9 (2.05;5.58),t =  I

10t =
= (6.83; 4.92). The amount of resource collected by the cor-
responding centers of the first stage (with accuracy 0.001) 
amounted to: bI  = (0.107; 0.088; 0.099; 0.103; 0.1; 0.092; 
0.099; 0.101; 0.099; 0.107). Then the resources are redistrib-
uted at the centers of second stage in such a way: n51 = 0.101, 
n71 = 0.091, n81 = 0.101, n42 = 0.094, n23 = 0.086, n33 = 0.099, 
n43 = 0.01, n73 = 0.009, n10.3 = 0.107, n24 = 0.002, n64 = 0.092, 
n94 = 0.01, n15 = 0.108, n95 = 0.09. The optimal partition and 
additional connections are shown in Fig. 6, b. The value of the 
functional is 28.058. In this problem, through the optimal lo-
cating centers of the first stage and the almost uniform distri-
bution of the resource between these centers (as indicated by 
the composition of the resulting vector bI) it was possible to 
reduce the objective functional value by 33 %.

Discussion. In practice, to enhance the road network and 
search for the new shortest path between the two centers of the 
first and second stages, it is advisable to utilize the Google 
Maps Distance Matrix API library. To reduce the number of 
API calls and, consequently, the computing resources required, 
we can address problems (1) to (3) in two stages. Initially, we 
locate the centers of the first stage using established theoretical 
metrics for distance functions. Subsequently, by employing 
GIS, we calculate the actual distance between the identified 
centers and points within the region, thereby determining the 
optimal partition of the given region and the cost of transport-
ing resources between the first and second stage centers.

Integrating the developed approach to enhance the effi-
ciency of the humanitarian logistics system with the method-
ology for assessing the country’s sustainable development in 
the context of global threats, as developed in [29], is advisable. 
Furthermore, there is interest in generalizing models of two-
stage humanitarian logistics problems when using multimodal 
transport terminals [30], as well as in allocating specific terri-
tories to two or three centers.

Conclusion. So, the paper is related to mathematical model-
ing and methods for solving problems in emergency and human-

Fig. 4. Illustrations for the problem 2.1:
а – initial placement of the centers of the first (black) and second 
(red) stages and zoned area; b – optimal partition of the set and the 
scheme of resource transportation between the centers of the first 
and second stages

a b

Fig. 5. Illustrations for the problem 2.2:
a – solution of the OSPAC problem with fixed centers; b – the op-
timal placement of centers, the corresponding partition of the set 
and the transportation scheme

a b

Fig. 6. Optimal partitioning of the area W and the scheme of 
resource transportation between the centers of the first and 
second stages in the problem 2.3

a b
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itarian logistics. We have defined the problem of optimally dis-
tributing human flows within the transport and logistics system. 
The structural elements of such a system are primary aid centers 
that gather residents from affected areas (first-stage centers) and 
specialized emergency assistance units that provide further ser-
vices to the evacuated population (second-stage centers). The 
optimality criterion is to maximize the coverage of affected ter-
ritories and minimize the evacuation time for victims.

The proposed mathematical model for the described prob-
lem is a continuous problem of optimal set partitioning with 
the placement of subset centers and additional connections. 
We have detailed the method and the iterative algorithms for 
solving this problem. The results of computational experi-
ments confirm the validity of formulating a continuous prob-
lem of optimal set partitioning with additional connections, 
especially when determining the locations of new objects with-
in a territory while considering multi-stage evacuation pro-
cesses. Additionally, the proposed model can be applied to 
study issues related to the optimal placement of warehouses for 
material and technical resources, food, and medical supplies 
(locations for the concentration of material resources and re-
sources within the emergency zone, establishment of supply 
and distribution points for essential items, personal protective 
equipment, etc.). Through modeled scenarios, we have dem-
onstrated the potential for reducing costs associated with the 
management of material, human, and other flows across the 
entire logistics chain, from the moment the flow originates un-
til it reaches its destination.

The presented material can be valuable in substantiating 
and making informed decisions regarding the zoning of terri-
tories, the placement of emergency shelters or protective 
structures, and it will aid in proactively shaping emergency 
operations to mitigate the impact of hazards.
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Мета. Забезпечення раціональної організації евакуа-
ції людей із регіону, постраждалого від надзвичайної си-
туації, за рахунок розробки математичного та алгорит-
мічного забезпечення, що дозволить завчасно розподіля-
ти транспортні й матеріальні ресурси, максимально охо-
плюючи постраждалі райони та мінімізуючи евакуацій-
ний час.

Методика. Системний аналіз евакуаційних процесів; 
математичне моделювання, теорія неперервних задач 
оптимального розбиття множин, недиференційована 
оптимізація.

Результати. Об’єктом дослідження є двоетапні еваку-
аційні логістичні процеси, що виникають при наданні 
допомоги населенню територій, які постраждали від над-
звичайної ситуації природного чи техногенного характе-
ру. У дослідженні розглянута можливість оптимального 
розподілу людських потоків у транспортній системі з під-

розділами двох рівнів – центри першої черги (медичні 
пункти, що здійснюють прийом громадян із постражда-
лих районів) і другої черги (спеціалізовані підрозділи 
системи екстреної допомоги, що здійснюють подальше 
обслуговування евакуйованого населення). Запропоно-
вані математичні моделі є задачами оптимального роз-
биття континуальних множин з розміщенням центрів 
підмножин і додатковими зв’язками. Описані методи їх 
розв’язання. Продемонстрована універсальність указа-
них моделей за рахунок використання їх для опису як 
евакуаційних процесів, ураховуючи необхідність органі-
зації збірних, проміжних і приймальних пунктів евакуа-
ції, так і процесів, пов’язаних із наданням первинної до-
помоги постраждалому населенню, розраховуючи й до-
ставляючи відповідну кількість продуктів першої необ-
хідності з наявних складів через розподільчі центри в ра-
йони лиха.

Наукова новизна. Як превентивні заходи з підвищен-
ня рівня безпеки населення при надзвичайних ситуаціях 
розглядаються оптимальне розміщення рятувальних за-
собів і зонування території для розподілу евакуаційного 
руху. Також вирішується задача оптимального розподілу 
людських потоків у транспортно-логістичній системі.

Практична значимість. Представлені моделі, методи 
та алгоритми дозволяють вирішити низку практичних за-
вдань, пов’язаних із розробкою профілактичних заходів і 
плануванням рятувальних робіт із забезпечення безпеки 
населення при виникненні надзвичайних ситуацій, у 
тому числі техногенного характеру. Отримані теоретичні 
результати дають можливість розробляти конкретні ре-
комендації щодо виконання логістичних завдань, пов’я
заних з організацією первинної евакуації населення з по-
страждалих районів і його транспортуванням до безпеч-
ного місця для подальшого надання допомоги.

Ключові слова: гуманітарна логістика, двоетапна ева-
куація, територіальний розподіл, математичне моделю-
вання
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