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AUTOMATED BUILDING DAMAGE DETECTION ON DIGITAL IMAGERY
USING MACHINE LEARNING

Purpose. To develop an automated method based on machine learning for accurate detection of features of a damaged building
on digital imagery.

Methodology. This article presents an approach that employs a combination of unsupervised machine learning techniques,
specifically Principal Component Analysis (PCA), K-means clustering, and Density-Based Spatial Clustering of Applications
with Noise (DBSCAN), to identify building damage resulting from military conflicts. The PCA method is utilized to identify prin-
cipal vectors representing the directions of maximum variance in the data. Subsequently, the K-means method is applied to cluster
the feature vector space, with the predefined number of clusters reflecting the number of principal vectors. Each cluster represents
a group of similar blocks of image differences, which helps to identify significant features associated with fractures. Finally, the
DBSCAN method is employed to identify areas where points with similar characteristics are located. Subsequently, a binary frac-
ture mask is generated, with pixels exceeding the threshold being identified as fractures.

Findings. The introduced methodology attains an accuracy rate of 98.13 %, surpassing the performance of conventional
methods such as DBSCAN, PCA, and K-means. Furthermore, the method exhibits a recall of 82.38 %, signifying its ability
to effectively detect a substantial proportion of positive examples. Precision of 58.54 % underscores the methodology’s ca-
pability to minimize false positives. The F1 Score of 70.90 % demonstrates a well-balanced performance between precision
and recall.

Originality. DBSCAN, PCA and K-means methods have been further developed in the context of automated detection of
building destruction in aecrospace images. This allows us to significantly increase the accuracy and efficiency of monitoring territo-
ries, including those affected by the consequences of military aggression.

Practical value. The results obtained can be used to improve automated monitoring systems for urban development and can
also serve as the basis for the development of effective strategies for the restoration and reconstruction of damaged infrastructure.
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Introduction. Every year, the world witnesses the devasta-
tion caused by natural disasters such as forest fires [1], earth-
quakes, floods, and hurricanes. In addition, military conflicts
|2] and armed clashes cause significant economic damage and
intangible losses [3]. The destruction of buildings during the
war is a form of aggression that causes significant damage to
civilians [4]. It is often used to force displacement of the pop-
ulations and thus requires special attention. However, obtain-
ing reliable data from war-affected areas is usually problem-
atic, incomplete, and contradictory, even when such data is
available. The lack of comprehensive data from conflict zones
significantly hampers the media, humanitarian aid, human
rights monitoring, recovery initiatives, and scientific research
on military conflicts. A solution to this problem uses remote
sensing data to detect destruction in digital imagery. This ap-
proach is becoming increasingly popular due to the availabil-
ity of high-resolution imagery accessed each week or even
daily. The latest advances in deep learning provide sophisti-
cated tools to analyze these images and extract data efficiently.

Scientific studies have demonstrated the successful use of
automatic classifiers for damage detection [5, 6]. However,
there have been serious challenges, such as labeling problems,
determining the contours of destroyed objects, and imbalance
of classes in images of urban war zones. It has led to interna-
tional organizations such as the United Nations and others us-
ing remote sensing with manual classification to conduct case
studies on damage assessment. On the other hand, conflict
data providers for academic research still rely heavily on news
reports and eyewitness accounts, which leads to a significant
delay in data publication and possible bias. Therefore, an au-
tomated classifier of building damage on digital imagery has a
low false positive rate in unbalanced samples and allows for
near real-time tracking of destruction on the ground, which
would be extremely valuable for both the international com-
munity and academic researchers.
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Literature review. Detecting controlled changes is a task
that automated damage detection can handle. Previous re-
search in this area showed the successful use of image segmen-
tation to solve this problem. Assuming no structural patterns
have changed, one can identify masks of structures in the pre-
event images given a pair of images corresponding to the same
set of coordinates before and after the hazard. Automated
damage detection involves detecting controlled changes. Many
researchers have used automatic image processing methods on
remote sensing data to detect and analyze the effects of hos-
tilities, such as damaged and destroyed building structures [7,
8]. In paper [9], the authors investigated the problem of de-
tecting damage to buildings caused by the civil war in Syria
using satellite images before and after the destruction. They
developed a framework to identify patch-level changes to clas-
sify patches as destroyed or undamaged. Despite the successful
binary classification by patch, the intensity and extent of dam-
age could not be accurately determined using this approach.
Several scientific studies have demonstrated the use of com-
puter vision to analyze satellite images to detect various types
of damage [10, 11]. In many cases, this damage was the result
of natural disasters that are characterized by spatial concentra-
tion [12]. Even if the results presented in the literature are en-
couraging, they are limited to point-in-time estimates and the
use/validation of datasets containing an equal number of dam-
aged and undamaged images.

Urban areas are characterized by structural diversity and
spectral variability, even when they have a homogeneous
composition. Spectral methods, such as the use of distinc-
tion indices and supervised classification, which are used to
define land classes and track their changes, assign each pixel
a class based on its spectral reflectance, without considering
spatial features. It becomes less effective because spectral in-
formation can exhibit heterogeneity due to different roof ma-
terials and the similar composition of buildings, roads, and
open space. Methods based on spectrum analysis are not ef-
fective enough to identify spectrally heterogeneous but spa-
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tially land uses, making it difficult to obtain accurate and
complete information about changes [13]. Lately, deep
learning has made a big splash in automated building extrac-
tion methods. Deep learning methods avoid the subjectivity
of manual feature selection. The fully convolutional pixel-
to-pixel network (FCN) proposed by Long, et al. [14] has
significantly improved the accuracy of building detection.
Despite achieving high-quality object detection, CNNs have
noticeable drawbacks [15]: training is multi-stage and often
takes a long time to implement; it is difficult to optimize, as
each stage needs to be trained separately. Huang, et al. [16]
proposed a progressive residual refinement network
(GRRNet) for building detection by combining high spatial
resolution aerial images and LiDAR data. Although these
methods have positive results and recognize buildings, some
problems still need to be studied in more detail [17]. To tack-
le the problem of artifacts, one can employ additional image
processing techniques, such as image smoothing methods or
techniques for extracting geometric data. Some methods,
such as the depth-based method, can use more information
about the depth of objects to improve the quality of building
extraction.

Purpose. This study aims to develop an efficient method-
ology for the automated detection and mapping of building
damage in digital images. The focus is on leveraging unsuper-
vised machine learning techniques to enhance the accuracy
and speed of the damage identification process.

In this work, to achieve the set goal, the following tasks
were formed and solved:

- to create a robust framework utilizing unsupervised ma-
chine learning techniques, specifically focusing on methods
such as Principal Component Analysis (PCA), K-means clus-
tering, and Density-Based Spatial Clustering of Applications
with Noise (DBSCAN);

- to optimize image processing algorithms within the
framework to enable precise identification and mapping of
building damage features in digital images;

- to conduct comprehensive evaluations and comparisons
of the proposed methodology against traditional methods, as-
sessing factors such as accuracy, speed, and computational ef-
ficiency;

- to test the effectiveness and applicability of the developed
methodology by applying it to real-world datasets, with a spe-
cific emphasis on images capturing building damage resulting
from the 2022 Russian invasion of Ukraine.

Methods. The method algorithm is shown in Fig. 1 and
consists of six steps. The first step is to upload digital im-
ages. In this study, we used images obtained from Google
Earth. The dataset was preprocessed, including georefer-
encing and orthotransformation, to improve the accuracy
and quality of the results before applying the clustering al-
gorithms.

Input:Digital image

>

Image
preprocessing ‘

Since the focus of this study is to classify the observations
into two main categories — damaged buildings and non-dam-
aged buildings — using clustering algorithms, the measurements
were filtered to improve the results. The pre-processing stage
[ 18] involves assessing the total characteristics of the image. The
assessment includes parameters such as noise, blur, background
intensity variations, brightness, contrast, and the overall distri-
bution of pixel values (histogram profile). Attention should also
be paid to shaded areas to determine their detail, bright ele-
ments (or highlights), and areas of intermediate pixel intensity.

At this stage, a lookup table (LUT) is used for large images,
which stores the intensity transformation function (mapping
function). The is designed to calculate its output gray level val-
ues (/) as follows1

G=LUT(),

where G is the output gray level value; LUT is lookup table
(display function); [ is the input value of the pixel intensity.

This lookup table allows changing the intensity of image
pixels using a given transformation function, which can be
useful for improving image quality and preparing data for fur-
ther analysis and fracture detection.

The third step is the use of complex unsupervised machine
learning methods. Recently, machine learning methods have
become widespread in everyday life. These methods are also
actively used to extract the necessary geophysical information
from the data. The most suitable unsupervised machine learn-
ing method for building collapse detection is clustering, as it is
part of a wide range of methods for identifying subgroups or
clusters in a dataset. Clustering assigns a unique number to
each observation that indicates which cluster the observation
belongs to. Thus, clustering aims to identify the overall struc-
ture, including distinct clusters and homogeneous subgroups
among the observations [15]. This study focuses on the follow-
ing most well-known approaches clustering: PCA, K-means
and DBSCAN.

PCA. Principal Component Analysis method is applied to
improve data processing. PCA is a statistical method used to
reduce the dimensionality of data while retaining the majority
portion of its variance. In the context of clustering and analyz-
ing geophysical data, PCA helps to identify influential vari-
ables and reduce the number of variables used for further anal-
ysis, reducing the impact of noise, and providing better inter-
pretability of the results. First, the covariance matrix (C) is
calculated for the original data set X, where X is a matrix with
objects in the rows and features in the columns [19]

C:(I)XTX,
n

where 7 is the number of observations (rows) in X, X7 is the
transposed matrix of X.

Unsupervised
Machine Learning
e PCA

e K-means

> Feature vectors " o DBSCAN

Output: Fracture contour

Binary mask

. - .

Fig. 1. Algorithm of the proposed method
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Then, the singular value decomposition of the covariance
matrix C is calculated, which allows us to decompose it into a
set of principal components and their eigenvalues [19]

C=V.A-VT,

where V is an m x n column-orthonormal matrix of principal
components (eigenvectors); A = diag(o;, 6, ..., ©,,) is a diago-
nal matrix, where the elements on the diagonal are eigenval-
ues; Vs the transposed matrix of V = [vi ;]

At this step, the PCA method identifies the principal vectors
that represent the directions of maximum variance in the data.
The eigenvalues obtained during this process are transformed
into a new feature vector space. Each vector in this space indi-
cates the importance of the corresponding principal vector. This
procedure allows you to preserve the most common aspects of
image changes and highlight them in new features. Using PCA
in the context of geophysical data analysis helps to reduce the
number of features, increase the robustness of clustering, and
facilitate the interpretation of results. This method is usually ap-
plied after preprocessing and clustering to advance data analysis.

K-Means Clustering. Next, we use the K-means, one of the
simplest and most popular algorithms for dividing a dataset
into K separate non-overlapping clusters. The K-means algo-
rithm is based on the number of clusters initially set to K. The
basic idea behind K-means is that the ideal clustering is deter-
mined so that the within-cluster variance is as low as possible.
The intra-cluster variance for a cluster C, is calculated using
the measure W(C,), which quantifies the degree of dissimilar-
ity among the observations within the cluster.

Thus, we have the following problem statement [20]

N 2
Minimize W (C;,C,,.... C,) = [, ~ 1, |
i=1

where i belongsto Cy; W(C,, C,, ..., C;) isthe total intra-cluster
variance for all clusters Cy, Gy, ..., Cy; the vector L, represents

the assignment of data point 7; ||X i My "2 is the center of mass
(mean value) of cluster C,.

DBSCAN Clustering. Density-Based Spatial Clustering of
Noisy Applications (DBSCAN) is commonly used in data
mining and machine learning, as proposed in [20]. DBSCAN
has several merits, including the absence of the need to deter-
mine the number of clusters a priori, which distinguishes it
from K-means and agglomerative methods. It can detect clus-
ters of different shapes and highlight points that do not belong
to any cluster. DBSCAN clusters observations based on their
relative position and use a distance measure (usually Euclidean
distance) and a minimum number of points to define a cluster.
It also marks points that are in low-density regions as outliers.

For DBSCAN to run correctly, two basic hyper parame-
ters are set: € and N(p) (minimum number of points for a clus-
ter). The € parameter defines the radius around each point in
which other points are considered to determine the neighbor-
hood. Points that are within ¢ of each other are considered to
be neighbors. The minimum number of points N(p) defines
the minimum number of neighbors required for a point to be
considered a core point and to create a cluster. That is, if a
point has at least N(p) of neighbors within an ¢ radius, it is
included in the cluster. Thus, DBSCAN defines a cluster as
the maximum set of points that are mutually adjacent and
connected by other points [21]

N.(p) ={q e D|dist(p, q) <&},

where N,(p) is the set of points in the neighborhood of point p;
g is another point in the data set; D is a data set; dist(p, q) isthe
distance between points p and g; ¢ is the radius of the neigh-
borhood.

The main point (p) is a point for which the number of
points in its neighborhood (N(p)). The point p is included in
the cluster C if p is the main point.

The points that can be reached from other primary points
are also included in cluster C.

The final step is to obtain a binary mask and further map
the building damage on digital images. After preprocessing
and clustering the data, obtaining, binary masking is an im-
portant step in identifying areas where building damage is lo-
cated [21]

1, if the point (x,y) belongs to the cluster of damages
0, otherwise '

The binary mask can then be used to create a damage map
on a digital image, where building damage is marked as sepa-
rate areas or contours. This mapping process allows you to lo-
calize and determine the size and location of the damage in the
image, which facilitates further analysis and interpretation of
the results.

The binary mask is an image where pixels are defined as
“damaged” or “non-damaged” depending on their presence
in the clusters defined in the previous steps.

So, the PCA method identifies the principal vectors that
present the directions of maximum variance in the data. The
eigenvalues obtained during this process are transformed into
a new feature vector space. After that, the K-means method is
used to cluster the feature vector space. The number of clusters
is predefined and can reflect the number of principal vectors.
Each cluster represents a group of similar image difference
blocks. Thus, K-means clustering helps to identify important
groups of features, which facilitates further detection of dam-
age in the image. The DBSCAN method is used to identify
areas where points with similar characteristics are located. In
the context of fracture detection, this allows you to identify
areas in the image where the detected changes indicate poten-
tial fractures. After that, a binary fracture mask is generated,
with pixels exceeding the threshold being identified as frac-
tures.

Results. The use of open data and consideration of spatial
resolution are fundamental aspects of our study. To this end,
we chose to use imagery from Google Earth because of its na-
ture as an open dataset that includes the destruction of build-
ings caused by the Russian invasion of Ukraine in 2022 year.

This work studied and compared the effectiveness of the
proposed method with existing approaches for evaluating the
recognition of building objects.

To evaluate the allocation of runes on building objects, we
used a confusion matrix [22]

TN FP |
FN TP/ (1

where True Positives (7°P) is the number of pixels that have
correctly been identified as “damaged”; false Positives (FP)
are the number of pixels that have mistakenly been identified
as “damaged”; True Negatives (TN) is the number of pixels
that have correctly been identified as “non-damaged”; False
Negatives (FN) are the number of pixels that have mistakenly
been identified as “non-damaged” but are fractured.

The following metrics were calculated from this matrix (1):

Accuracy: TP+ ;}C i 71:“]]\3r+ FN @
TP

Recall: TPLEN 3)

Specificity: % “4)
TP

Precision: TP+FP 5)

2-Precision - Recall
FISeom: o on s Recall ©
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Data analysis and implementation of the developed algo-
rithm were performed using the Python 3.11 programming
language. The tests were conducted on digital images of
Google Earth after the Russian invasion. Fig. 2 shows a frag-
ment of the image of Mariupol city. Fig. 3, a shows the result
of Agglomerative Clustering. This method groups similar areas
into large clusters. It allows you to create a hierarchy of clus-
ters, which makes you consider different levels of detail (re-
quires a lot of resources). Fig. 3, b shows the result of Density-
Based Clustering based on finding high-density areas in the
vector data space. It helps to separate destruction from the
surrounding background if they form high-density areas in the
image. The main advantages of DBSCAN are that it does not
require an a priori number of clusters, unlike K-means and
agglomerative methods, and it can cover clusters of complex
shapes and identify points that do not belong to any cluster.

Fig. 4 shows the result of the algorithm proposed in this
paper based on machine learning without a teacher, which al-
lowed us to find and highlight destruction at buildings.

At this stage of the visual analysis, it was found that the
proposed binary mask more accurately identifies and maps
building damage compared to the masks obtained using PCA
(Fig. 5, a), K-means (Fig. 5, b)) and DBSCAN (Fig. 5, ¢). This
indicates the higher efficiency of the proposed fracture recog-
nition method in this context.

After the visual analysis, the proposed method is evaluated
and compared with existing approaches to recognize building
damage using an error matrix and metrics (2—6): Accuracy,
Recall, Specificity, Precision and F1 Score (Table 1).

Fig. 6 shows the graphical result of the confusion matrix to
represent the validation results of the different methods. The
main diagonal of the confusion matrix consists of the number
of observations that were correctly clustered.

Analyzing the matrices in Table 1, we can conclude that
the proposed algorithm has a significant number of correctly
classified cases (TP and TN) compared to other methods,
which indicates its higher efficiency in determining the dam-
age to buildings. Table 2 shows the results of the Accuracy, Re-
call, Specificity, and Precision metrics, F1 Score.

Examining the outcomes presented in Table 2 reveals that
the proposed method demonstrates an accuracy of 98.13 %. It
is a high rate and indicates the overall effectiveness of the

Fig. 2. Digital images of Mariupol city:

a — before the Russian invasion; b — after the Russian invasion

Fig. 3. Results:
a — Agglomerative Clustering; b — Density-Based Clustering
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Fig. 4. Results of the proposed algorithm:
a — mapping destruction at buildings; b — binary mask

method. DBSCAN, PCA, and K-means have very low accu-
racy. Recall is 82.38 % for the proposed method. It indicates
the ability of the method to detect all positive examples. The
proposed method detects more than 80 % of the true positives.
Precision is 58.54 % for the proposed method. The F1 Score is
70.90 % for the proposed method, which indicates a good bal-
ance between these two aspects. Thus, DBSCAN, PCA, and
K-means have very low accuracy, sensitivity, precision, and F1
Scores and are not useful in detecting damage to buildings.

The next stage of our research is to analyze the recognition
of fracture boundaries on building damage using the IoU met-
ric (Fig. 6).

The results of comparing different methods, such as Base-
line, PCA, K-means, DBSCAN, and our proposed method,
provide valuable insights into the effectiveness of each method
in extracting fracture contours on buildings.

According to the results in Fig. 6, the Baseline method
demonstrates an IoU value up to 80.0 %, while DBSCAN, K-
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Fig. 5. A binary mask:

a — PCA; b — K-means; c — DBSCAN
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Fig. 6. Confusion matrix for:
a — proposed method; b — PCA; ¢ — K-means; d — DBSCAN
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Table 1
Evaluation Metrics of Confusion Matrix
Method TP TN FP FN
PCA 1681 64076 38,144 515
K-means 25 94480 7740 2171
DBSCAN 26 94778 7442 2170
Proposed 1505 101,533 1032 346
Table 2
Effectiveness of building damage mapping methods
Method Accuracy Recall Precision F1 Score
PCA 0.58 0.81 0.04 0.08
K-means 0.91 0.01 0.00 0.01
DBSCAN 0.91 0.01 0.00 0.01
Proposed 0.98 0.82 0.59 0.71
138
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means, and PCA score of above 45.5, 37.0 and 24.7 %, respec-
tively. The highest IoU, namely 89.0 %, is observed in the case
of our proposed method. It indicates exceptional effectiveness
in identifying fracture contours on buildings compared to oth-
er methods.

Conclusions. This paper proposes a new method for auto-
mated building damage detection in conflict zones using un-
supervised machine learning on digital imagery. The pro-
posed method achieves an accuracy value up to 98.13 %,
which indicates its overall effectiveness. In contrast, tradi-
tional methods such as DBSCAN, PCA, and K-means dem-
onstrate significantly lower accuracy rates. In addition, the
proposed method shows a recall of up to 82.38 %, which in-
dicates its ability to detect a significant proportion of positive
examples. The precision measured at 58.54 % emphasizes the
method’s ability to minimize false positives. The F1 Score
takes the values of 70.90 %, which illustrates a well-balanced
relationship between accuracy and recall. In the case of DB-
SCAN, PCA, and K-means, on the other hand, they show
noticeable shortcomings in accuracy, sensitivity, precision,
and F1 score, making them less effective in detecting building

ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2023, N° 6



Figure 1 - O 5%

Comparison of loU for Different Methods

8 3 8

Intersection over Union (loU), %

N
o

0-
Proposed method PCA Baseline

al €2 Q= B

Fig. 7. loU metric result

Kkmeans DBSCAN

damage. The proposed method, with its high accuracy and
balanced performance, is a valuable tool for tracking damage
in the field in real-time, which will benefit both the interna-
tional community and academic researchers. This research
underscores the significance of utilizing open data and con-
sidering spatial resolution in the analysis of conflict zones,
providing a foundation for ongoing advancements in the ad-
vancement of automated classifiers for evaluating building
damage.
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ABTOMATH30BaHe BUSIBJIEHHS PYiHYBaHb
OyniBesb HA MU(POBUX 300paKEHHAX
3a JI0MOMOroK0 MAIIMHHOTO HABYAHHS
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Merta. Po3pobka aBTOMaTM30BaHOTO METOLY Ha OCHOBI
MAalIMHHOTO HaBYaHHSI Ul TOYHOTO BUSIBIEHHS O3HAK Pyii-
HyBaHb OyiBe/b Ha IU(POBUX 3HIMKAX.

Meronuka. [lpeacraBiaeHo miaxim, 10 BUKOPUCTOBYE
KOMOiHallil0 METOiB HEKOHTPOJILOBAHOTO MAIIIMHHOIO Ha-
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BUaHHS, 30Kpema, aHalli3 ToJoBHUX KommoHeHT (PCA),
kJjacrepu3aiiito 3a Metogom K-cepennix i DBSCAN wmeron,
IUTST BUSIBIIEHHSI pyHHYBaHb OydiBesb, CIPUUYMHEHUX Biii-
cbkoBUMU KoHJiktamu. Metog PCA BUKOPUCTOBYETHCS
IUTSI BU3HAUYEHHST TOJIOBHUX BEKTOPIB, IO TPENCTABISIOTH
HanpsIMKM MaKCUMaJIbHO1 aucrepcii B naHux. I1otim, 3acto-
coByeTbcsl MeTon K-cepenHix misg kiaactepusallil MmpocTopy
BEKTODiB O3HAK i3 3a3/1aJieriib BA3BHAYEHOO KiJIbKICTIO KJ1ac-
TepiB, 1110 BioOpaxae KiJbKiCTh TOJJOBHUX BeKTOpiB. KoxeH
KJ1acTep TpeACTaBJIsiE TPYMy CXOXHUX OJIOKIB BiIMiHHOCTEM
300paKeHHsI, 1110 JoTTIoMarae iieHTudiKyBaTH 3HaUyIli O3HA-
KU, MOB’s13aHi i3 pyiiHyBaHHsIMU. HaocTaHOK, BUKOPUCTOBY-
erbes Mmeton DBSCAN 1 BusiBIIeHHsI ob1acTei, 1e po3ra-
1LI0BaHi TOUKH 3i CXOXXMMU XapakTtepuctukamu. [icist iboro
reHepyeThcs OiHapHa mMacka, Je TiKceli, 1110 MepeBUIyIOTh
Mopir, iAeHTUMIKYIOThCS SIK pyIHYBaHHS.

PesympraTi. 3ampornoHoOBaHUIT METOJ IOCSTAE TOYHOCTI
98,13 %, nepeBepIIyIOuN TTOKa3HUKU OKPEMOTO 3aCTOCYBaH-
HS TpammuiiiHux MertomiB, Takux sk DBSCAN, PCA Tta
K-cepennix. Kpim Toro, merom neMOHCTpYE TITOBHOTY
82,38 %, 1110 CBITUUTD TPO HOTO 3MATHICTH €(HEeKTUBHO BUSIB-

JISTM 3HAYHY YacTKy MO3UTUBHMX TMpukianiB. TOUHICTh
58,54 % minkpecaio€e 3AaTHICTH METOAY MiHiMi3yBaTH IO-
MWIKOBI cripaiiboByBaHHs. Po3paxoBaHuii nokazuuk F1, 110
craHoBuTh 70,90 %, neMoHCTpye n00pe 30aaHCOBaHe CITiB-
BiIHOIIIEHHSI MiX TOUHICTIO 1 TOBHOTOIO.

Haykoa wnoBuzna. Metonu DBSCAN, PCA Ta
K-cepemHix oTpumaiu MOmaIbIINi PO3BUTOK y KOHTEKCTI
aBTOMATHM30BAHOI'O BMSIBJIEHHSI Ha aepOKOCMIYHUX 300pa-
JKeHHSIX pyliHyBaHb OyniBesb. Lle 103BoJsIE 3HAYHO TiABU-
IIMTU TOYHICTh i ONEPaTUBHICTb MOHITOPUHIY TEPUTOPI,
30KpeMa MocTpaxkaaIux Bifl HACiIKiB BiliCbKOBOI arpecii.

IIpakTiyna 3HaumMmicTe. OTpUMaHi pe3yabTaTu MOXYTb
OyTU BUKOPUCTAHI JUIST yTOCKOHAJIEHHST CICTEM aBTOMAaTHU30-
BaHOI'O MOHITOPUHTY 00’€KTiB 3a0yI0BU, a TAKOX MOCTYXKH1-
TU OCHOBOIO JUISl PO3POOKU e(DEeKTUBHUX CTpaTeriii BiTHOB-
JIEHHSI i PEKOHCTPYKIIiT MOIIKO/IKEHOT iHPPaCTPyKTypH.

KiniouoBi caoBa: nexkonmpoavosane mMauwiuHHe HABYAHHA,
yughpose 300pajicenus, po3nizHABAHHS, PYIUHYSaHHs 0Oydieens,
BIlICbK0GI KOHGDAIKMU
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