GEOPHYSICAL INDICATORS OF RARE-METAL ORE CONTENT OF AKMAI-KATPAR ORE ZONE (CENTRAL KAZAKHSTAN)

Purpose. Identification of geophysical criteria to determine ore content indicators within the territory relying upon systematization of both geological and geophysical materials.

Methodology. The research involved innovative techniques used in the field of geology, i.e. GIS technology, and such theoretical scientific approaches as analysis and synthesis of petrophysical data, and data of geophysical anomalies in the context of the analyzed ore zone.

Findings. Petrophysical characteristics of Akmai-Katpar ore zone rocks have been generalized and systematized. Petrophysical model of the ore zone has been developed; changes in petrophysical rock characteristics have been defined in terms of Silurian, Devonian, Carboniferous, and Permian systems. The obtained parameters of the petrophysical model are integrated with the identified geophysical anomalies. Geophysical indicators of ore content of the rare-metal ore zone have been determined. Cartographic documents have been specified which made it possible to perform layer-by-layer mapping of Akmai-Katpar ore zone.

Originality. For the first time, the systematized geological and petrophysical materials have been applied to build the petrophysical model of Akmai-Katpar ore zone and improve geophysical forecasting criteria.

Practical value. It consists in the use of geophysical forecasting criteria while identifying prospective areas where rare metals occur.

Keywords: ore zone, rare metals, petrophysical characteristics, geophysical anomalies, gravity field, magnetic field

Introduction. Kazakhstan is a large rare-metal province since its subsurface contains the main reserves of wolfram, molybdenum, and other rare metals. The key rare-metal deposits, being of industrial importance, are within the territory of Central Kazakhstan too [1, 2]. They include greisen-vein deposits Verkhniy Kayrakty (wolfram), Koktenkol (molybdenum), and large stockwork deposits Baynazar, Batystau, Sarysuisk and Sarysuisk anticlinorium, and Domeke (Fig. 2).

In the case of wolfram deposits, the ore zone of central rift depressions. Severny Katpar is rather poorly prospected or poorly studied fields [13]. Currently, skarn-greisen deposit Severny Katpar in Akmai-Katpar ore zone of Central Kazakhstan is important in practical terms [14, 15]. The ore area is in the central share of Uspensk depth movable zone on the border between Zhamansarysuisk and Sarysuisk anticlinoriums; its territory is about 22.5 square kilometers [16].

Late Permian Akmai intrusion of leucocratic granites has played the main role in the formation of rare-metal mineralization within the studied area [17]. Ore-bearing intrusion is interbedded along the long-lived Domeke-Kushuk fault; Akmai-Katpar ore zone is associated with its edge [18, 19]. The area is characterized by the Lower Tournaisian limestone covered by terrigenous deposits of Upper Famennian. Skarn-greisen formation has emerged within granite intrusions-carbonaceous rock contact [20]. According to geophysical data, ore-bearing Akmai intrusion took shape at a 1–3 km depth; it is of a linear solid form with 3 × 10 km geometry (Fig. 1).

The intrusion roof is at the depth of 400–600 m below the surface; its morphology is of a complex nature. It consists of a number of domes over which the known Akmai and Severny Katpar deposits are located as well as several ore occurrences being Zapadny Katpar, Severo-Vostochny Katpar, Bibigul, and Domeke (Fig. 2).

Severnny Katpar deposit is in Shet District of Karaganda Region 12 kilometers east of a railway station Zharyk, and 25 kilometers north of Verkhniy Kayrakty ore mining and processing enterprise. It is in the central axial part of Uspensk synclinorium consisting of Late Hercynian volcanogenic sedimentary formations of island arcs and carbonate sedimentary deposits of central rift depressions. Severny Katpar is rather compact field, which helps apply open pit mining. If average tungsten trioxide content in the deposit ore is 0.24–0.25 % then use of preliminary preparation makes it possible to get rid of up to 40–50 % of waste rock (i.e. limestone) and obtain pre-

https://doi.org/10.33271/nvngu/2023-5/034

1 – Satbayev University, Almaty, the Republic of Kazakhstan
2 – Institute of geological sciences of K. I. Satpayev, Almaty, the Republic of Kazakhstan
* Corresponding author e-mail: k.togizov@satbayev.university

© Ablessenova Z., Issayeva L., Togizov K., Assubayeva S., Kurmangazhina M., 2023
Akmai deposit is 50 kilometers northeast of a railway station Agadyr. The field is connected with a limestone unit occurring under quartz-sericitic and clayey shale [23]. Within the area, the shale experienced partial metamorphism; it became hornfelsed partially. Cherts and shales shape small lenses alternating with less changes limestones and shales. Mainly, the key ore field is concentrated in a limestone formation member. Despite the fact that reserves of the deposit are not large, it remains underexplored at deep levels due to intrusive granite of leucocratic composition prospected at a depth of Akmai intrusion [24, 25].

Rare-metal deposits as well as mineralizations of Akmai-Katpar ore zone were studied by several generations of geologists and geophysicists starting from the 1940s [26]. Geological archives contain numerous paper-based factual data as well as cartographic documents. They involve geological maps, maps of geophysical fields inclusive of gravitational and magnetic data, and topographic maps and schemes of cuts belonging to the mentioned fields within the ore zone [27, 28].

For the moment, the research group has scanned the materials and connected them with geographical coordinated of the deposits. Accordingly, GIS program was applied. Digital geodata base has been developed corresponding to the interna-
As part of Akmai-Katpar ore zone helping conclude the following:

Moreover, the digital geodata basis has helped build dynamic formation models of the deposits solving some theoretical problems of rare metal mineralization as an assessment of their shaping period. It should be mentioned that geological materials, accumulated by different generations of the experts, are widely used for the modern scientific studies. Nevertheless, the abovementioned is not applicable for geophysical materials from the Republic funds (it concerns materials of Adagyr geophysical expedition. In this context, it should be noted that currently the enormous factual geophysical material is not applied to solve practical geological problems. In turn, it complicates following applied research:
- determination of geophysical criteria to forecast rare metal mineralization;
- identification of structures and areas being favourable to prospect rich in content but blind rare metal objects. Hence, the main research purpose is systematization of petrophysical data to build petrophysical model of Akmai-Katpar ore zone, and tie the petrophysical rock characteristics with the observed geophysical anomalies for determination of geophysical features of rare metal mineralization of the above-mentioned ore zone.

Materials and methods. Successful solving the problem involved both analysis and structurization of geological and geo-physical data connected with the ore zone. In this vein, a system-based scientific approach to geological and geological information has been applied which helped divide them into the three groups:

I. Geological information. As part of Akmai–Katpar ore zone analysis, following geological formations have been studied and classified (Fig. 1) [30, 31]:
- sedimentary and igneous bodies dating from the Lower Silurian;
- effusive rocks formed during the Lower and Middle Devonian;
- ingenious structures of the Upper Paleozoic;
- complex of various sedimentary and sedimentary-igneous rocks available in the Upper Devonian and Lower Carboniferous;
- intrusive rocks distributed within the northern part of the ore area inclusive of alaskitic granites composing Akmai formation; the rocks have been studied through well drilling at 400–600 m depths;
- deposits belonging to tertiary and quaternary periods.

Sedimentary and carbonaceous rocks are observed within the central share of the ore zone. They are the Upper Famennian aleurites and sandstones (D. fm1) and the Lower Tournaisian limestones (C1t). Near Severny Katpar deposit, limestones are affected by metamorphism processes. To the north of the field, less metamorphized their differences are exposed (Fig. 1).

II. Petrophysical characteristics (i.e. density, magnetic susceptibility, magnetism, and apparent resistivity). Petrophysical characteristics of the area rocks are based upon monographic and reference data as well as production reports from the 1980s till 2018. Such petrophysical characteristics as density and magnetic susceptibility have been systematized for Akmai-Katpar ore zone helping conclude the following:

1. The rocks considered within the ore zone can be divided into four groups depending upon their density:
- Group one contains intrusive formations of all complexes with less than 2.55–2.57 g/cm³ density.
- Group two contains effusive rocks of subvolcanic facies of liparitic carbon porphries with 2.57–2.62 g/cm³ density. Group three contains liparitic rocks as well as tuffs, corresponding to them, and belonging to the Middle and Lower Devonian, and carbonate rocks, belonging to the Carbon which density is 2.64 to 2.68 g/cm³.
- Group four contains following types of formations and rocks with 2.70 up to 3.5 g/cm³ density: igneous bodies; marmorized limestones, belonging to the carbon; andesite porphyrites; sand–greisen units; and stockworks formed during the Silurian period.

2. Magnetic rock characteristics in Akmai–Katpar ore zone help separate such three groups. Group one involves such nonmagnetic rocks as carbonate-territigenous deposits of the Lower and Upper Famennian; picrolastic bodies of liparite-dacitic composition; subvolcanic facies of liparitic porphryrites; and igneous Devonian formations. Their magnetic susceptibility is 12–15 × 10⁻⁶ CGS.

Group two involves rocks with low magnetic activity being liparite-dacitic porphyrites, and leucocratic composition granites which magnetic susceptibility is 60 up to 120 × 10⁻⁶ CGS.

Group three involves such magnetic rocks as andesite porphyrites with 3840 × 10⁻⁶ CGS magnetic susceptibility, and the Silurian and Middle Devonian hornfelsed bodies; the Permian and Carbon biotitic granites which magnetic susceptibility is 240 up to 960 × 10⁻⁶ CGS.

From the viewpoint of electric characteristics, rocks within deposits and mineral occurrences of the ore zone demonstrate high level of electric resistivity. It is especially important to mention intrusive and effusive rocks where electric resistivity is 1500 up to 3000 OHMM.

In terms of rock polarizability, the Devonian and Carbon minerals are almost similar since their metal factors are within analogous ranges being 1.3 to 1.66 %. Nevertheless, it should be mentioned that polarizability of the Permian granites is much higher (i.e. 2.8 %) to be twice as much as the Devonian and Carbon rocks.

III. Geophysical anomalies. In the context of Central Kazakhstan, there are some similarities between mineralogical ore composition as well as morphology of ore bodies. Relying upon analogous nature of polarizability of the Devonian and Carbon rocks, analysis of ore contain rate in the rare features may result in the fact that physical fields will demonstrate identical characteristics. The anomalies may cover the areas with negative minimums of gravity fields as well as areas with positive magnetic disturbances. The features are helpful while identifying potential deposits of rare metals within the considered ore zone.

Analysis and synthesis of geophysical materials in Akmai-Katpar ore zone as well as GIS technology to process cartographic data have become the basic research approach.

Research and discussion. Petrophysical model of Akmai-Katpar ore zone. The collected and systematized data, concerning petrophysical rock characteristics, have made it possible to build petrophysical model of Akmai–Katpar ore zone (Fig. 1). Subsequently, analyze petrophysical characteristics of the ore zone rocks.

Density. Ingenious rocks, corresponding to the Silurian period, are of density within the range of 2.78 g/cm³. The Middle Devonian D. Fm; minerals are effusive acidic rocks (i.e. liparitic and liparite-dacitic porphyrites) with 2.59–2.64 g/cm³ density. The Middle Devonian rocks of the Famennian stage D. Fm are andesites differing in slightly higher density values, i.e. up to 2.70 g/cm³. Density of such picrolastic formations of liparite-dacitic composition as Givetian D. gyfr and Frasnian D. Fr, belonging to the Devonian, is 2.58 to 2.70 g/cm³. It should be mentioned that in the Devonian profile, density of enclosing rocks increases.

Density of the Carbon rocks of the Tournai stage C1t, (i.e. limestones and marmorized limestones) is 2.64 to 3.5 g/cm³. Relatively high density value corresponds to the marbleized dark gray limestones with obvious sulfide impregnation.
Petrophysical model of Akmai-Katpar ore zone

<table>
<thead>
<tr>
<th>Erathem</th>
<th>System</th>
<th>Stage</th>
<th>Age index</th>
<th>Column</th>
<th>Thickness</th>
<th>Rock description</th>
<th>Density, g/cm³</th>
<th>Magnetic susceptibility, $\mu = 10^6$ GHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleozoic</td>
<td>Carboniferous</td>
<td>Tournaisian</td>
<td>C_1</td>
<td>~</td>
<td>< 45</td>
<td>Red and mottled clays with sand lenses</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Paleozoic</td>
<td>Carboniferous</td>
<td>–</td>
<td>γP_1</td>
<td>~</td>
<td>< 5</td>
<td>Sand, coarse sand</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Paleozoic</td>
<td>Carboniferous</td>
<td>–</td>
<td>γC_3</td>
<td>–</td>
<td>–</td>
<td>Early Permian granites</td>
<td>2.55</td>
<td>60</td>
</tr>
<tr>
<td>Devonian</td>
<td>Famennian</td>
<td>D_{Fm}</td>
<td>880–1140</td>
<td>–</td>
<td>–</td>
<td>Biotitic granites</td>
<td>2.57</td>
<td>240</td>
</tr>
<tr>
<td>Devonian</td>
<td>Famennian</td>
<td>D_{Fm}</td>
<td>400–500</td>
<td>–</td>
<td>–</td>
<td>Andesite porphyrites</td>
<td>2.57</td>
<td>3840</td>
</tr>
<tr>
<td>Frasnian</td>
<td>D_{Fr}</td>
<td>2000–2700</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Effusive anodeses</td>
<td>2.70</td>
<td>65</td>
</tr>
<tr>
<td>Givetian</td>
<td>D_{gv}</td>
<td>650–800</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Limestone formations</td>
<td>2.58</td>
<td>29</td>
</tr>
<tr>
<td>Givetian</td>
<td>–</td>
<td>S_1</td>
<td>>1000</td>
<td>–</td>
<td>–</td>
<td>Igneous rocks</td>
<td>2.78–2.84</td>
<td>960</td>
</tr>
</tbody>
</table>

Density of the Carbon limestones (2.64 g/cm³) is almost similar to the Devonian rock density. High values of the minerals are characteristic to their varied differences. In terms of the profile, carboniferous biotite granite is a low-density rock since its density is 2.57 g/cm³; moreover, andesite porphyrites have a high density value being 2.78 g/cm³.

The Permian granites are rocks with the lowest density (2.55 g/cm³); deposits and a number of mineralizations in the ore zone are associated with them. The petrophysical model helps understand that there are no specific changes in the density characteristic of the ore zone. It should be mentioned that a clear difference has been observed in density characteristics of intrusive formations (i.e., the Upper Carboniferous and Permian granites) having almost 2.55 g/cm³ density and being characterized by sedimentary bodies of silurian and carbon which density is 2.64 up to 2.77 g/cm³. The aforementioned makes it possible to use the density rock characteristics while identifying intrusive formations occurring within the area and containing rare metals. Hence, the considered ore zone involves variety of rocks differing in density. The density characteristics may be applied for geological studies as well as for rare-earth metal prospecting.

Magnetic susceptibility. It should be mentioned in this vein that enclosing rocks of Akmai-Katpar ore zone vary considerably as for their magnetic susceptibility. The characteristics may vary over a wide range of values from $10 \cdot 10^6$ up to $3840 \cdot 10^6$ CGS. The aforementioned denotes diversity of magnetic rock characteristics in the zone and emphasizes the importance to take into consideration the data in the process of geological studies and analysis of ore deposits. As the petrophysical model demonstrates, the hornfelsed indigenous silurian rocks are of high density as well as high magnetic susceptibility within $960 \cdot 10^6$ CGS depending upon the exocontact metamorphism processes resulting in the increased magnetic susceptibility of rocks. Magnetic susceptibility of effusive Devonian and Carbonic rocks results from the variety of their lithological composition as well as different morphogenetic demonstration types inclusive of lava material, subvolcanic bodies, tufts, and other rock varieties. Its value varies in the range of $12–100 \cdot 10^6$ CGS. Within the ore zone, andesite Carboniferous porphyrites have the highest magnetic susceptibility value being $3840 \cdot 10^6$ CGS. In addition, biotitic Carboniferous granites also have relatively high magnetic susceptibility value, i.e. $240 \cdot 10^6$ CGS. Magnetic susceptibility of the Carboniferous limestones is $12 \cdot 10^6$ CGS. Consequently, it is possible to conclude that within the ore zone, the Carboniferous profile is characterized by $12 \cdot 10^6–3840 \cdot 10^6$ CGS changes in magnetic susceptibility; as for the Devonian profile, it differs in its relatively low value being $10 \cdot 10^6$ up to $65 \cdot 10^6$ CGS.

It is important to stress that analysis and classification of petrophysical rock characteristics of the analyzed ore zone cannot be an independent mission; it should be correlated with the analysis of the observed geophysical fields. In this connection, we performed digitization and GIS-Micromine binding of cartographic materials of Akmai-Katpar zone in identical scope (geological, geophysical, etc.). As a result, layer-by-layer 3D maps have been obtained for the study area where gravitational and magnetic anomalies over it are visualized below.

Gravity field. Analyze correlation between petrophysical rock characteristics and nature of geophysical fields in Akmai-Katpar zone (Fig. 3). According to the geophysical data, granite bodies with rare-metal mineralization differ in negative gravity anomalies. Their characteristics are defined through geometry, depth, density of intrusive formations as well as density of surrounding rocks and their vertical thickness.

Geological data in the ore zone show Katpar and Akmai granite formations with low 2.55–2.57 g/cm³ rock dense char-
acteristics. As a result, they become apparent in the gravity field as a single gravity minimum in the form of a regular ellipsoid structure with 0.2 to 0.3 Mgal intensity; the field is oriented north-easterly. The gravitational minimums correspond to the domed patterns of the granite formations (Fig. 2).

The Devonian rocks with 2.65–2.68 g/cm³ density favour origination of positive gravitational anomaly being within the range of 0.2–0.4 Mgal. Moreover, positive gravitational anomaly with 0.3–0.4 Mgal intensity is also observed in the neighbourhood of Akmai deposit; it is connected with hydrothermally hydrothermal altered rocks.

Generally, Akmai-Katpar ore zone is characterized by negative gravitational anomaly at the expense of low-density intrusive rocks. Nevertheless, of metamorphism and metasomatism will influence changes in rock density; hence, they result in positive gravitational anomaly.

Magnetic field. At the northern border of Akmai-Katpar ore zone, tension stress and deep subsidence areas, controlling such places, have demonstrated narrow zones of negative gravitational anomalies with 50–150 nT intensity. Some faults, cured dykes of intrusive rocks of average and main compositions, and shallow differentiates of the Permian intrusions have demonstrated positive magnetic anomalies with 100–200 and more nT intensity. Magnetic susceptibility of the intrusive rocks varies from $60 \cdot 10^{-6}$ up to $240 \cdot 10^{-6}$ CGS. It should be mentioned that northern border of the ore zone is the gradient one. Southern border of the ore zone shows down to 0 attenuation of negative magnetic anomaly. It depends upon the fact that the Devonian ingenious-sedimentary deposits contact with terrigenous sediments of the stage of the Lower Silurian.

Supraintrusive zone of Akmai intrusion, where rare-metal objects are concentrated, stands out thanks to its positive magnetic anomalies which intensity is 50–200 nT. Within Severny Katpar and Akmai deposits, intensity of positive magnetic anomalies drops down to 50 nT depending upon low magnetic susceptibility of carbonaceous rocks not exceeding the value (Fig. 4).

Geophysical anomalies (i.e. gravitational and magnetic) of Akmai-Katpar ore zone correlate with the geochemical anomalies (Fig. 5).

In such a way, the maps support the idea that deposits and occurrences of the ore zones are concentrated within the areas where geochemical anomalies coincide with gravimagnetic anomalies (Figs. 3, 4 and 5). It is common knowledge that prognostic-prospecting geophysical criteria are the features of anomalous geophysical fields and their relation with petrophysical rock characteris-
Acknowledgments. This research was funded by the Ministry of Ecology, Geology, and Natural Resources of the Republic of Kazakhstan, the project number BR10264324.

References.

Геофізичні ознаки рідкометалевої рудносності Акмая-Катпірської рудної зони (Центральний Казахстан)

З.Абдасенова¹, Л. Ісабіев¹, К. Тогізов², С. Асубаева¹, М. Курманғажиңова¹

¹і – Satbayev University, м. Алмати, Республіка Казахстан
2- Інститут геологічних наук імені К. І. Сатпаєва, м. Алмати, Республіка Казахстан

Автор-кореспондент e-mail: k.togizov@satbayev.university

Мета. Встановлення геофізичних критеріїв щодо визначення ознак рудносності території на основі систематизації геологічних і геофізичних матеріалів.

Методика. При проведенні наукових досліджень нами були застосовані інноваційні методи, що викорис-товуються в галузі геології – ГІС-технологія, а також тео-ретичні наукові методи – аналіз і синтез петрофізичних даних і даних геофізичних аномалій щодо вивчення рудної зони.

Результати. Узагальнені і систематизовані петрофізичні характеристики порід Акмая-Катпірської рудної зони. Побудована петрофізична модель даної рудної зони її визначені зміни петрофізичних характеристик порід у розрізі наступних систем: силур, девон, карбон і перм. Отримані параметри петрофізичної моделі пов’язані з виявленими геофізичними аномаліями. Установлені геофізичні ознаки рідкометалевої рудносності рудної зони. Уточнені картографічні матеріали, що дали змогу побудувати поширені карти Акмая-Катпірської рудної зони.

Наукова новизна. Для побудови петрофізичної моделі Акмая-Катпірської рудної зони та удосконалення геофізичних критеріїв прогнозування вперше використані систематизовані геологічні і петрофізичні матеріали.

Практична значимість. Полегшує у використанні геофізичних критеріїв прогнозування виділення перспективних площ зосередження рідкісних металів.

Ключові слова: рудна зона, рідкісні метали, петрофізичні характеристики, геофізичні аномалії, гравітаційне поле, магнітне поле

The manuscript was submitted 15.05.23.