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CONTACT TENSIONS UNDER THE SOLE OF RIGID DEEP LAYING 
FOUNDATIONS AND GROUND ANCHORS

Purpose. To solve the problem of the allocation of contact vertical normal tensions along the sole of a rigid round stamp, lo­
cated in an elastic isotropic half-space at a certain depth h ≠ 0. To compare the obtained solution with the well-known classical 
result for h = 0, to check the obtained results for adequacy.

Methodology. Based on the analysis of the decision on the stress-strain state of the base, inside which there is a vertical arbitrary 
load distributed over the area of the circle, the necessary formulas are obtained to solve the problem. An algorithm for constructing 
an approximate solution has been developed, the essence of which is to use a combination of the boundary element method and the 
iteration process by S. N. Klepikov. For a number of depths, approximate solutions of the considered problem are obtained.

Findings. The proposed algorithm for the approximate solution of the problem of indenting a round rigid stamp into the upper 
boundary of an elastic isotropic half-space has good agreement with the exact solution and can be used to solve contact problems. 
The outlines of the contact stress diagrams depend on the depth at which they are determined – the greater the depth, the flatter 
the outlines of the diagrams are, while starting from a certain depth, the diagrams of contact stresses practically coincide. The 
greater the depth is at which the stamp is located, the more force must be applied to obtain equal displacements of the stamp.

Originality. The obtained research results significantly expand the possibilities of solving various problems of soil mechanics and 
foundation engineering, make it possible to obtain absolutely new results. In particular, a clear dependence of the contact stresses along 
the sole of a rigid round stamp on the depth at which it is located was identified. In addition, the presented data allow us to designate 
an absolutely new direction in the calculation of the foundations of ground anchors, namely, the calculation of their deformations.

Practical value. For engineering practice, it is important that the greater the value of Poisson’s ratio of the base is, the greater 
the contact stresses are, other things being equal.

Keywords: deep laying foundations, contact tensions, hard stamp, ground anchor, base sinking, isotropic half-space

Introduction. Deep foundations with round soles are de­
signed to transfer the load to strong soils at very great depths.

These foundations perceive heavy loads, since with a sig­
nificant depth of their immersion, the protrusion of the soil 
from under the sole to the day surface is excluded.

At the same time, ground anchors are used for fixing soil 
slopes, open and underground workings, pits, chimney foun­
dations, masts, towers, other structures and their elements.

Deep foundations and ground anchors are widely used in 
mining, mine building, civil, transport and hydrotechnical 
construction [1, 2].

From the point of view of geometry, these two types of 
structures are identical considering the fact that the ratio of 
their radius R to the laying depth of their soles h is much more 
than 10 [1, 3].

When designing such structures, it is very important to 
know the distribution of vertical normal contact stresses along 
their sole. In the first approximation, for a theoretical solution 
of the problem under consideration, it is sufficient to interpret 
the soil foundation as a linear isotropic elastic medium, and 
the sole of the deep foundation (or ground anchor) as an abso­
lutely rigid body [4, 5].

The relevance of the work. At present, when calculating 
stresses in soil foundations, the so-called fundamental solu­
tions and the superposition principle are applied [5–7].

When using one or another fundamental solution, there are:
1. Stresses due to the action of a vertical concentrated force 

applied to the upper boundary of the half-space (at a depth 
h = 0), where h is a distance from the day surface to the point 

of application of the force along the vertical (i. e. in the direc­
tion of the axis 0z, Fig. 1).

This fundamental solution is called the Boussinesq problem.
If the force acts in a horizontal direction, then we are deal­

ing with the Cerruti problem.
2. Stresses due to the action of a vertical (and horizontal) 

concentrated force applied inside the half-space (at a depth 
∞ > h ≠ 0).

This fundamental solution is called the Boussinesq problem.
3. Stresses due to the action of a vertical (and horizontal) 

concentrated force applied inside space (at depth h = ∞).
This fundamental solution is called the Kelvin problem.
Also known is the problem of stress distribution at the base of 

a rigid round stamp located on the upper boundary of an elastic 
half-space (i. е. at h = 0). At the same time, the correct solutions 
to the problem of a rigid stamp located in the soil half-space (i. е. 
at h ≠ 0) soil space (i. е. at h = ∞), are practically absent.

The research materials presented in this article are aimed 
at solving this problem.

Purpose of the work. To obtain a solution to the problem of 
the distribution of vertical normal stresses along the sole of a 
rigid round stamp located in an elastic isotropic half-space at a 
certain depth h ≠ 0.

The obtained result was compared with the classical solu­
tion of the problem known in the literature for depth h = 0 and, 
thus, the obtained results were checked for adequacy.

Materials and research methods. At the first stage of research, 
we performed an analysis of the well-known solution to the prob­
lem of the stress-strain state of the base, inside which there is a 
vertical arbitrary load distributed over the area of the circle [7].

On this basis, the formulas necessary for solving the prob­
lem under consideration were obtained.
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Next, an algorithm for constructing an approximate solu­
tion to the problem was developed the essence of which is to 
use a combination of the boundary element method and the 
iteration process by S. N. Klepikov [8].

Further, for a number of depths, a number of approximate 
solutions of the problem under consideration were obtained.

Formulation of the problem. Presentation of the main mate-
rial. Let us consider the problem of determining the contact 
stresses at the base of a round-shaped, flat, buried ground an­
chor that has received vertical displacement W0. The design 
scheme is shown in Fig. 1.

We formulate the research problem as follows. At a depth h 
parallel to the horizontal day surface of the base, there is a 
round, flat stamp with a thickness t. The stamp radius is R. The 
thickness of the stamp is much less than its radius and the 
depth at which the stamp is located, i. е. R  t and h  t. The 
elastic properties of the base are also known – its shear modu­
lus G and Poisson’s ratio v. It is required to determine the dia­
gram of contact stresses q(r) and the magnitude of the pull-out 
(such a design scheme corresponds to a ground anchor) or in­
dentation (such a design scheme corresponds to a deep founda­
tion) concentrated force N. When determining these character­
istics, the deformations of the stamp in the radial direction can 
be neglected, and its bending deformations are equal to zero.

Consider formula (12) from [7]. We have:
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 and z is a vertical current coor­
dinate.

Next, using the passage to the limit, we find

	

( ) ( )1 2

2
2

2 2
0

0

1lim lim
8 (1 )

8 6 8
3 4 ,

12 5 2
( ) ( )

z h z h

h

W W W
G

h h
e

h

A J r d

→ →

∞
- ⋅a⋅


= = = × ⋅ -n ⋅ 

  ⋅n + ⋅a ⋅ - ⋅a ⋅ ⋅n - × - ⋅n + ⋅ ×    - ⋅n + + ⋅a ⋅    
× a ⋅ a ⋅ ⋅ a 

∫ 	 (1)

where W is total vertical movement of an absolutely rigid 
stamp; W1is the same, in plane z = h - 0; W2 is the same, in 
plane z = h + 0; J0(x)is Bessel function of the first kind with 

zero index and valid argument; 0
0
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∞
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q(r) is some coordinate function r (this function has the physi­
cal meaning of a distributed load and the dimension kPa); a is 
Bessel transform parameter a ∈ (0, ∞); z is current coordinate 
[8, 9].

Next, we perform asymptotic estimates of the formula ob­
tained by us (1). For h → 0 we have
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This estimate is valid when the stamp is located on the up­
per boundary (i.e. day surface) of the base. It should be noted 
that formula (2) is usually used to determine the contact 
stresses in the base located on the border of the soil base of flat 
rigid stamps.

We accept in (1) h → ∞, we get
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This estimate is valid in the case when the stamp is located 
at a great depth (i. e., at a considerable distance from the day 
surface of the base, in other words, when h/R  1). Next, we 
find the ratio of the movement of the stamp located on the day 
surface of the base (2) to the movement of the stamp at a con­
siderable depth (3), also Fig. 2
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Where W * is relative displacement.
From formula (4) and Fig. 2, it follows that, other things 

being equal (i. e., with the same properties of the base, the 
magnitude and distribution law of the vertical load), depend­
ing on the value of Poisson’s ratio, sediment ratio at h → 0 and 
h → ∞ changes by 2–2.7 times, and the greater the Poisson’s 
ratio v is, the less W * is.

Next, we find the contact pressure along the sole of the 
rigid stamp. For this, it is necessary to consider the vertical 
normal stresses sz(r, z).

From formula (12) on the 18 th page of [7] we have:
Fig. 1. Calculation scheme of the “base–rigid stamp” system:

а – base; b – rigid stamp
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After that, using formulas (5, 6), we find the contact pres­
sure on the sole of the stamp at depth h
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Formulas (1, 7) make it possible to construct an exact so­
lution to the problem.

To construct an approximate solution, we use the bound­
ary element method [10]. In doing so, we take into account the 

axial symmetry of the problem. We divide the contact area into 
n sections, and approximate the contact diagram with a 
stepped line (Fig. 3).

We find the settlement of the base due to the ring load qi 
(Fig. 4), whose width is equal to

	 a = ri + 1 - ri.	 (8)

In accordance with the diagrams in Figs. 3 and 4: and us­
ing the Bessel preformation, we have
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where qi is distributed load within the i th ring.
Next, we substitute (9) in (1) and we find the sediment of 

the foundation at a depth h at the point with coordinate

1 at 1.
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Fig. 2. Dependence of the relative displacement of a rigid stamp 
W * on Poisson’s ratio of the base v

Fig. 3. Actual contact diagram q(r) approximated by a stepped 
line q1(r) (scheme):
N is the resulting force acting on the stamp, numerically equal to 
the sum of the products of each of the contact stresses and the area 
over which they act
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Next, we find the sediments of the center of each of the 

rings into which the contact diagram is divided. We get
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where n is the number of ring sections into which the contact 
diagram is divided.

By the condition of the problem, the stamp is absolutely 
rigid. Therefore, the displacements at the contact of the stamp 
with the base are equal to each other and are known in ad­
vance. Based on these considerations, we obtain an expression 
for determining unknown stresses qi

	 0.ij i iB q W W⋅ = =


	 (12)

Having determined within each of the concentric rings the 
value of the load acting within it qi (Figs. 3 and 4), we find the 
magnitude of the resulting force N. We get
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For a number of values included in the formulas (1–13) of 
the parameters, we calculated the distribution of contact 
stresses q(r) and the values of the pulling force N.

To solve the system of equations (12) taking into account 
condition (13) we used the iteration process. The essence of 
the process is as follows [10]:

1. First, we need to set the magnitude of the force N. Since 
the base is linear isotropic, after normalizing the results of 
solving the problem, the value of the force does not affect their 
distribution along the coordinate.

2. Next, using the formula , 2o i
Np
R

=
p⋅

 it is necessary to 
determine the pressure under the sole of the stamp in the ini­
tial approximation.

3. After that, using formulas (8), one should calculate the 
settlements of the centers of each of the annular boundary ele­
ments W0,i (Fig. 4). In this case, the load on the base within 
each of the boundary elements should be taken constant.

4. Next, using the formulas C0,i = p0,i /W0,i it is necessary to 
calculate the stiffness coefficients within the limits of each of 
the annular boundary elements.

5. Next, using the formulas *
1, 0, ,i i o ip p C= ⋅  the pressures 

within each of the annular boundary elements should be cal­
culated.

6. After that, using the formulas * *
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exact pressures within each of the annular boundary elements 
should be calculated.

7. Further, using paragraphs 3–6, we determine W0,i, C1,i, p1,i.
8. The iteration process is considered completed if the 

condition

1,

,1
max 1 ; 1,..., ,j i

j

p
i n

p
-- ≤ e =

where pj,i is pressure within the i th boundary element; i is the 
boundary element number; j is the iteration number; e is some 
small predetermined number.

Results of solving the contact problem:
1. First, we find a solution to the problem for h → 0. In this 

case, the movement of the stamp should be determined using 
(2), and the contact stresses should be determined using (5).

2. Next, we consider the exact solution of the problem (it is 
presented in the work [10]). We introduce into consideration 
an integral of the form

	 0

0

0
0

at ;
2 sin( ) ( ) 2 arcsin .

W r R
RW J r d R

r

∞ - <
a⋅ - ⋅ ⋅ a ⋅ a =  - ⋅p a   p  

∫ 	 (14)

Formula (14) takes into account the direction of the pull-
out force acting on the stamp (Fig. 1).

3. Next, from the comparison of (2) and (14), we find

	 0 0
2 sin( )( ) ( ).

(1 )
G RA W J ra⋅

a = - ⋅ ⋅ ⋅ ⋅ a ⋅
p -n a

	 (15)

Next, we substitute (15) into (7) and calculate the improp­
er integral thus obtained. We have

	
0 0

0

0
2 2

2( ) sin( ) ( )
(1 )
2 1 .

(1 )

Gq r W R J r d

W G

R r

∞

= - ⋅ ⋅ ⋅ a ⋅ ⋅ a ⋅ ⋅ a =
p -n

⋅
= - ⋅ ⋅

p -n -

∫
	 (16)

Next, we normalize by putting in (16)

0

( ) (1 ), and .
2

r q rr q
R R W G

* *a ⋅p⋅ -n
= ξ = =

⋅ ⋅

We get

	 0 2
0

1( ) sin( ) ( ) .
1 ( )

q r J r d
r

∞
* *

*
= - ξ ⋅ ξ ⋅ ⋅ a = -

-
∫ 	 (17)

Fig. 4. Scheme for determining the displacements of the base 
W(r), caused by annular stepped load qi
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To solve the problem by the boundary element method, in 
(12) one should set W0 = -1.

The values of the contact stresses calculated by (12, 17) at 
the base of the rigid stamp located on the day surface of the 
soil base (i. е. at h = 0) are presented in Fig. 5.

Their comparison allows us to conclude that they almost 
completely coincide. This, in turn, gives reason to believe that 
the contact stress diagrams established using the boundary el­
ement method for depths h > 0 will be close to accurate. When 
performing calculations at depths h > 0 in addition to the di­
mensionless complexes adopted in (17), one should take

	 ,hh
R

* = 	 (18)

where h is the depth at which the contact diagram is deter­
mined; R is stamp radius.

The results of determining contact diagrams at different 
depths are shown in Fig. 6.

Further, using formula (13), the dependence of the pull-
out force acting on the stamp was established N * =

1

0

2 ( )q r r dr* * *= ⋅p⋅ ⋅ ⋅∫  from the depth of the stamp h* (Fig. 7).

After that, we studied the effect of contact stresses of the 
Poisson’s ratio of the base on the distribution (Fig. 8).

Conclusions. The research results allow us to draw the fol­
lowing conclusions:

1. The approximate solution of the problem of indentation 
of a round rigid stamp into the upper boundary of an elastic 
isotropic half-space obtained using the algorithm proposed by 
the authors is in good agreement with the exact solution 
(Fig. 5). This led to the conclusion that the developed algo­
rithm can be used to solve contact problems.

2. The outlines of the contact stress diagrams depend on 
the depth at which they are determined – the greater the depth 
is, the gentler the outlines of the diagram are (Fig. 6). In this 
case, starting from a certain depth, the diagrams of contact 
stresses practically coincide.

3. The greater the depth is at which the stamp is located, 
the greater the force must be applied to obtain equal stamp 
movements (Fig. 7).

4. The greater the value of Poisson’s ratio of the base is, the 
greater the contact stresses are, ceteris paribus (Fig. 8). In our 
opinion, this fact is very important for design practice.

In general, the research materials presented in this article 
allow us to conclude that the results obtained significantly ex­
pand the possibilities of solving various problems of soil me­
chanics and foundation engineering and make it possible to 
obtain completely new results.

In particular, a clear dependence of the contact stresses at the 
sole of a rigid round stamp on the depth at which it is located was 
revealed. In addition, the presented data make it possible to des­
ignate a completely new direction in the calculation of ground 
anchor base, namely, the calculation of their deformations.
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Контактні напруження під підошвою 
жорстких фундаментів глибокого 
закладення і ґрунтових анкерів
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Мета. Вирішення завдання із розподілу контактних 
вертикальних нормальних напружень по підошві жор­
сткого круглого штампа, розташованого у пружному ізо­
тропному напівпросторі на деякій глибині h ≠ 0. Порівня­
ти отримане рішення з відомим класичним результатом 
при h = 0, перевірити отримані результати на адекватність.

Методика. На основі аналізу рішення про напруже­
но-деформований стан основи, усередині якої знахо­
диться розподілене по площі круга вертикальне довільне 
навантаження, були отримані необхідні формули для ви­

рішення поставленого завдання. Розроблено алгоритм 
побудови наближеного рішення, суть якого полягає у ви­
користанні комбінації методу граничних елементів і про­
цесу ітерації С. Н. Клепікова. Для ряду глибин отримані 
наближені рішення даної задачі.

Результати. Запропонований алгоритм наближеного 
розв’язання задачі про вдавлення круглого жорсткого 
штампа у верхню межу пружного ізотропного півпросто­
ру має гарну відповідність із точним рішенням і може 
бути використаний для розв’язання контактних задач. 
Обриси контактних епюр напружень залежать від глиби­
ни, на якій вони визначаються – чим більше глибина, 
тим більш пологими є обриси епюри, при цьому, почи­
наючи з деякої глибини, епюри контактних напружень 
практично збігаються. Чим більше глибина, на якій роз­
ташований штамп, тим більші зусилля слід докласти для 
отримання рівних переміщень штампа.

Наукова новизна. Отримані результати досліджень 
значно розширюють можливості вирішення різних за­
вдань механіки ґрунтів і фундаментобудівництва, дають 
можливість отримати абсолютно нові результати. Зокре­
ма, була виявлена чітка залежність контактних напру­
жень по підошві жорсткого круглого штампа від глиби­
ни, на якій він знаходиться. Крім того, представлені дані 
дозволяють позначити абсолютно новий напрям у розра­
хунку основ ґрунтових анкерів, а саме – розрахунок їх 
деформацій.

Практична значимість. Для практики проектування 
важливий той факт, що чим більше значення коефіцієнта 
Пуассона основи, тим за інших рівних умов більше кон­
тактні напруження.

Ключові слова: фундамент глибокого закладення, кон-
тактні напруження, жорсткий штамп, ґрунтовий анкер, 
осідання основи, ізотропний полупростір

The manuscript was submitted 24.03.22.


