The use of excavator The complex operation. Optimum values of the bench face width parameters. Moreover, analysis of a rotation angle in the context of a pit. Nevertheless, it does not mean that maximum actual efficiency will be achieved in terms of the parameters. Minimum capacity losses show only the availability of optimum values of the bench face width parameters. Nevertheless, it does not mean that maximum actual efficiency will be achieved in terms of the parameters. Moreover, analysis of a rotation angle in the context of a pit. Furthermore, the position level is impartial. In addition, the dragline position was assumed near a bench crest (as it is done in terms of non-haulage development system) which increased its unloading rotation angle.

Technological schemes of dragline excavators operation in combination with trucks are not sufficiently studied; they have different optimal technological parameters of the excavator face when its maximum productivity is achieved [10]. Thus, substantiation of rational technological schemes of dragline operation in the context of Motronivskyi MPP is an urgent scientific task to cut stripping cost.

Determining parameters of development system elements in terms of different stripping technological schemes. The use of dragline systems for direct truck loading has many disadvantages. The reduced excavator efficiency compared to non-haulage technique is the key one [11, 12].

In this regard, studies on the technological schemes of dragline operation with truck loading have been carried out [13, 14]; optimum bench face parameters have been determined. The research makes it possible to support the idea that there are 4 schemes with the maximum dragline efficiency (Fig. 1):

- **scheme 1:** a dragline is located at a 0.5 A distance from a bench crest; unloading is performed into a truck located at a level being comparable with an excavator position which is at the level of the excavator near the protection embankment (Fig. 1, a);
- **scheme 2:** a dragline is located at a safe distance 1 from a bench crest; unloading is performed into a truck located at an excavator level near the protection embankment (Fig. 1, b);
- **scheme 3:** a dragline is at a 0.5 A distance from a bench crest; unloading is performed into a truck located lower compared with the dragline position being in the central part of the bench width (Fig. 1, c);
- **scheme 4:** a dragline is at a safe distance 1 from a bench crest; unloading is performed into a truck located lower compared with the dragline position being in the central part of the bench width (Fig. 1, d).
In the context of the current scheme, \(h = 10 \) m ore bench is flooded; it is developed using dredgers. We assume the mining technique for the four proposed stripping operation schemes.

However, when using the mining technology, the ore bench is flooded, preventing from the dump truck position on its roof. Therefore, when using schemes 3 and 4 for stripping, the overburden ledge will be developed according to scheme 1.

To calculate the slope of the working side of the pit, we use the following formula

\[
\varphi = \arctg \left(\frac{\sum H_{ij} + h}{\sum h_{ij} \cdot \tan \gamma + \sum H_{ij} \cdot \tan \alpha + \sum S_{ij}} \right),
\]

where \(n \) is the number of development ledges; \(i \) is the serial number of the ledge; \(H_{ij} \) is height of the mining ledges, m; \(\gamma \) is slope angle of the production ledge, deg.; \(\alpha \) is slope angle of the mining ledges, deg.; \(S_{ij} \) is working area width of the ledge.

The work platforms width is determined by the formula

\[
S_{hp} = A + C + P + T + z,
\]

where \(C \) is distance from the lower edge of the ledge to the transportation line; \(T \) is width of the transportation line, m (\(T = 11 \) m according to SNiP 2.05.07-91); \(P \) is width of the line for additional equipment and power supply, m; \(z \) is width of safety berm, m.

The resulting angle of the pit working side inclination for each scheme has been calculated; Table 1 demonstrates the outcomes.

Analysis of Table 1 shows that the largest angle of the working side of the pit, being \(\varphi = 12.8^\circ \), is achieved by using the technological scheme with lower unloading (scheme 3), and the smallest angle of the working side of open the pit \(\varphi = 11.7^\circ \) with the scheme with unloading at the installation level (scheme 2).

In terms of scheme 3, larger angle of the working side of the pit depends upon the smaller working bench width [19].

For more detailed study and selection of the technological scheme of the dragline excavator, we calculate \(K_h \) being a degree of mining operations concentration. It is determined by the ratio between minimum allowable area of the pit and the actual one [2].

The indicator of the degree of mining operations concentration in the pit is determined by the formula

\[
K_h = \frac{S_{hp}}{S_f},
\]

where \(S_{hp} \) is working area of the ledge; \(S_f \) is working area of the ledge.

Parameters of development system elements when using different schemes of overburden works

<table>
<thead>
<tr>
<th>Development system elements</th>
<th>Scheme 1</th>
<th>Scheme 2</th>
<th>Scheme 3</th>
<th>Scheme 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overburden ledges</td>
<td>Overburden ledges</td>
<td>Overburden ledges</td>
<td>Overburden ledges</td>
</tr>
<tr>
<td></td>
<td>1 2 3 4 k. k.</td>
</tr>
<tr>
<td>Bench height, m</td>
<td>10 10 10 10</td>
<td>10 10 10 10</td>
<td>10 10 10 10</td>
<td>10 10 10 10</td>
</tr>
<tr>
<td>Working slope angle, deg.</td>
<td>40 40 40 40</td>
<td>40 40 40 40</td>
<td>40 40 40 40</td>
<td>40 40 40 40</td>
</tr>
<tr>
<td>Stable slope angle, deg.</td>
<td>32 32 32 32</td>
<td>32 32 32 32</td>
<td>32 32 32 32</td>
<td>32 32 32 32</td>
</tr>
<tr>
<td>Width of the work site, m</td>
<td>42 42 42 42</td>
<td>46 46 46 46</td>
<td>40 40 40 40</td>
<td>42 42 42 42</td>
</tr>
<tr>
<td>Overall angle of the working side of the pit, deg.</td>
<td>12.5</td>
<td>11.7</td>
<td>12.8</td>
<td>12.3</td>
</tr>
</tbody>
</table>
where S_{mb} is minimum allowable area of the pit under the rock mass stability conditions, ha; S_j is actual area of the pit in terms of the applied development system, ha

$$S_j = L_{zm} \cdot (H_j + b) \cdot \frac{1}{(\text{ctg} \varphi + \text{ctg} \beta_j + b)},$$

where L_{zm} is surface length of the working zone of the pit, m; β_j is resulting slope angle of an internal dump, deg (being $\beta_j = 15^\circ$ for the existing dumping method); b is distance between the toe of mining bench and the dump, m.

The minimum allowable area of the pit is calculated by the formula

$$S_{min} = L_{zm} \cdot (H_j + b) \cdot \frac{1}{(\text{ctg} \varphi + \text{ctg} \beta_j + b)},$$

where L_{zm} is minimum allowable surface length of the working area of the pit, m; β_j is stable angle of internal dump inclination, deg; φ is stable angle of the working side of the pit, deg. $\beta_j = 18.4^\circ$ and $\varphi_j = 31.4^\circ$ in the context of Motronivsko-Annyvskyi placer development [4].

The actual pit working area and the value of the indicator of the mining operations concentration degree were calculated for each of the four proposed schemes. Diagram in Fig. 2 demonstrates the calculation results.

While analysing the calculation results of the concentration of mining operations in the pit (Fig. 2), we can say that a scheme with lower unloading and dragline position at a distance of 0.5 A from the upper ledge (scheme 3) is the most effective technological procedure when a dragline is combined with trucks [20, 21]. That depends upon the fact that the highest mining operation concentration in the pit is $K_j = 0.64$ indicating the minimum values of the working area of the pit compared with other schemes.

Resulting from the research as well as calculations of the degree of concentration of mining operations in the pit, we select the scheme of dragline with lower unloading in a dump truck, located in the centre the bench width (scheme 3) to work in Motronivsko-Annyvskyi pit.

To calculate stripping cost, it is necessary to determine the required amount of mining and transport equipment to ensure the annual production of overburden as Apl.year = 13.5 million m³/year.

Calculate the amount of mining equipment for each of the proposed schemes.

Dragline shift performance is determined by the formula

$$Q_{e, zm} = Q_{e, zv} \cdot T_{zm} \cdot k_{j, v} \cdot k_{n, p} \cdot k_{n, c} \cdot k_{s, z},$$

where T_{zm} is shift duration, hours, $T_{zm} = 12$ hours; $k_{j, v}$ is coefficient of extraction technology, $k_{j, v} = 0.83$; $k_{n, p}$ is coefficient that takes into account the accumulation of rock in the complex hydrogeological conditions of Motronivsko-Annyvskyi pit, $k_{n, p} = 0.97$; $k_{s, z}$ is unloading factor, which takes into account the rock shedding when unloading the dragline in the dump truck due to the design features of the bucket (reverse bucket), $k_{s, z} = 0.8$; $k_{n, c}$ is coefficient of excavator operation in time under transport conditions which takes into account the time for exchange of dump trucks. We assume it as $k_{n, c} = 0.7$.

Annual productivity of dragline excavators ESh 10/50 (EIII–10/50) is calculated according to the formula

$$Q_{e, zm} = Q_{e, zv} \cdot n_{zm} \cdot N_D,$$

where n_{zm} is the number of complete work shifts per day, $n_{zm} = 2$ shifts; N_D is the number of working days in the year, $N_D = 260$.

Determine the required number of draglines to perform the planned stripping operations if $A_{pl, year} = 13.5$ million m³/year.

$$N_D = \frac{A_{pl, year}}{Q_{e, zm}}$$

Determine the required number of Cat-773E trucks for the excavator.

The duration of the dump truck loading cycle with ore sand is calculated by the formula, s

$$t_{e, zm} = \frac{V}{E \cdot 60},$$

where V is volume of the truck body, $V = 26.6$ m³. The cycle duration is selected using timing and calculating values of turn duration for each of the schemes involving optimal parameters of the bench face.

Duration of the dump truck trip is (s)

$$t_r = t_{e, zm} \cdot \left(\frac{2L_{zm}}{v_{zm}} + t_{mc}\right),$$

where L_{zm} is average rock mass transportation distance to the dump, km; it is $L_{zm} = 2$ km for schemes with unloading at the level of standing, $L_{zm} = 2.1$ km for schemes with unloading below the level of standing; v_{zm} is dump truck speed $v_{zm} = 25$ km/h; t_{mc} is duration of unloading of the dump truck, $t_{mc} = 1$ min.

The shift performance per shift of one truck will be

$$Q_{e, zm} = \frac{60}{t_r} \cdot T_{zm} \cdot V \cdot k_{n, a} \cdot k_{mc} \cdot k_{s, zm},$$

where $k_{n, a}$ is coefficient of filling the dump truck body, $k_{n, a} = 1$; k_{mc} is coefficient taking into consideration a truck during the shift being $k_{mc} = 0.85$.

The required number of trucks for one excavator is calculated by the formula

$$N_D = \frac{Q_{e, zm}}{Q_{e, zm}},$$

The total number of dump trucks is calculated by the formula

$$N_{e, zm} = N_D \cdot N_{p}.$$

Table 2 demonstrates the calculation results.

To select the required technology, we calculate the cost of stripping 1 m³ of rock mass for the proposed options.

The production programme of the sections of the mining enterprise is based on the selected technology of stripping, provision of mining equipment and mode of operation of the enterprise. The number of working days in terms of a breaking mode with a six-day working week is 305. The number of shifts per day is 2, 12 hours each.

The cost of 1 m³ of stripping is calculated on the basis of the above production costs for wages, auxiliary materials, fuel, depreciation by summing them. Calculation of the cost of stripping is given in Table 3.
Fig. 3. Technological scheme to develop Motronivsko-Annivskyi placer
Results. As it is understood from Table 3 data, the main share of costs for each of the schemes is covered by the costs of fuel, electricity, and depreciation. It is also seen that the minimum cost of stripping will be when using schemes with lower unloading depending upon the greater productivity of the dragline, and hence the smaller amount of mining equipment. Thus, schemes 3 and 4 are the least expensive.

The cost of production under the existing technological scheme of operation of a dragline excavator ESh–10/50 (ESh–10/50) in a complex with trucks in Motronivsko-Annivskyi pit is UAH 51.74 per m³. Use of the scheme with the lower unloading, and the optimal parameters of the face will reduce the stripping cost of 1 m³ of rock mass by UAH 5.9 and reduce the total stripping cost

\[UAH\ P = (51.75 - 45.84) \times 13.5 = 79.65 \text{ million a year}. \]

Resulting from the research as well as calculations of the degree of concentration of mining operations in the pit, we select the scheme of dragline with lower unloading in a dump truck, located in the centre the bench width (scheme 3) to work in Motronivsko-Annivskyi pit.

The calculations have helped us elaborate a technological scheme to develop the pit of Motronivskiy MPP (Fig. 3).

Table 2

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Schemes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Bench height, m</td>
<td>10 10 10 10 10</td>
</tr>
<tr>
<td>Working bench width, m</td>
<td>24 28 22 24 30</td>
</tr>
<tr>
<td>Duration of the loading cycle, min</td>
<td>1.8 1.8 1.5 1.5 1.8</td>
</tr>
<tr>
<td>Annual productivity of the excavator, thousand m³/year</td>
<td>1574 1585 1792 1791 1565</td>
</tr>
<tr>
<td>Number of dragline excavators ESh 10/50</td>
<td>9 9 8 8 9</td>
</tr>
<tr>
<td>Number of Cat–773E</td>
<td>27 27 24 24 27</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Elements of cost</th>
<th>Costs for the annual volume of stripping (13.5 million m³), UAH million using the schemes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Basic salary</td>
<td>10.5 12.2 10.8 10.8 12.2</td>
</tr>
<tr>
<td>Additional salary (9 % of the basic)</td>
<td>0.9 1.1 0.97 0.97 1.1</td>
</tr>
<tr>
<td>Wages together</td>
<td>11.4 13.3 11.7 11.7 13.3</td>
</tr>
<tr>
<td>Salary accruals (22 % of wages)</td>
<td>2.5 2.9 2.5 2.5 2.9</td>
</tr>
<tr>
<td>Basic and auxiliary materials</td>
<td>7.9 7.9 7.8 7.8 7.89</td>
</tr>
<tr>
<td>Fuel</td>
<td>277.9 277.9 247.0 247.0 277.9</td>
</tr>
<tr>
<td>Depreciation</td>
<td>216.1 216.1 192.1 192.1 216.1</td>
</tr>
<tr>
<td>Electricity</td>
<td>177.8 177.8 157.3 157.3 180.1</td>
</tr>
<tr>
<td>Total</td>
<td>693.8 696.1 618.8 618.8 698.4</td>
</tr>
<tr>
<td>Cost of 1 m³ of stripping, UAH</td>
<td>51.40 51.57 45.84 45.84 51.74</td>
</tr>
</tbody>
</table>

Conclusions. The most effective technological schemes of dragline excavator operation in combination with dump truck according to technical and economic calculation have been determined. The schemes are those ones with lower unloading and position of a dump truck in the centre of the working bench width being schemes 3 and 4. The cost of 1 m³ of stripping operations with the use of these schemes amounts to \(C = UAH 45.84 \) per m³, which is by 3 % lower than the current one. Application of the technological scheme with lower unloading helps reduce the stripping costs by UAH 79.65 million a year with the annual stripping productivity of the pit being \(Q_{\text{strip}} = 13.5 \text{ million m}^3/\text{year}. \)

The developed recommendations on the selection of rational schemes of dragline excavators with truck loading for Motronivsko-Annivskyi pit, involving concentration degree of mining operations in the pit, have made it possible to determine that the scheme with lower unloading in the dump truck, located in the centre of the working bench width and the position of the dragline at a distance of 0.5 A from the bench crest is the most effective for the conditions of Motronivskiy MPP.

Acknowledgement. The research was conducted at the Department of Surface Mining at the National Mining University within the projects “Development of rational subsoil use to ensure stable operation of techno-ecosystem mining areas and environment” (State registration No. 0113U0004040) and “Development of environmentally friendly mining and mining reclamation technologies for efficient use of post-mining territories” (State registration No. 0116U004621).

References.

Обґрунтування раціональної схеми навантаження автосамоскідів драглайнами при розробці кар'єру Мотронівського ГЗК

Б. Ю. Собко, О. В. Ложеніков, М. О. Чебанов, В. А. Кардаш

Національний технічний університет «Дніпропетровська політехніка», м. Дніпро, Україна, e-mail: sobko.boris.tmu@gmail.com

Мета. Обґрунтувати раціональну технологічну схему роботи екскаваторів драглайнів у комплексі з автосамоскідами, ураховуючи коефіцієнт концентрації гірничих робіт у кар'єрі.

Методика. Включала математичне та графічне моделювання при встановленні коефіцієнта концентрації гірничих робіт у кар'єрі й техніко-економічний аналіз для вибору раціональної технологічної схеми роботи екска- ваторів драглайнів.

Результати. Розроблені рекомендації із вибору раціональних схем роботи екскаваторів драглайнів при навантаженні автосамоскідами для Мотронівсько-Аннівського кар'єру, з урахуванням показника ступеня концентрації гірничих робіт у кар'єрі. Встановлено, що для даних умов найбільш ефективною є схема роботи драглайнів з нижнім розвантаженням в автосамоскид, що розташовується посередині ширини заходки, та розташуванням драглайнів на відстані 0,5А від верхньої бровки уступу. Запропонована технологічна схема розробки Мотронівсько-Аннівського кар'єру.

Наукова новизна. Встановлена залежність показника концентрації гірничих робіт у кар'єрі від параметрів елементів системи розробки за різними технологічними схемами, що дозволяє провести оцінку собівартості розробки порід розкриву при застосуванні екскаваторів драглайнів із безпосереднім розвантаженням до автосамоскідів.

Практична значимість. Розроблені технологічні схеми роботи екскаватора драглайнів в комплексі з автосамоскідами, використання яких дозволяє знизити собівартість розкривних робіт. Заостосування таких схем дозволяє зменшити витрати на розкривання на 79,65 млн грн/рок, при річному об'ємі розкривних робіт у кар'єрі 35 мільйонів кубічних метрів.

Ключові слова: драглайн, автосамоскид, продуктивність екскаватора, коефіцієнт концентрації гірничих робіт, собівартість розкриву.

Recommended for publication by L. N. Shirin, Doctor of Technical Science. The manuscript was submitted 20.10.20.