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DETERMINATION OF STRESS CONCENTRATION NEAR THE HOLES
UNDER DYNAMIC LOADINGS

Purpose. To develop an approach for determining the stress state of plate structural elements with holes under dynamic loads
with controlled accuracy.

Methodology. The study was carried out on the basis of the Laplace transform and the method of integral equations.

Findings. An approach to determining the dynamic stresses at the holes in the plates is proposed, which includes: the Laplace
transform in the time coordinate; a numerical method for determining transformants of displacements and stresses based on the
method of integral equations; finding originals on the basis of Prudnikov’s formula adapted to dynamic problems of elasticity
theory. The problem of determining the Laplace images for displacements is reduced to solving singular integral equations. Integral
equations were solved numerically based on the approaches developed in the boundary element method. To find displacements
and stresses, the Laplace transform inversion formulas proposed by Prudnikov are adapted to dynamic problems. The study on
dynamic stresses at holes of various shapes was carried out.

Originality. A new approach to the regularization of the Prudnikov formula for inverting the Laplace transform as applied to
dynamic problems of the theory of elasticity has been developed. For its implementation: convergence of Fourier series based on
pre-set stresses at the initial time is improved; the remainder is taken into account in the conversion formula.

Practical value. A method has been developed for calculating the stress concentration at holes of arbitrary shape in lamellar
structural elements under dynamic loads. The proposed approach makes it possible to determine stresses with controlled accuracy.
The studies performed at circular and polygonal holes with rounded tops can be used in strength calculations for dynamically
loaded plates. The influence of Poisson’s ratio on the concentration of dynamic stresses is analyzed.

Keywords: concentration of dynamic stresses, method of boundary integral equations, Laplace transforms, inversion formulas

Introduction. A plane dynamic problem of elasticity for a
plane with holes is considered. The problem is solved using the
Laplace integral time transform and the boundary integral
equations method (BIEM). The inverse Laplace transform is
performed numerically using Prudnikov’s formula, which is
adapted to the dynamic problems of elasticity. It is shown that
using the proposed approach, the calculation of the stress con-
centration can be performed with a given accuracy. The solu-
tion of the obtained integral equations, where kernels are Cau-
chy kernels and logarithmic functions, is solved numerically
without additional regularization. The results of calculations
of dynamic coefficients of stress concentration near holes of
different shapes are presented.

Literature review. Boundary integral equations method is
widely used to solve 2-dimensional dynamic problems of elas-
ticity. Numerical algorithms for solving integral equations,
which are based on Stokes singular solutions, are given in the
books by C. A. Brebbia, S. Walker [1] and F.J. Sayas [2]. Such
algorithms are quite complex, because the discretization of
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equations is carried out simultaneously by spatial coordinates
and time.

Therefore, other methods for solving dynamic problems of
the elasticity theory are widely used in the literature. In par-
ticular, in [3] and Article [4] in the equations, the time deriva-
tives are preliminarily replaced by finite differences with subse-
quent application to the obtained BIEM equations. Let us
note that when using these methods, the solutions are found
step by step over time, and therefore errors can accumulate.

Simpler algorithms can be built based on the Laplace
transform with the additional use of the integral equations
method [5] or analytical methods [6]. The main difficulties are
to find the originals based on the found images of Laplace.
A number of formulas for numerical inversion are used in the
literature. However, in their numerical implementation there
is a problem of control over the accuracy of calculations, be-
cause the problem of inversion in the general case is incorrect.
In the works by R. M. Kushnir [7] and T. Ya. Solyar [8] a mod-
ified exact Prudnikov formula is used [8, 9] for numerical in-
version in problems of nonstationary thermal conductivity,
which connects the values of the original of the function and
its Laplace transformer. In the proposed work, this formula is
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modified with respect to the dynamic problems of the theory
of elasticity in such a way that when applied, the residual term
can be made as arbitrarily small. The convergence of the series
that are included in this formula has also been improved. It is
shown that with such approach it is possible to control the ac-
curacy of stress concentration calculations near holes of arbi-
trary shape.

Other methods for solving dynamic problems of the elas-
ticity theory are used in: [10] (based on the integral Fourier
transform over time); [11] (the method of Fourier series by
spatial coordinates is used); [12] (Galorkin method is used);
[13] (the finite element method is used).

The problem statement. Let the plane be weakened by the
holes whose boundaries are the contours L;, j = 1,..., J, to the
plate boundary the stresses (p,, p,) are applied, where p,, =
=p12(M, t, T —is time; M(x, y) is a point on the boundary. As-
sume that at initial moment the displacements and stresses are
absent. To solve the problem we use the Laplace integral time
transform and the BIEM.

Integral representation for the Laplace transform. For the
Laplace transforms from displacements , , the integral Somil-
iano representation [1, 5] will be valid

i, (M) = [(BU (M, M) -, T) (M, My))ds,, (1)
L

where M(x, y) is an arbitrary point of the plane; My(x,, y,) is a
point on the plane boundary, by which we integrate, are La-
place transforms from the stress vector (P, P,), (py, py), L =
=Li+..+1L,

1

Uy :E(Sjkfo _"j"kfz);

1 or or
Ty __h{"j”k['i +(6jk 6’10+rknj}172 +rk'}611(,1:3}’

where & is Kronecker’s delta; (#;, ) are the direction cosines
of outward normal to the boundary contour in My(x,, ;)

X, —X Vo
re(=x )+ (r-y)’s =T =
r r
or (X =) + ¥y =3I,

on, r

Here and further by the parameter, which is repeated, we
will sum up

Jo=Ko(qor) + 9(qor);
o= Ko(gar) — oKo(qir) + 29(q51);
ooy KD -BKG2).
2 2
h :;fz 100 Ki(ar); B :;fz +q,K,(q,1);

F= —%fZ 2,1 Ky (gy)- B K, (gy7)],

where ¢,, =5/C, ; s is a parameter of the Laplace time trans-

A+2G G
form; C, = i , C =\/;; Ky(z), K|(z) are the Macdon-
p
ald functions; p is density; A, G are Lame constants,
C, 2 G 1-2v A v
=—=; a=0p= = ; = =
P=¢ P =326 2 "Thi6 1oy

where v is Poisson’s ratio.

The above relations are also valid for the case of the plane
stress state (PSS), if the values G, A, v are replaced by G, A, v,
where A, =2GVv/(1 = v); v.=v/(1 + V).

For small values of z we have

l-afl Z) o a-—1
=————| ——y—-In= |-=Inq,; =
o(z) 5 (2 Y 2) 7ne 5 7

where g = 0.57721566400153.

Then to find the Laplace transforms from displacements
we will start from the potential representation of the solution
of the formulated problem and as such on the basis of (1) we
take

ﬂj(M):IPkUjk(M,MO)dso, ji=12, )
L

where P, = P(M,) are unknown functions, k=1, 2.

We determine the stress vector (7, Z,), corresponding to
displacements (2), at point M on the plane, the normal to
which has direction cosine N,, N,.

Then

Z(M)=[ P(My)Q, (M, My)ds,, j=12. 3)
L

The values Qy(M, M,) (k,j =1, 2) are obtained on the
basis of the value T;(M,, M) and have the following form

1 or or
Qﬂ(:_zn{RkNjF1 +(6jkaN+Rij]F2+RkRjMF3}.
Where

X=X Y=Yy, oOr
R1: , 0, R2: , 0, aW:R1N1+R2N2.

The expression for the sum of stresses is presented as

q
G, +G,= —ml‘(ﬂ& +P,R, )Kl (q,r)ds. 4

In relation (3) let us direct point M to the plate boundary
and assume that N,, N, are the direction cosines of the out-
ward normal to the boundary at this point. Then, having used
the Sohotski-Plemelj formula, we obtain the integral equa-
tions to determine the unknown functions.

LB M)+ [ PAM,)Q,, (M. My)ds, = B,(M),
2 ] 5)
j=12, MeL.

Similarly, we can find the formula for the transform from
the sum of stresses

G, +G :# P,a—erPza—y -
7 21-v) on on

q
_WLV){( PR +P,R,) K, (g,r)ds.

Numerical algorithm of solution of the system of equations.
Integral equations (5) are singular. Besides, the kernels of
these equations have logarithmic singularities. Present the di-
rect numerical algorithm of solution of integral equations (5)
without their preliminary regularization [14, 15]. Then for
simplification we assume that L is one contour. Write down
the contour equation in a parametric form x = a(n), y = p(n),
A<n<B.

Having put x, = au(&); yo = B(€); 4 < € < Bin equation (5),
we obtain

;ﬂ(n)+fﬁ(§)ﬂk(n,§)d§=g,-(n), Jj=L2, A<n<B, (6)

where
Fi(n,8)=5"(8)Q; (M, M,)
1;(©)=P;(M,)

x=a(1),y=B(n);x,=a(&), 5, =B(&)

xp=a(8),7,=B(8)’
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M=p.(M >
gj(n) p/( )x:cx(n).y=l3(rl)’

s'(€)=\a*(&) +p(©).

Let us set the values for parameter n = 1y, N =My, ..., N =
=My, such that ng =4, N,y = B; 1;, 1 > n;. Assume that 1y, | =
= (112/+2 + n2j)/2aj: 03 ] N-1L

Let us introduce the nodal points x; = ou(n,); v, = B(Mw); k=
=0,..., 2N on the contour L. To solve equation (6) we use the
collocation method, demanding that this equation be satisfied
at points Ci(x, ¥1), k=0, ..., 2N. Than we obtain a system of
equations

B
50+ [ L OF M, 0= g,0,),
A

j=12, m=0,..,2N.

(7

Note that the integrand functions F,(n,,, &) in equation (6)
have in the vicinity n = n,, the Cauchy kernel and logarithmic
singularity. That is, in the integral equations the integrals of
the form are obtained

B
I=[FEof(@a,
A

where f(§) is a function discontinuous on the interval [4, BJ;
F(&, ¢) is a function which can have singularity on the interval
of integration in the vicinity of point £ = ¢ =m,,. To construct a
quadrature formula the integrand function f(€) for ny_, <& <
<My, Jj=1,.., Nis presented by the Lagrange interpolation
polynomial

f@= sz_[—zsl(a_an—lahj)+
+ 0856y, ,0) + 1,86 -y, 1.h)),

where 24, =1y — My _2; fi =fNk);

SE-h). n-g
h

EE+h)
2 > SZ(E.»h): 2 .

2h?

Sl(g’h): 5 S}(Eyh):

Then we obtain a quadrature formula of the form

2N
[zZAjfj, (8)
=0

where AO :]1(1); AZN = [éN); A2k71 = Iék); k=1,.., N, AZn =
Ny,

=1+ 1"V n=1, N- LI = [ FEOS(E=ny, 1,h,)dE
Non-2

Note that those coefficients have the following form
1

Ay =hy [ Fltyy +hEm,)(1-82)de, j=1,..,N;
|

1 2
Ay = [ F gy =, +hy g, +hyEom,,) ] <
0

x(1-8)(2-8)de, j=1,...,N-1.

Using the last formula we can also find the coefficients 4;
forj =0 andj= N, when assuming that function F(&) = 0 for
E<Aand &> B.

Here the integrand function 4, in integrals has a singularity
in the vicinity of point § = 0 for m = i. We can verify that for
m = 2i in the integrand function the Cauchy kernel is absent
and only logarithmic singularities can exist. The first integral,
which for m = 2j — 1 is particular, is written as

1
Ay =l [ Fyy + hEmyy )+ Fyy =gy, ) |x
0

x(1-€2)de, j=1,...,N.

We can also verify that the integrand functions can have
only logarithmic singularity in the vicinity of point & = 0. To
calculate them we consider such integrals

a 1
J= J'g(é)ah‘3 = ajg(au)du, a=const.
0 0
Having replaced the variable u =z, ¢ > 1, we obtain
1
J=aq[g.(2)dz; g.(2)=2""g(az").
0

Here the integrand function g.(z), if we choose ¢ > 3, is
discontinuous and limited together with the derivative. To cal-
culate this integral it is advisable to use Gauss quadrature for-
mula with nodal points, which do not include point z =0 (at
this point the initial points have a singularity).

Having applied the quadrature formula (8) to the integrals
in equation (6), we obtain the systems of algebraic equations
for determination of the unknown functions at nodal points on
the body boundary

1 2N .
Syt 2 Apntin=8/Mn)s Jik=12 m=0...2N. (9)
n=0

Here the coefficients A4, =4,

forc=n,,

F(&,e)=F;(c.E)

Formula of inversion of the Laplace transform. Consider the
problem of finding the function f{r) based on its integral La-
place transform

F(s) :Tf(t)exp(—st)dt.
0

We will start from the exact Prudnikov formula, which
connects the values of originals and their presentations [7—9]

0 =;exp(ct/1) i F(s,)expQmnit/l)- R,  (10)

where 0 <7</, s,=(c+ 2nni)/l; c and [ are constants, choosing
which we can improve the convergence of solution, where
Re(c) >0,

R, =iexp(—nc)f(t+nl). (11)

n=1

We assume that the known values of original and its de-
rivative for ¢ = Oare f(0), f(0). Let us also consider the case
when the value of original for large values of the variable 7,
denoted by £, = const is known. Then formula (10) can be writ-
ten in the form [7]

f(t):}exp[c;j i Fnexp[Znni;j+

n=—w

+(1+ ) L O+ £O)(t+v1) |1, ~ R,

(12)

where

£, =Fs)-L QLD

n Sn

R, :iexp(—nc)[ fa+nh-f ] v= 1
n=1

exp(c)-1

Formula (12) is also exact. The series in (12) is fast conver-
gent since for assumed assumptions the coefficients in it are of
the order F, = O(n~>) for 8. When we choose parameter / so that
for t > [ f(f) = f,, and assume ¢ > 3, then the value R, can be
small and it can be neglected. In particular /, if we choose pa-
rameter |f{f) — f,,| < & such that 7>/, then the residual term will
be of the for

> (=)
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When ¢ = 3 for residual term, the estimate | R,| < 0.0524¢ is
valid.

Consider now the problem on determination of the hoop
stresses which are the basis for strength calculations on the
hole boundary by means of (12). The value of the Laplace
transform from these stresses will be found by the BIE meth-
od, having put above the transform parameters=s,, n=0, 1,...

Find the value of hoop stresses at initial moment. Then
consider the case when at the initial moment the displace-
ments and velocities in the plane are zero. To find the hoop
stresses we use Hook’s law, which in the case of plane defor-
mation is of the form [16]

1
gg=—I(0y—Vv,0,), 13
0 E| (09=V5,) (13)
where o, G, are circular and normal stresses on the boundary
E 1
E, :l > Vi =17; gy — hoop deformations on the hole
-v -v

ou
boundary which are determined by the formula €, = a—se+ ku,;

uy, u, are displacements in the hoop and nodal directions on
the boundary; & is the curvature.

Then from (13) at the initial moment on the boundary of
the hole the hoop stresses will be o, = v,c,, here the normal
stresses o, are known. Find the time derivative for t =0

do, do,
—L=v, .
dt dt
That is the hoop stresses at the initial moment on the
boundary are not zero as it is assumed in some publications
[4, 17].
We assume that the load applied to the holes boundary is
the following: p, = p°, p, = p; fort— oo. Then the asymp-

totic values for hoop stresses o, which are necessary for the
application of the formula (12), are obtained by solution of the
static problem for the plane with holes and boundary stress
(P, p3)-

Results of calculations. Consider the plane with a circular
hole of radius @, to whose boundary the stress o, = —p(1 +
+ c0s20)H(t), 1, =0 is applied, where 0 is an angular coordi-
nate, H(f) is the Heaviside function. The calculated hoop
stresses on the hole boundary, which are referred to parameter
p depending on the dimensionless time coordinate r = C,t/a
for 6 = 0 the values of Poisson’s coefficients v = 0.1, 0.3, 0.49
are given in Fig. 1 (values v are given at the curves). When solv-
ing the problem at 40—80 nodal points on the hole boundary
were chosen. When using inversion formula (12) it was set that
¢=3, /=15 and 60—120 forms of the series were considered.

The plots in Figs. 1, 2 are originally different from the results
of calculations obtained for this case in [4], using the method of
finite differences by the time coordinate. Therefore, the consid-
ered problem was also solved analytically. For this purpose the
case is considered when on the boundary of a circular hole the
Laplace transforms from the applied stresses read

o0 o0
&,= p,cosnd; %,o=>1,sinnd.
n=0 n=1

The analytical solution of the problem is constructed in [1,
4]. The transforms from the hoop stresses on the hole bound-
ary are determined by the formulas

0

Gy = Z(A"fe" + Bngen)cosne,

n=0

where A4,, B, — are the constants determined from the system
of equations

Ao+ Bo&w =0,
Anf;n + Bngtn = 2tn '

i /‘\\{:0.49 0=0]
1.2 r 5’('}-—
r / 0.1 0.3 Ey
08
04 | ///
N
ol o by b b
0 2 4 6 8 10 t

Fig. 1. Relative hoop stresses for 6 =0
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02 /\\ CThy=049 012
{165 RN

-0.2 Vo

04 |
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Fig. 2. Relative hoop stresses for 6 = 11/ 2 (the dots represent are
data, calculated by analytical solution)

Here

Sn=52(C+P) K (5): g, = —n(l—sﬁ]Kn(szr);
r\r

2
f;il _M(l_sla]Kn(slr); gm _(_nz-’_sza_sgazan(SZr);
r\r r r

2
o :(—n2+sla+CslzJKn(slr); o, =”[1—s26j K, (syr),
r r r\r

where r=a; 5;=5/Cj;j =1, 2; 9K,(2) = K}(2); 9°K,(2)=K}(2);

C=v/(1-2v).

The originals of the stresses were found by the given inver-
sion formulas of the Laplace transform. The stresses obtained
on the basis of this solution are practically exact since the er-
rors in calculations arise only due to neglecting the residual
term R,, which in this case is small in consequence of substan-
tially selected parameter /. The stresses calculated by analytical
solution are given in Figs. 1, 2 by dots. That is, the used above
BIE method guarantees the practically exact results.

Consider a plane with an elliptic hole with semi-axes , =
=—pH(t) and p = const to whose boundary the normal stresses
are applied.

The multipliers for the dynamic stress concentration fac-
tors (SCF) are calculated, that is, the relations of SCF under
dynamic and static loads, for an elliptic hole with a ratio of
semi-axes 0.5 for different values of Poisson’s ratio v.
Curves /—5in Fig. 3 correspond to the results of calculations at
the boundary of the hole at point 4 (where the radius of curva-
ture is minimal), which are carried out at v=0.1, 0.2, 0.3, 0.4,
0.45. Curves I'—5' correspond to the annular stresses assigned
to p at point B (where the radius of curvature is maximum).

A rectangular hole with semi-sides a, b and rounded angles
of a quadrant of radius R, to whose boundary normal stresses
o, = —pH(7) are applied, is considered. The results of calcula-
tions fora=b, R=ma, v=0.3 are given in Fig. 4. Here near the
curves the value of m is given, which is assumed to be 0.2, 0.5,
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Fig. 4. Relative stresses on the boundary of a square hole with
nodal apexes

0.8. The solid lines correspond to the hoop stresses, related to
p, at the center of a rounded apex and the dashed ones — in the
middle of sides . In the same figure the straight lines represent
the values of relative stresses under static loading that is based
on algorithm [17].

Similar results of calculation are obtained for rectangular
holes for relation of the sides a/b =1, 2, 4, when the apexes are
rounded by quadrants of radius R = 0.2b. The calculated rela-
tive maximal hoop stresses on the boundary are given in Fig. 5
by solid lines, near which the relations of sides are presented.
The dotted lines represent the relative stresses in the middle of
the shorter side.

The calculated dynamic stresses at the values of the time
coordinate ¢ > 6 go to the set mode and coincide with the cor-
responding values for the static problem. From Figs. 4, 5 it is
seen that the maximum dynamic stresses occur in the region of
rounding the vertices of the rectangle. In the middle of the
sides of the rectangular and square holes stresses are low.

The performed calculations show a significant influence of
the mechanical characteristics of the materials on the concen-

Go/P

05

N W A O

i
\'_Qt
=\
1

N

~ I
|

~ -1 05 0 05 1
1

0 5 10 t

Fig. 5. The relative stresses on the boundary of a rectangular
hole

tration of dynamic stresses near the holes (for the considered
problems at static loads the stresses do not depend on elastic
constants). For materials with low Poisson’s ratios (cast iron,
concrete, carbon steels) SCF significantly increases for mate-
rials where Poisson’s ratios are close to 0.5. Such materials
include, in particular: lead, cold-rolled brass, molybdenum.

Conclusions. The paper presents an approach to solution
of the plane boundary dynamic problems of elasticity which is
based on the Laplace transform and BIEM. Singular integral
equations, whose kernels contain additionally logarithmic sin-
gularities, are solved by a direct method (without their regular-
ization). The proposed formula for the inverse of the Laplace
transform makes it possible to calculate the stress concentra-
tion under dynamic loads with controlled accuracy. In particu-
lar, the above dynamic stresses calculated for large values of
time coincide with corresponding static stresses, and the
stresses for small values of time agree well with corresponding
values determined analytically. The series in inversion formula
proved to be fast convergent. A residual term R, not considered
in dynamic problems of elasticity can be small. From the pre-
sented calculations we can see that dynamic SCF increases
with the increase in Poisson’s ratio. In the holes of rectangular
form with rounded angles, the maximal stress concentration
appears near the rectangle apex.
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Merta. Po3pobuTti METOIMKY PO3paxyHKy HAIpy>K€HOTO
CTaHy IUIAaCTMHYATUX €JIEMEHTIB KOHCTPYKIIili 3 OTBOpaMu
MpU AMHAMIYHMX HABAHTAKEHHSX 3 KOHTPOJIHOBAHOIO TOY-
HiCTIO.

Metonuka. JocigmkeHHs] BAKOHaHO Ha OCHOBI MEPETBO-
peHHst Jlaruaca Ta MeTOy iHTerpaibHUX PiBHSHbB.

PesyabraTi. 3anporoHoOBaHO MiAXil 10 BUSHAYEHHS 11~
HaMiYHUX HaMpyXeHb OiJist OTBOPIB y MJIACTUHKAX, 1110 BKJIIO-

yae: mepeTBopeHHs Jlamiaca 3a 4acoBOIO KOOPAMHATOIO;
YUCJIOBUI METOJ BUBHAYEHHSI TPAaHC(HOPMAHT MepeMillleHb i
HamnpyXeHb Ha OCHOBi METOJY iHTerpajJibHUX PiBHSIHb; 3Ha-
XOJIKEHHSI OpUTiHAJIiB Ha OCHOBI aIanTOBAaHOI OO TMHAMIu-
HMX 3a/1a4 Teopii NpyHOCTi opmynu odbepHeHHs [IpynHi-
KoBa. 3ajaya BU3HaUYEeHHs 300paxkeHb Jlaraca s nepemi-
LIEHb 3BelleHa J0 PO3B’SI3yBaHHSI CUHTYJSIPHUX iHTErpajib-
HUX piBHsSIHb. PO3B’s13yBaHHS iHTETrpaJlbHUX PiBHSIHB ITPOBE-
JIEHO YMCEJIbHO Ha OCHOBI MiAXOiB, PO3pOOJIEHUX Yy METOI
rpaHUYHUX eJeMeHTIB. J1Jis1 3HaXOIKEeHHSI OpUTiHAJIIB Iepe-
MillleHb i HanpykeHb BUKOPUCTAHI amanToBaHi 10 JMHaMiu-
HUX 3a71a4 hopMyau obepHeHHs mepeTBopeHHs Jlaruiaca, 1o
3anpornoHoBaHi [lpyaHikoBuMm. [IpoBeneHo mOCITiIKEHHS
MMHAMIYHUX HaIIPY>XKeHb OiJIst OTBOPIB pi3HOI (hopMM.

Haykosa HoBu3Ha. Po3po0JieHO HOBMI MiXia 10 peryis-
pu3satii popmynu [IpynHikoBa mist 06epHEHHS MePETBOPEH-
Hs1 Jlamiaca CTOCOBHO 10 IMHAMIYHMX 3aaay Teopii MpyxK-
HocTi. s #oro peasizaliil: mokpauieHa 30iDKHICTb psiiiB
®yp’e Ha OCHOBI MoOMNepenHbO BCTAHOBIEHUX HAIPYXEHb Y
MOYATKOBUI MOMEHT 4acy; YpaxoBaHO 3JIUIIKOBUI WIEH y
¢dopmyJti 00epHEHHS.

IIpakTyna 3HaummicTb. Po3poGiieHa Meroauka pospa-
XYHKY KOHIIEHTpallil HarpyxeHb Oisl OTBOPiB AOBUIbHOL
(opmu y mnacTuHYATHX eleMeHTax KOHCTPYKIIiil mpu nuHa-
MiYHMX HaBaHTaXKEHHSIX. 3apONOHOBAHUI MiaXia J03BOJISIE
BU3HAYATU HATIPYXEHHS 3 KOHTPOJIbOBAHOIO TOUHICTIO. Bu-
KOHaHi JOCJIiIKeHHs Oiisl KpyrOBUX i MHOTOKYTHUX OTBODIB
i3 3aKpymJIEHUMU BEPIIMHAMM MOXYTb OyTM BUKOPMCTaHi B
pO3paxyHKax Ha MillHICTb TMHAMiYHO HaBaHTaXXEHUX I1ac-
tuH. [IpoananizoBaHo BIIMB KoedilieHTa I[lyaccona Ha
KOHILIEHTPALIiI0 IMHAMIYHUX HAIPY>KEeHb.

KmiouoBi cioBa: xonuenmpauyis Oounamiunux HanpysiceHs,
Memoo epaHuMHUX [HMeepanrbHux piGHAHb, nepemeopents Jla-
naaca, ghpopmyau obepHeHHs
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