NEW DATA ON NON-TRADITIONAL TYPES OF EAST KAZAKHSTAN RARE METAL ORE

Purpose. Studying the patterns of formation and assessing the prospects of non-traditional types of rare-metal mineralization in East Kazakhstan.

Methodology. Analysis of literary and funds materials; conducting field research on typical objects; sample selection; conducting of isotope research on typical objects; ICP-MS — Agilent 7500cx mass spectrometric analysis, microprobe analysis using a JSM 6390LV scanning electron microscope with an energy dispersive attachment, X-ray diffraction analysis — CPB-1M, silicate chemical analysis.

Findings. A new non-traditional “non-pegmatite” type of rare-metal mineralization of predominantly lithium specialization associated with small intrusions and dikes of the kunush complex and albited and greisenized granites (apogranites) is substantiated.

Originality. A geological and genetic model of rare metal ore formation has been developed, reflecting the superimposition of rare metals (Sn, W, Li, etc.) on earlier small intrusions of plagiogranites of the kunush complex (C3), susceptible to contact-metasomatic transformations under the influence of rare-metal granites of the Kalba complex (P1). The prospects of an independent “non-pegmatite” type of tin-tantalum-lithium mineralization are substantiated.

Practical value. The results of the research are aimed at strengthening the mineral resource base as an additional source of rare metals for existing enterprises in East Kazakhstan.

Keywords: East Kazakhstan, granitoid belts, adakites, deposits, rare metals, Kalba-Narymskaya zone

Introduction. The research relevance is defined by constantly growing demand of the world market in rare and rare earth metals (Ta, Nb, Be, TR, and others). As the east of Kazakhstan is the center of metallurgy, it is very important to regenerate rare metal industry for providing enterprises with raw materials. Kalba Narym metallogenic zone refers to the largest rare metal structures of Kazakhstan. The deposits of rare metal pegmatites (Yubileinoye, Belaya Gora) were actively developed here in previous years as well as many greisen-quartz and hydrothermal stannum-tungsten deposits (Palatsy, Chertovaya, and others). Mining operations were stopped in 1994, the deposits were suspended, as for the new objects of practical significance, they have not been discovered yet.

Scientific-research work that has been carried out in recent years shows that additional resources of rare metals can be “extrapegmatite” types of rare metal ore (Sn, Ta, Li), connected with rare metal granites (Karatas, Novo-Akhmirovskoye, Apogranitninoye, Shuruk, and others), by analogy with albited spodumene granite-porphyrites of the Gorny Altai with complex lithium-tantalum ore (Alakh deposit) [1, 2].

Distinguishing of a stand-alone type of rare metal-pegmatite ores (Li, Ta, Nb, etc.) and greisen-quartz ore (Sn, W) is of scientific and practical significance. It is superimposed on earlier dyke minor intrusions of Kunush complex (C3) widely developed in Kalba Narym zone. It can be also helpful to re-evaluate perspectives of some pegmatite deposits and ore occurrence for complex stannum-tantalum-lithium raw materials. Evaluation of Mirolyubovsky complex (P2) ongonite dykes ore content is also noteworthy.

General characteristic of the researched region. The territory of East Kazakhstan is comprised into Central Asian mobile belt (CAB). CAB Hercynides form belt structures of north-west course in the east of Kazakhstan (from the north-east to the south-west): the Rudny Altai, Irtysh shear zone, Kalba Narym zone, West Kalba and Zharma-Saur [3]. Calc­­donites of the Gorny Altai (in the north-east) and Chingiz­­Tarbagatay (in the south-west) are referred to flank structures.

The main regularity is in belt location of ore objects, as linear north-west ore belts: copper-polymetallic (Rudny Altai), rare metal (Kalba Narym), and multi-metal (Zharma Saur) [4, 5].

Rare metal deposits were formed mainly during Late Hercynian stage of post-collision (orogenic) intraplate activation that went along with strong granitoid magmatism that is typical for many regions of Central Asia. Spatially they are located in large granitoid belts of considerable length (up to 800 km), concentrated in places of tectonically low coherence and they are controlled by the system of deep faults [3, 5].

The Kalba Narym granitoid belt is basic rare metal structure of the region. Its structural-metallogenic model reflects connection of ore-magmatic systems with depth zones of earth crust and upper. Cycle-oriented development of tectonic and magmatic processes affected succession of geological formations: gabbro diorite formation (Karabiryuksky complex C3), and granodiorite-plagiogranite formations (Kunush complex C3) of collision type; granite formation (Kalba complex P1), leuocratic formation (Monastyrsky complex P2) and gabbro-diabase-granite-porphyrite formation (Mirolyubovsky complex P2) of post-collision (orogenic) type [5].

The article considers regularities of formation and location, and practical significance of rare metal deposits of different geologic-genetic types.

Characteristic of rare metal pegmatites deposits. This geological-industrial type is the leading source of Ta, Nb, Be, Li, Cs within Kalba Narym zone [3, 5]. The deposits were formed in Central Kalba tectonic block. The known ore fields (Ognevsk-Bakennoye, Asu-Bulak, Belogorsk-Baimurzins-
to the data provided by P. I. Sinishin, A. R. Butko, there are perimposed on plagiogranites of Kunish complex. According to geochemical differentiation into rare alkalies is emphasized. The rare alkalies are (Li, Rb, Cs = 429.2 g/t) and Sn (14.6 g/t) with the concentration of rare elements in biotite (g/t): Ta (17.97), Nb (124.5), Li (up to 1521), Rb (up to 1430), Sn (23.73–90.70). Accompanying elements are Cu (48.02), Zn (105.01), Pb (80.90), Sb (1.51), Ag (0.72), Au (0.29), and others. Pegmatite veins are characterized by intensive microclinization, albition, greysening, and spodumdenization processes with further concentration of Ta, Nb, Be, Li and other elements from simple aplite-pegmatites to more productive spodumene-containing and caesium-bearing mineral components resulted in formation of pay-ores. The following minerals are indicators of rare metal pegmatite formation: albite, cleavelandite, green muscovite, lepidolite, colored tourmaline, pollucite, amblygonite and some others. Basic ore minerals are: tentalite-columbite, beryl, spodumene, pollucite, and cassiterite. According to peculiarities of material composition and presence of unique minerals, Kalba pegmatites are compared with such foreign deposits as Koktogay (China), Bikita (Zimbabwe), Bernik-Lake (Canada) and others [8, 9].

Pegmatite deposits with superimposed ores. This group includes small pegmatite deposits of Karagoin-Saryozeksk ore zone, where rare metal ore (Ta, Nb, Be, Li) is superimposed on dyke-shaped plagiogranites of Kunush complex (C1) located in exocontacts of Kalba complex P- granitoids (Medvedka, Tochka, Novo-Saryozek, Aldai and others). Geological-genetic model of rare metal pegmatite formation reflects contact-metamorphic transformation of plagiogranites pegmatites of Kunush complex (C1) under the influence of crystallized granite massif of Kalba complex (P) resulted in superimposed ore-bearing fluid flows (H2O, F, B, Cl, Ta, Be, Li, and others) and in ladder-type pegmatite veins formation. According to S. V. Lugov, G. N. Sheherba, F. N. Shakhou plagiogranites are considered as physical-chemical environment that is tectonically developed and favorable for deposition and concentration of ore matter. Medvedka deposit is a typical object with rare metal ore superimposed on plagiogranites of Kunush complex. According to the data provided by P. I. Sinishin, A. R. Butko, there are three plate-shaped bodies of medium-grained biotite plagiogranites (480–1100 m long, and 40–120 m thick) where there are (Ta, Nb, Be, Li, Sn). Ore-hosting pegmatites are subjected to gneiss metamorphism, cataclasites and characterized by flat-lying fracture set that is favorable to location of pegmatite veins that do not extend beyond the boundaries of an intrusive body (Fig. 1).

Pegmatites are rocks of light-grey colour, that have equigranular texture and are characterized by consistent quantitative-mineral composition (%) plagioclase 59–62 (No. 8–35), quartz 26–28, potassium feldspar 2–4, biotite 6.5 and accessories 0.3–0.6 %. There is also hypersthene (6.1 %) in the norm. They correspond to eutectoid facie of granitoids according to the type of crystallization. According to petrochemical data they are rocks of normal series, low total base number (Na2O + K2O = 6.36 mass. %) when natrium is significantly predominant over potassium and there is high alumina (af = 5.74). On the diagram K2O–SiO2 plagiogranites belong to low-potassium calcic-alkaline series and are located on the boundary with tholeitic series [6, 7].

According to geochemical data, lanthanides dominate over heavy elements in plagiogranites among rare earth. Besides there is low content of Sm 1.85 g/t, Yb 0.52 g/t and Y 6.2 g/t, La/Yb ratio is 16 times higher. Plagiogranites enrichment is of special significance Sr (up to 583–815 g/t), and isotopic Rb/Sr ratio in them is very low (0.14827–0.23639). Plagiogranites belong tosz + eNd type [20] according to their isotopic-geochemical characteristics [8]. Thus, plagiogranites of Kunush complex enriched with aluminum oxide, natrium alkaliualuminate and with low content of rare earth according to geochemical indicators are a particular adakite group of rocks in evolution range of Kalba-Narym zone granitoids [9, 10]. Their origin is possible due to degradation of basites (P =15 kbar, T = 950 °C) [11, 12, 13].

According to the new geochronological definitions U-Pb isotopic method for zircons, the age of Tochka massif plagiogranites has been defined (299 ± 2.3 million years) as well as that of Zhilandy (306.7 million years) [6, 10], that is consistent with absolute data of K–Ar method of previous years (305 mil. years according to 20 analyses) for granitoids of Kunush complex.

According to ICP-MS results, the content of rare elements (Ta, Nb, Be, Li, Sn) in plagiogranites is close to Kalba complex granitoids of the I phase, but the value Σ = Li + Rb + Cs (231.8 g/t) is lower. There is also weight content (g/t): Sb (3.29), Ag (2.04), Au (0.23), Bi (8.80), Pt (0.03), Pd (0.81), Re (0.02), Os (3.29). Ore was formed under tectonic pressure that contributed to opening of flat-lying fracture structures for penetrating of pegmatite forming solution and formation of microcline-muscovite and microcline-alkbite pegmatites. Content of ore-forming solutions is fluorine-chloride (when content is K+ = 24.2
and Na⁺ = 21.8%). The sources of ore substance were unopened domes of Kalba granites and probably, enclosing plagiogranites. Ore bodies extending 480–1100 m long and 40–120 m wide are evident, north-east dip is ≤ 60–70°. The largest veins are Moschhnaya, Berillovaya, Maiskaya, Obnazhen-naya, and others.

Ore indicators are albite and muscovite, which is transparent of light-green color that contains impurities (g/ℓ): Ta (233.7), Nb (380.8), Be (36.6), Li (1101), Rb (3614), Cs (241.4), Sn (429.3). Micro-inclusions of tantalite–columbite and cassiterite have been found in muscovite during analysis on the scanning microscope, their size is 1–2 mkm.

Beryl is found in block quartz-microcline pegmatite forming crystals up to 5 cm on the macroaxis and up to 4 cm in diameter. Tantalite–columbite is represented by sorbitic variety (Ta = 98 560, Nb = 152 000 g/ℓ), contains impurities (g/ℓ): Be (26.52), Sn (752.1), W (2218), Zr, Li + Rb + Cs (66.94). High Ta₂O₅ content is observed in albite-spodumene pegmatites (0.120 %) and greisens of quartz-muscovite composition (0.266 %), the average value of the deposit is 0.007–0.008 %. As for metal reserves (Ta₂O₅ = 277 t, BeO = 2276 t), this is a small object of reserve type.

Rare metal objects of unconventional type. Novo-Akhiimirovsky deposit is located at the boundary of Kalba–Narym and Irtysy tectonic zones not far from Ust-Kamenogorsk. It is the representative of Sn−Ta–Li ore unconventional type that is connected with rare metal granites (apogranites). It is represented by stock-shaped body of topaz, zinnwaldite-lepidolite granites and dykes of ongonites (P.) [2]. According to materials provided by V.I. Maslov, B. M. Lutskoi, V. S. Sergienko, the older sedimentary-metamorphic rock mass of Late Proterozoic – Early Paleozoic age is developed in Irtysy block. The remaining territory is characterized by bassets of Kystyv–Kurchum suite, as well as Zr (310.2 g/ℓ), Sr (173.9 g/ℓ), Ti (5110 g/ℓ). The anomalies of Li, Rb, Cs and Nb have been identified among rare metals, which emphasizes enrichment of trans-intrusive zone with rare alkali elements. Veined granites are enriched (g/ℓ): Li (753), Rb (773), there is high content of Ta (6.57), Nb (37.16), Sn (14.62) in them. The anomaly of Rb (656.1) and Sn (311.4), Nb (20.77) and Sn (24.2) content is distinguished in coarse-grained pegmatites.

Ceric group of rare earth elements (104.4 g/ℓ) is predominant in albitized granites. Li–Rb geochemical specialization of altered granites with weight values Ta, Nb, Be, Sn is underlined (Table 1). Generally, the laboratory research proves rare metal specialization of Novo-Akhiimirovo area albitized granites on Li-Rb and foreign-metal impurities – Ta, Nb, Sn.

According to V.I. Maslov’s data, inferred resources of Novo-Akhiimirovsky deposit are reasonably sufficient. According to its ore type, the considered object is similar to Losovskoye deposit (North Kazakhstan) and Alakh deposit in the Gorny Altai [1, 14]. The following objects also belong to this ore type: Karasu deposit, and prospecting sites Apogranitny, Malo-Chernovinsky, Shuruk, Municha, Tortkamak II and others and they are recommended for evaluation work.

Cherdoyak deposit is in Narym ore area of Kalba–Narym zone, 180 km from Ust-Kamenogorsk. It is typical deposit of stannum-tungsten ore superimposed on plagiogranites of Kunush complex. It was discovered by P. K. Kalik and further was examined by P. K. Korovin, N. N. Budanov, T. A. Minenko, G. N. Shcherba, B. M. Rudenko and other researchers. The deposit was formed on west exocontact of Narym granitoid massif (P.). Its influence on the older Kunush massif of plagiogranites (C₄) reflected in excessive fissuring, cataclasis, crumpling, graphitization and silicification.

It caused breaking Kunush complex plagiogranites integrity and further penetration in low coherence places of ore-bearing solutions. It contributed to stannum-tungsten ore concentration that is genetically connected with Perm granites, and to formation of stockwork- and vein-shaped ore bodies that formed combined veined-stockwork structure of the deposit. Ore bodies directly localize in plate-like dyke of plagiogranites (the length is 1000 m, the width is 120–200 m, north-east dip angle is 65–70°) (Fig. 3) [15].

Plagiogranites partially or completely recrystallize and their ground mass is fine-grained. Chemical composition of plagiogranites is oversaturated with SiO₂ (Q = +27.7), alumina (α = +43) and moderately rich with alkalies (β = c. 4.7). As for their alkalinity nature (Na₂O : K₂O = 3.4) it is typical sodium low-plausmose series of granitoids with low total ferrum-minerals (t = 0.63) and high calcium (c = 2.7). Plagiogranites Si, Ca, K loss and Mg, B, F, C, Sn and W gain is associated with greysenning and graphitization. Ore bodies are represented by quartz veins and stockworks. Basic ore minerals are cassiterite, scheen.
linites, arsenopyrite; auxiliary ore minerals are pyrite, chalcopyrite, galena, and others [15].

Arsenopyrite is a typical ore mineral of greisen and less of quartz veins. They form well-edged crystals, twinds, and crystaljams and their size is from 1–2 mm up to 2–3 cm. Crystal lattice parameters were defined by X-ray structure analysis:
\[a(A_0) = 9.528; b(A_0) = 5.546; c(A_0) = 6.529. \]
They are characterized by high content of light rare earth (276.74 g/t) and increase in chalcopyritic elements (g/t): Cu (378.0), Pb (439.7), Zn (174.7), Bi (100.4). Besides, precious elements were identified (g/t): Sn (378.0), As (0.2–0.4 %).

According to mass spectrometric analyses, it is enriched with rare earth (Σ = 242.4 g/t) and predominant lantoid group (g/t): Ce (121), Nd (110), La (39). Siderophile elements are mainly represented by Fe (6870 g/t), Ti (462), Mn (430), Ni (88). The values of B (105.5 g/t), Zr (39.2), Y (24.6) and Th (6.7) are increased. For the first time anomalous concentration of Hg (307 g/t) and Re (4.47–7.37 g/t) has been determined.

Cassiterite in greisen is characterized by small impregnation (1 mm – 1–2 cm in diameter) and forms bunches and inclusions of irregular shape. Well-edged crystals of pyramidal-prismatous outline (more than 16 cm long, 3–4 cm thick) are frequent. They are simple and geniculated twins of dark-brown colour. They differ from black cassiterites of Kalba pegmatite deposits by low tantalum content (Ta₂O₅ from 0.003 up to 0.03 %) and by parameters of crystal lattice (\(\sigma_0 = 4.7358, c_0 = 3.1836 \)).

Chemical composition (%): SiO₂ – 0.66, TiO₂ – 0.54, A₁O₃ – 0.03, Fe₂O₃ – 0.13, CaO – 0.11, WO₃ – 0.18, Sn – 97.74, Ta₂O₅ – 0.03, n.n.n. – 0.51, sum 99.93. Impurity elements: Ta, Nb, W, Mo and rare alkalies, as well as In and Ag (Table 2).

Microinclusions of native stannum (Sn – 100 weight %) and pure cassiterite (Sn – 77.37 and 0–22.63 weight %) are detected in ores on SEM-images. Besides, impurities are observed in other samples: Ti (12.60), W (8.75), As (10.37) and Sr, Br, P (up to 1–2 weight %) are in small amount. Ta content in cassiterite is low (1.22 weight %) (Fig. 4).

Geological-genetic model of deposit formation is represented by contact action of Narym granitoid massif on older dyke-like bodies of plagiogranites and occurrence of fissure-cast new ore-bearing quartz stockworks. So the deposit should be further studied.

Cherdoyak deposit is compared with well-known greisen-quartz-veined deposits of Central Kazakhstan, Uzbekistan, the Far East, the Rudny mountains and other regions [12]. These deposits are Bainazar, Stepanovskoye, Uchkoshkom, Pravourmiyskoe, Krasno, Tsinovets, Altenberg and others. Common regularity for them is that stannum-tungsten ore is superimposed on older rocks due to intrusions of granite composition formed by several stages. Peculiarity of Cherdoyak is that it was formed within strictly limited space, in dyke-like body of plagiogranites. Sustainable quartz-tourmaline-scheelite-arsenopyrite-cassiterite ore paragenesis, veined-stockwork morphology of ore bodies and prospecting data show that only the central part of ore-bearing zone is opened. Favorable position of plagiogranites in the exococontact of ore parent source (Kalba granites) also enables to suppose and forecast new ore-bearing quartz stockworks. So the deposit should be further studied.

Table 1

<table>
<thead>
<tr>
<th>Rock No.</th>
<th>Ta</th>
<th>Nb</th>
<th>Be</th>
<th>Li</th>
<th>Rb</th>
<th>Cs</th>
<th>Sn</th>
<th>W</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA-4</td>
<td>6.09</td>
<td>36.81</td>
<td>4.83</td>
<td>732.00</td>
<td>1124.0</td>
<td>50.92</td>
<td>9.35</td>
<td>1.95</td>
<td>0.88</td>
</tr>
<tr>
<td>HA-5</td>
<td>4.43</td>
<td>27.06</td>
<td>5.09</td>
<td>652.00</td>
<td>664.30</td>
<td>37.88</td>
<td>10.05</td>
<td>2.63</td>
<td>0.63</td>
</tr>
<tr>
<td>HA-6</td>
<td>1.10</td>
<td>10.89</td>
<td>4.83</td>
<td>869.00</td>
<td>613.30</td>
<td>45.37</td>
<td>12.94</td>
<td>2.21</td>
<td>0.73</td>
</tr>
<tr>
<td>HA-7</td>
<td>9.81</td>
<td>52.22</td>
<td>4.69</td>
<td>1147.00</td>
<td>1070.0</td>
<td>40.01</td>
<td>13.08</td>
<td>2.01</td>
<td>0.86</td>
</tr>
<tr>
<td>HA-14</td>
<td>7.60</td>
<td>56.46</td>
<td>7.48</td>
<td>1032.00</td>
<td>840.20</td>
<td>37.01</td>
<td>20.29</td>
<td>2.53</td>
<td>1.34</td>
</tr>
<tr>
<td>HA-15</td>
<td>1.35</td>
<td>13.76</td>
<td>7.60</td>
<td>970.00</td>
<td>964.40</td>
<td>41.88</td>
<td>32.00</td>
<td>2.43</td>
<td>1.40</td>
</tr>
<tr>
<td>HA-16</td>
<td>6.00</td>
<td>57.42</td>
<td>8.40</td>
<td>921.00</td>
<td>785.10</td>
<td>33.07</td>
<td>12.45</td>
<td>5.27</td>
<td>3.11</td>
</tr>
<tr>
<td>HA-19</td>
<td>16.16</td>
<td>195.20</td>
<td>13.31</td>
<td>2152.00</td>
<td>1413.00</td>
<td>48.07</td>
<td>12.82</td>
<td>2.04</td>
<td>68.77</td>
</tr>
<tr>
<td>average</td>
<td>6.56</td>
<td>56.22</td>
<td>7.02</td>
<td>1059.37</td>
<td>934.28</td>
<td>41.77</td>
<td>15.37</td>
<td>2.63</td>
<td>9.71</td>
</tr>
</tbody>
</table>

Fig. 3. Geologic structure of stannum-tungsten Cherdoyak deposit:
1 – sandstone-aleuritic deposits of Takyr suite, C₁; 2 – plagiogranites; 3 – quartz veins, C₁; 4 – I phase granites; 5 – II phase granites of Kalba complex, P₁; 6 – faults; 7 – foliation, shear; 8 – strike and dip lamination; 9 – anticipated ore bodies; 10 – plagiogranite- porphyrites of Kunush complex; 11 – directions of solutions movement; 12 – erosional truncation boundary.
forming in granitoids of Kalba complex (P1) is compared with geochronological data [6, 10]. Geological and genetic model of rare metal pegmatite forming in granitoids of Kalba complex (P1) is compared with rare metal granite-pegmatite systems of normal alkalinity [7].

The rationale of pegmatitoids role as favorable ore-hosting environment for deposition and concentration of superimposed pegmatite ore (mainly with lithium spodumene ore) and practically significant geisen-quartz veined cassiterite-scheelite ores (Sn, W) is of special importance.

Model of ore genesis reflects contact-metasomatic transformation of pegmatitoids under the action of the formed rare metal fluids of Kalba complex. Unconventional “extra-pegmatitic” type of rare metal ore includes albite-geisen metasomatites with Sn-Ta-Li specialization that have not been sufficiently explored (Novo-Akhmirovskoye, Karasu deposit). According to genesis, the considered objects are connected with ore-bearing albite-geisen granites which have been developed before on materials of large-scale geological mapping, is practically confirmed by up-to-date research studies prove that there are additional reserves in the explored regions for strengthening raw material base of rare metal production. Resumption of prospecting and deeper exploration of ore-bearing structures and ore objects are required.

The work was completed with the financial support of Science Committee of RK Ministry of education and science AP0513489, AP 08052707.

Table 2

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Ta</th>
<th>Nb</th>
<th>Be</th>
<th>Li</th>
<th>Rb</th>
<th>Cs</th>
<th>W</th>
<th>Mo</th>
<th>In</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>4201</td>
<td>3.37</td>
<td>8.59</td>
<td>0.50</td>
<td>18.51</td>
<td>64.91</td>
<td>7.56</td>
<td>76.74</td>
<td>4.25</td>
<td>18.10</td>
<td>8.98</td>
</tr>
<tr>
<td>5406</td>
<td>140.0</td>
<td>129.5</td>
<td>0.61</td>
<td>18.50</td>
<td>14.44</td>
<td>3.89</td>
<td>24.78</td>
<td>4.49</td>
<td>28.78</td>
<td>3.33</td>
</tr>
<tr>
<td>5424</td>
<td>6.25</td>
<td>4.84</td>
<td>1.42</td>
<td>7.80</td>
<td>24.28</td>
<td>1.45</td>
<td>6.56</td>
<td>4.49</td>
<td>26.64</td>
<td>5.85</td>
</tr>
<tr>
<td>5424A</td>
<td>30.58</td>
<td>14.36</td>
<td>0.40</td>
<td>50.54</td>
<td>169.77</td>
<td>41.52</td>
<td>121.2</td>
<td>4.52</td>
<td>82.96</td>
<td>4.10</td>
</tr>
</tbody>
</table>

Results of ICP-MS analyses

Plate-shaped bodies of pegmatitoids are tectonically faulted and contact-metasomatically deformed. They are considered as favorable physical and chemical environments for deposition and concentration of ore substance in accordance with views of such researchers as G.N. Shcherba, S.F. Lugov, F.N. Shakhov, and others. Pegmatite deposits of this type with low content of Ta, Nb, Be are of great interest for lithium spodumene ore [5, 10].

Unconventional sources of stannum-tantalum-lithium ore of "extra-pegmatite" type are connected with ore-bearing albite-geisen granites that crop out (Novo-Akhmirovskoye, Alakha, Apogranitnoye, and so on), and concealed at the depth (Karasu, Malo-Chernovinskoye, Shuruk). They are recommended for further exploration. The conducted research studies prove that there are additional reserves in the explored regions for strengthening raw material base of rare metal production. Resumption of prospecting and deeper exploration of ore-bearing structures and ore objects are required.

References.
Новые данные о нетрадиционных типах редкометального оруденения Восточного Казахстана

Б. А. Дьячков1, С. С. Айтбаева2, М. А. Мизерная3

1 – ТОО «Алтайский геолого-экологический институт», г. Усть-Каменогорск, Республика Казахстан; e-mail: bdvachkov@mail.ru
2 – Восточно-Казахстанский государственный технический университет имени Д. Серикбаева, г. Усть-Каменогорск, Республика Казахстан; e-mail: AitbayevaSS@mail.ru
3 – ТОО «ГЕОС», г. Усть-Каменогорск, Республика Казахстан

Цель. Изучение закономерностей формирования и оценка перспектив нетрадиционных типов редкометального оруденения Восточного Казахстана.

Методика. Анализ литературных и фондовых материалов; проведение полевых исследований на типовых объектах; отбор проб; выполнение изотопных исследований на типовых объектах; масс-спектретрометрический анализ ICP-MS-Agilent 7500cx, микрозондовый анализ с помощью сканирующего электронного микроскопа JSM 6390LV с энергодисперсионной приставкой, рентгеноструктурный анализ – СРВ-1М, силикатный химический анализ.

Результаты. Обосновано выделение нетрадиционно-внепегматитового типа редкометального оруденения преимущественно литифицированных ассоциаций, ассоциирующих с малыми интрузиями и дайками кунушенского комплекса и альбитизированными и грейзенализованными гранитами (апогранитами).

Научная новизна. Разработана геолого-генетическая модель редкометального рудообразования, отражающая наложение редких металлов (Sn, W, Li и др.) на более ранние малые интрузии плагиогранитов кунушенского комплекса (С), сильных до контактово-метасоматических перетворений под влиянием редкометальных гранитов калбинского комплекса (Р). Обоснованы перспективы самостоятельного внепегматитового типа олово-тантал-литифицированного оруденения.

Ключевые слова: Восточный Казахстан, гранитоидные пояса, адакиты, редкие металлы, Калба-Нарымская зона

Recommended for publication by Ye. M. Sapargaliyev, Doctor of Geological and Mineralogical Sciences. The manuscript was submitted 24.11.19.