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DEFORMATION OF THE LONG CASING STRING ON CENTRALIZERS
IN THE PROCESS OF ITS INSTALLATION IN A HORIZONTAL WELL

Purpose. Development of a method for calculating parameters of a stress-deformed state of compressed casing pushed into a
horizontal well during its construction.

Methodology. The problem solution presupposes integrating the differential equation of the longitudinal bend of a long rod
under its own weight. In the first approximation, reactions on the center-axis bearings are found disregarding the axial forces of
friction. Our system of algebraic equations determines the deformation and force parameters at the sections between the supports
based on the equations of the compatibility of the deformations and the equilibrium of the bending moments in the support sec-
tions.

Findings. A general solution of the basic differential equation of deformations of a horizontal pipe column is found taking into
account friction and axial forces acting during its lowering. It forms the basis for calculating bucklings, rotation angles of rod inter-
sections, its internal bending moments and transverse forces at the sections between the supports. It also makes allowance for ad-
ditional moments of frictional forces acting on the centralizers. The solution of the problem for the reverse motion of the casing
column is found.

Originality. The equation of connection between transverse and longitudinal forces in a long rod and reactions and forces of
friction on supports is offered. The system of equations takes into account the equations of transverse forces, which allow determin-
ing the axial compressive forces simultaneously. The linearization method of the system of algebraic equations and its iterative
solution with high accuracy is developed.

Practical value. The obtained results take into account the requirements of the construction technology of a horizontal well.
Formulas for calculating the optimal distance between the centralizers are derived. The influence of deviations of the well direction
from the horizontal on the change of the stress-deformed state of the casing which allows oilmen to increase its reliability and
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durability is considered.
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Introduction. Horizontal drilling is used to achieve produc-
tive subsurface layers in the construction of modern oil and gas
wells [1, 2]. The column of steel casing pipes is lowered into the
well from the mouth to the bottom and the annular space is
cemented in accordance with the requirements of construction
technology. This column rests on centralizers ensuring the co-
herence of the well pipes and walls, preventing their contact
and forming a cement ring of the same thickness and strength
|3]. The centralizers are made of curved steel strips shaped as a
rotational ellipsoid and fixed regularly on pipe columns [4].

The weight of boring casing facilitates their running into
the vertical, inclined and curved wells. However, to push the
column into the canopy and horizontal areas, additional effort
is needed and energy is needed to overcome frictional forces.

Literature review. The literature concerned with mechani-
cal deformations of long casing strings in horizontal wells is
quite diverse. Many researchers have dealt with different as-
pects of pipe buckling in horizontal wellbores.

Rachkevich R. [1] explored drill pipe columns compressed
in a horizontal well under their own weight. The stress-strain
state of a drill string during its compression in a horizontal
borehole is considered. The function of the elastic axis of the
drill string as a wave curve is obtained, which enables one to
improve the analytical models: evaluation of decrease in axial
force depending on the drill string elastic axis shape, determi-
nation of the force of pressing of the string to borehole walls,
and calculation of normal stresses in the cross section of drill
pipes.

However, he examined only the section of the pipes with a
significant axial force, a sinusoidally buckled column, and its
ability to lean against the opposite walls every semiperiod. The
problem solution is constrained by the flat bend shape and dis-
regards friction and substantial torque required for drilling.
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Gulyayev V. and Glazunov S. [2] analyzed the behavior of
a real drill column rotating in the channel of a horizontal well.
They formulate a problem of the bifurcation buckling and
small bending vibrations of a rotating drill string lying in a
horizontal wellbore. With allowance for friction forces and
additional constraints, differential equations have been de-
rived, for which solutions of eigenvalue problems of free vibra-
tions of drill strings of finite and unlimited length have been
constructed.

These papers [2] took into account the equation of weight
force equilibrium, wall behavior, friction, compression forces
and their torques and obtained a solvable homogeneous dif-
ferential equation of the fourth order for bending deformations
of a compressed rod, which rests on the wall of a cylindrical
channel and rotates. Their research solved the problems deal-
ing with axial force eigenvalues critical for the rod stability
loss, as well as the rotational frequencies critical for its bending
oscillations. In this case, deformation and power parameters
of the stress-strain state of the horizontal drill column were
not determined.

Vytvytskyi 1., et al. [3] formulated the problem of rational
centering of the casing under the complex configuration of
well axis using elastic-rigid centralizers. The model of the
“casing-well” system is under consideration. In the simulation
system, the column in the hole is loaded by two sets of forces:
the forces of gravity, distributed along the axis of the pipe and
pressure forces caused by the complex configuration of the well
axis and distributed between the centering devices. The influ-
ence of structural peculiarities of the cyclically symmetric
“bow” type centralizers on their rigidity and toughness char-
acteristics has been taken into account.

According to the authors [3], the obtained results provide
for optimizing the exact number and intervals of equipping the
casing with centering devices and, thereby, avoiding the for-
mation of dead zones in the annulus. This will give the oppor-

ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2019, N2 5 47


https://doi.org/10.29202/nvngu/2019-5/12
mailto:paliychuk.igor.if@gmail.com
mailto:paliychuk.igor.if@gmail.com

tunity to achieve high-quality cement job and make casing of
the well of any configuration reliable and time-proof.

Shatskyi I., et al. considered the problem of the interaction
of elastic rod casing centralizers with the wellbore wall [4]. The
paper aims at studying the influence of the axial mobility of the
centralizer’s ends on the parameters of its rigidity and strength.
These characteristics are necessary to assess the possibility of
the casing string and quality of well completions.

Gao G. and Miska S. [5] studied the sinusoidal postbuck-
ling configuration of a long pipe constrained in a horizontal
well. In this paper, the buckling equation and natural bound-
ary conditions are derived with the aid of calculus of varia-
tions. The natural and geometric boundary conditions are
used to determine the proper solution that represents the post-
buckling configuration. Effects of friction and boundary con-
ditions on the critical load of helical buckling are investigated.
Friction can increase the critical load of helical buckling sig-
nificantly. Analytical solutions for both sinusoidal and helical
post-buckling configurations are derived, and a practical pro-
cedure for modeling of axial load transfer is proposed.

Mitchell R. F. described analytical solutions for pipe buck-
ling in vertical and horizontal wells [6] and lateral buckling of
pipe with connectors in horizontal wells [7].

Researchpaper [6] presents two new analytic solutions for
the horizontal well problem. These analytic solutions are valu-
able both for predicting previously unanticipated buckling be-
havior and for providing guidance in further numerical evalu-
ations of this problem. Buckling length change calculations are
determined analytically, and pipe curvature, bending moment,
and bending stresses are evaluated. The contact loads between
tubing and wellbore are determined, then used to limit the
range of validity of the solutions. The critical force for helical
buckling is determined for horizontal wells.

Article [7] indicate that bending stresses are greater be-
cause of connector standoff. Laterally buckled pipe with con-
nectors is analyzed for the first time here. It presents an ana-
Iytic solution of the beam-column equations in a horizontal
wellbore with pipe weight. Pipe deflections, contact loads, and
bending stresses are determined with explicit formulas. Sag
between connectors is calculated so that pipe body contact
with the wellbore between connectors can be determined.

Ren Fushen, et al. [8] focused on differential equation of
the dynamic buckling and equations of the critical load of the
sinusoidal buckling and the spiral buckling. This paper focuses
on the rotational drill string in horizontal well. The differential
equation of the dynamic buckling is established considering
some various factors, including friction, the drill string-bore-
hole interaction, and rotation, and the equations of the critical
load of the sinusoidal buckling and the spiral buckling are de-
rived.

In 1996, J. H. Sampaio presented an innovative mathemat-
ical model for mechanical buckling of drillstrings within
curved bore-holes in his PhD dissertation. Unlike the drill
pipe, the casing is run down without being rotated. When cen-
tralizers are not installed, frictional forces distributed along its
entire length of the column increase quite heavily affecting it
when moving further away from the free end. In this case,
there is a complex longitudinal bend of the rod in the space of
the horizontal cylindrical canal.

Miller J., et al. [9] thoroughly investigated this phenome-
non using Kirchhoff’s model for elastic rods, supplemented by
its frictional interaction with channel walls, its computer real-
ization and field simulation.

The researchers proved that the rod depends on the axial
force increase and the distance from the free end: moving far-
ther away, the rod is sinusoidally buckled with the period de-
creasing and amplitude increasing. As the axial force of the
corresponding supercritical value reaches the long rod, it ro-
tates into the spiral line touching the cylindrical surface. When
the rotation number exceeds a certain value, the rod blocks the
channel and stops its further movement.

To prevent this self-locking in sloping and horizontal parts
of the well, casing is installed on centralizers serving as sup-
ports, and when moving, they act like stripes to reduce friction
with the well walls.

Our previous research [10] resulted in the differential
equation of deformations of the casing column as an elastic
rod under its own weight action in the section between two
adjacent centralizers arbitrarily oriented regarding the vertical

0" —1(0 — 09) + uy +j(s — sp)(sind, + 6cosV,) =0, (1)

where 0 is the angle between the tangent to the rod’s curved
axis in the intersection with the coordinate s and the local axis
passing through the two supports; 1, is the anti-zenith angle to
the vertical of this local axis of the n" section inclination; j is
the rod’s specific gravity; s, is the coordinate of the rod’s inter-
section in which the following initial parameters are given:
6, — the inclination angle of the tangent to the local axis; #, —
axial force; u, — transverse force.

In equation (1), all force factors (weight j, forces ¢ and u,
moments ¢) are divided by stiffness EJ (E — material elasticity,
J — the transverse inertia moment). This is based on the fact
that bending deformations of the casing column should not
exceed elasticity limit and be proportional to bending mo-
ments with the coefficient £J [2]. Thus, preserving the solu-
tion universality, one can investigate elastic deformations of a
long rod with a single stiffness on its bend. Besides, the bend-
ing moment equals the rod curvature.

Unsolved aspects of the problem. It is necessary to determine
geometrical and power parameters of casing deformations when
the column slowly advances into a horizontal well. The column
tube is a long, indistinguishable rod supported by centralizers
(equally spaced hinges) to keep casing centered in a wellbore.
Weight distribution along the pipe length makes its sections be-
tween the supports bend. Friction forces arise on centralizers as
the column advances and causes axial compression forces and
longitudinal buckling in the pipe body, thus increasing their de-
formations. The force magnitude varies at different segments
and increases with distance from the free end.

Fig. 1 visualizes forces affecting casing design on central-
izers. The notation expresses the following: n — 1, n, n + 1 —
numbers of segments and supports; /,, /, . | — sections lengths
between the supports; j — weight distribution on casing pipes;
R,_\, R,, R, — reactions on supports; F,_,, F,, F,, — fric-
tional forces on supports; ¢,_ 1, ¢, » — axial compression forces.

The section numbering of the horizontal pipe starts from
its free end: the last segment has number /, the second last one
has number 2 and so on. The support in the initial intersection
of each section (where s, = 0) has a segment number. The co-
ordinate s is the initial intersection that sets the direction of the
column’s free end, with the support number 0.

Purpose. The objective of this article is to develop a meth-
od for calculating parameters of an intense-deformed state of a
long horizontal indistinguishable rod in the sections between
the supports under the simultaneous action of the longitudinal
force and uniformly distributed transverse load. To do this, we
need to solve the differential equation of longitudinal bend (1)
taking into account the rod’s axial compression force.

For all sections of the horizontal well, 8, = 90°; then the
basic equation (1) will have the following form

0" -1,(0-06,) +u,+js=0, )
Rn+1 Rn Rn—l

Iy ) I”l"'l ] ) I”l ] y Il’l—l I
2R lHllHFT‘ lHlH@T‘ N

Fig. 1. Scheme of forces acting on the casing, supported on the
centralizer
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where 0, is the inclination angle of the tangent to the horizon-
tal; #, is axial force; u, is transverse force; g, is bending mo-
ment.

Fig. 2 shows all these variables in the calculation diagram
of the equilibrium of forces and moments in the casing section.
Here, 0, ¢, u, g are, respectively, the same parameters at a dis-
tance s from the initial intersection along the rod’s curved axis;
7, is the local axis passing through the two supports of the n”
section.

Equation (2) is the integral of the differential equation of
the longitudinal bend of the rod with account of its own weight
[1]. Its solution specifies the functions of the core buckling

x(s)= j 0ds; angles of crossings 0 = 0(s); internal bending mo-
ments g(s) = d0/ds = 0’ (this is also the rod curvature) and in-
ternal transverse forces u(s) = —dq/ds = —q' [10].

Solving the problem: the first approximation. First, we be-
lieve that friction might be disregarded. Consequently, the
rod’s axial compression forces are not available. The basic
equation (2) is simplified

0" =—js—u,.
Its integral is
4 3 2

x:J.Gds:—j;—“—unZ+(x%+Bs+y,

where o, B3, y are integration constants.

No buckling on the supports provides the following bound-
ary conditions: x(0) = x(/) = 0 (where [ is segment length),
which helps to find #, and y. Hence, we obtain the functions of

rod buckling x, rotation angles 6, bending moments ¢, and
transverse forces u.

x(s):—z%‘( s4—ls3)—%( s3—ls2)—l%( S3—12S); (3)

R T T

12
a©)=-2(25-15) - (35-1)-6 55 )
u(s):_j(5—2]+37+61[32. (6)

We might derive unknown coefficients o and f for each
segment from the system of linear equations for the boundary
conditions at segment edges (on supports). For the indistin-
guishable rod, such conditions include deformation compati-
bility and bending moments equilibrium. Hence, considering
rotation angles equality (4) and internal moments (5) in the
support intersections of adjacent sections, we have

0,1 1(,+1) = 0,(0) =0 )
Gn+ 1l 1) = ,(0) = 0. ®)

Expression (5) generates the first equation of the system
provided there is no bending moment at the pipe’s free end:
q,(/)) = 0. Consequently, bucklings, bending angles and bend-
ing moments in the first section will be larger than those in
farther sections. When removed from the free end, its effect

X
Iy qn

z, U
6% q ¢
U, 7

Fig. 2. The calculation diagram of the balance of internal forces
and moments on the pipe section (the distributed weight j is
not shown)

extinguishes, the segments are balanced and interact in the
connected intersections under similar conditions. Due to the
same length, their stress-strain is symmetrical regarding the
mid-point of the run between the supports. Therefore, there
are no rotations in the support sections. The last equation
closing the linear system is obtained from expression (4) for
the selected most-distant segment (n + 1) if ¢, ,(0) =0.

For the numerical evaluation of the desired parameters of
the problem, a system of 10 linear equations for five sections
was compiled and solved by programming in Mathcad. For this
purpose, expressions (4, 5) were used under conditions (7, 8)
for supports 1—4 and the first and last equations. The results
showed that the moment on support 4 differs from that on sup-
port 5 only by 0.56 %. Consequently, with this error, we can
assume that already the fifth section has symmetric deflections.

With a symmetric buckling pattern, the support moment is

2

qn<0)=q"(l>=—%, ©)

while the largest curvature radius of the rod’s buckling is

x :x(l/2)=—£ (10)
mex 384"

According to construction technology requirements, the
pipe’s maximum deflection should be limited to avoid its fric-
tion on well walls and guarantee a clearance for high-quality
cementing. Then, restrictions, for example x,,, < //1000,
might determine permissible distance between supports:

L <3/0.384/ ).

Our calculations prove that with the same distance be-
tween the supports in the final section buckling is 2.5 times
larger than the allowance as there is no bending moment at the
free end. Nonetheless, this buckling immediately decreases by
8 %, if the final section length is reduced to

1,=1,/2/3=0.8165!. (11)

In this case, the bending moment on support 1 equals mo-
ment (9)

0,(0)=—jI} [8=q,(1) == jI* /12,

and all the sections, starting with number two, have a symmet-
ric buckling pattern regardless of the number involved in the
system of equations.

At the free end, the support behavior coincides with the
transverse force

Ry =u(h) =3j1,/8. (12)

The reaction of any intermediate support causes difference
(increase) of internal transverse forces in the joint cross sec-
tion of two adjacent sections

Rn:un+l(ln+l)_un(0)~ (13)

We established that the final section length reduction (11)
when the symmetric buckling pattern is established in all seg-
ments ensures that the responses on all the supports equal the
section weight: R, = j/ (except for support 1, where it is more
than 1 %).

The same equation system is solved for reduced length /, =
=0.8/. Besides, it was found that on the final support the reaction
is less than the calculated one (12) only by 0.72 %; on support 2,
the reaction differs from the weight of the section by 0.26 %; on
subsequent supports reactions equal the sections weight (the dif-
ference is less than 0.07 % and disappears after the fifth one).

Thus, the solution to the problem of deforming a long hor-
izontal rod on supports without friction and axial forces can be
found in closed form (3—6). Due to this, reactions on supports
become known in the first approximation.
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Axial forces mechanism. As the pipe string advances in a
horizontal well, axial forces arise only due to friction forces on
the supports, and in the area between the supports the axial
force in the pipe body remains constant.

Let us establish the connection between the support reac-
tion, transverse force and axial force in a long rod. For this, we
apply a linear model of the friction force F, which is propor-
tional to the support reaction R, of the n” section: F, = k,R,,
where k, is friction coefficient.

At the free end, the reaction of support (12) exerts friction
force and axial compression force ¢, in the 1st section

t=kiRo=k; - uy()). (14)
The reaction on support 1 according to balance (13) will be
Ry = uy(h) — uy(0).

The difference in internal transverse forces on the opposite
edges of any pipe part is equal to its weight, regardless of the
stress-strain state

(L) = 1y (0) = jl,. 15)

Then axial force in segment 2, exerted by frictional force
on support 1 and axial force from the edge of segment 1, is

b= kR = kfuy (L) + ).

The reaction of support 2, the weight of section 2 and axial
force in section 3 are, respectively,

R, = us(l5) — uy(0);
uy(h) — uy(0) =jb;

t=k Ry + 1= k(us(53) +j(l, + 1))).

In general, in the #” section, the axial force ¢, is caused by
friction force of on support (n — 1) and axial force #,_, acting
on the adjacent segment (n — 1) (closer to the free end). There-
fore, the response to support (n — 1), weight of the segment
(n — 1) and the axial force in the n” section are respectively

Rn—l = un(ln) — U, 1(0):

un—l(ln—l) - un—l(o) :jln—l;
tn:kanfl+tn71:kl(un(ln) +jLn—1)s (16)

n-1

where L, = ZII» is the length of the pipe column from sup-
i=1

port (n — 1) to the free end.

These equations express the relation (equilibrium) be-
tween external and internal forces in an arbitrary n” region and
on the support (n—1).

Consequently, when casing is lowered into a horizontal
well, the axial force in the pipe body between the supports de-
termines the column section weight at its free end and the
value of lateral force at the section end. For a frictionless case,
this force is calculated using (6). When frictional forces are ob-
vious, the rod experiences a longitudinal — beside transverse —
bend. Therefore, we observe a different value of the transverse
force. The key to its solution is basic equation (2).

The solution of the basic equation of deformation. When the
column moves, its pipes are compressed, and the axial force is
negative ¢ < 0. If | /| = 2, then we will take into consideration its
sign in the equation of deformation (2) and get

0" + 120 = —js + 120, — u,,. (17)

The general solution of this linear nonhomogeneous dif-
ferential equation of the 2" order is quite understandable

. js u
0=ocosts+Psints ——+0, ——2-.
‘E2 ‘52

Hence, the rod buckling in the section between the sup-
ports is

sints _costs  jis?
x:J.Gds:a / +[9”—

T T 272

Boundary conditions on supports x(0) = x(/) = 0 make it
possible to determine integration constants (8, — u,/t>) and 7,
as well as the rod buckling x, rotation angles 0, bending mo-
ments ¢, and transverse forces u, respectively

sints  sin/t
x(s)=as -— |+
s It
(18)
1-costs 1-coslt j s(l-s)
+Bs - +-=- ;
s It 22
0(s)=x"=a cosrs—% +
It
. 19)
. l-cosit) j(!
+B] sints ——— |+ ——5 |;
It (2
q(s):6’:—cxrsinrs+ﬁrcosrs—iz; (20)
T
u(s) =—q' = ar’costs + pr’sints. 21)

Expansion of the system of equilibrium equations to account
for axial forces. According to the boundary conditions at the
edges of the segments (on the supports), it is necessary to
make a system of equilibrium equations which will generate
unknown integration constants.

According to (20), for the final support, on which the free
end of section 1 was backed, the following equation can be made

(lysin(fn), o (o) cosln),  j _
; +B, ] : 0. (22)

q(l)=-a,

Here and in the following equations we use intentionally
formed parameters (/t),, which also occur as arguments of
trigonometric functions.

According to (19), we offer one equation of deformation
compatibility (7) for each n support, where

9n+1(ln+1) = OLrl+1 [COS([T)MI _Slnl(lr)nﬂj +
( 17)n+1

1 —COS(IT)nH _ jln+l .
(h)ml 2tn+1 ,

|_sin(lx), ] _p, L=cost), 7,
(), (), 2,

n

+ Bn+1 [Sin(h)ml -

On(O)zan[

According to (20), we can make another equation — sup-
port point equilibrium (8), in which
(), sin(l1),,,, N
ln+l
(1) c08(),y  J .
l t.

n+l n+l

P (ln+1) =0,

+ l3n+l

9,00=p, L.
l’l t’l

All these equations contain the parameter l/ t,= l/ L
which is inverse to axial force magnitude that must be deter-
mined from the system of equations. Thus, for each rod sec-
tion, three unknowns must be identified: o.,,, ,,, 1/,. To calcu-
late them, we use the third equation obtained due to the rela-
tion established between its friction force, reaction on the sup-
port, transverse force and axial force in the rod.
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To support the free end in accordance with (14)

2
T
u(h)=-t,
1t ,
therefore, an additional equation can be offered for segment 1

in accordance with (21)

%11) = o, cos(l1), +P, sin(l), :ki,'

For any n™ section in accordance with (16)

t, .
() ==Ly

t

therefore, according to (21), we can make the third equation
Lzl”) =a, cos(/1), +B,sin(l1), I L
Tn tn t
Obviously enough, the previous two equations are not suf-
ficient for section 1; therefore, our next equality will close the
system. For example, for the beginning of section (n + 1), it
will account for fixed end 0,,, 1(0) = 0 or free restraint g,,, ;(0) =
= 0. Moreover, the nonlinearity of solution (21) makes it ap-
plicable to the weight of segment (n + 1)” under condition
(15). Hence, we form the last equation of the system

il
0ty (1=c08(1),,,) +B,, sin(l), ,, — L2 =0,

n+l

General methodology of solving the problem. The resulting
system of algebraic equations is nonlinear. It contains the

function of an unknown parameter /t= l\/; depending on the
axial force 7 in each segment which in turn is to be determined
from the system as 1/1.

The proposed model for the axial force formation in a rod
makes the problem solution quite possible. Substituting axial
force (16) in basic equation (17), we have

0" + kt(un(ln) +jLn - ])e = —jS + tnen —Uy. (23)

As the length /, and distance L, from the segments to their
free ends are known, after the rod deformation the boundary
parameters u,(/,), u,, 6,, t, get their specific constant values.

Parameter £, in equation (23) projects its solution as it is
the coeflicient of friction and can take values within 0 < k, <
< kmax <1 and results in a function describing the rod’s stress-
strain state in the area between the supports. The solution of
the basic equation with &, = 0 (in non-friction cases) takes the
closed form (3—6) and serves as the first approximation.

We apply Poincare’s theorem on the continuous depen-
dence of a differential equation solution on a parameter. With
a gradual minor increase in the parameter, equation (23) with
a nonzero k, will slightly deviate from the found solution of the
first approximation. Thus, when axial forces (0 < k, < 1) are
insignificant, the solutions of the basic equation (namely, the
function of the buckling distributions, bending angles, bend-
ing moments and transverse forces on the rod sections) will
not change dramatically (will not jerk), as its deviation is min-
imal from the solution (3—6).

Proceeding from this, the following methodology for
problem solving was developed.

Initially, we find the transverse forces u,(/,) at the end of
each section in the first approximation. With regular place-
ment of supports — this is u,(/) =jl/2, and for the free end —
(12). Where the lengths /, of each segment are different, it is
necessary to compile and solve the corresponding equations
system of deformation compatibility and support points equi-
librium (7, 8) for the same number and length of the sections,
which provides finding of all values of u,,(/,).

Then, applying formula (16) to each section, we calculate

axial forces 7, and determine values of (/1),= l,,\/a as known.
Their substitution into the system of algebraic equations trans-
forms the functions of parameters (/t), into known coeffi-
cients, and the system itself becomes linear regarding unknown
Oy an 1/ Iy

The solution of this system gives more accurate values of 7,
and parameters (/1), in the next approximation. The substitu-
tion of the latter into the system of equations and its solution
should be repeated until the desired value accuracy of axial
forces 7, is achieved.

Calculation analysis. Our algorithm is implemented in Mat-
Lab software environment. Determination of all parameters of
the stress-strain state in 100 segments of a rod (a system of 300
equations), primarily axial forces with an accuracy of 14 digits,
takes 386 iterations and 10 secs on a single core microprocessor
Intel Pentium 4 with a working frequency of 2.6 GHz.

Fig. 3 presents calculation results of parameters of a stress-
deformed state of a horizontal casing column with a diameter
of 140 mm and a wall thickness of 10.5 mm (/= 12; k,=0.5; /=
=1.85-10%*m™>; E/=1.7 - 10° Nm?).

They show that from the 2" to the 100 run deformation
and power parameters increase: maximum curvature and
turns — by 66 %, support points — by 44 %, moments in the
middle of the segment — by 78 %, axial forces — by 75 times. It
should be noted that distribution of transverse forces varies
from the linear pattern caused by a uniformly distributed
transverse load to a sinusoidal configuration resulting from a
significant static force and a longitudinal buckling of the run.

Accounting for technological conditions of a well construc-
tion. Constraints on maximum bucklings. When the distance
from the free end of the pipe increases, significant growth of its
bucklings is unacceptable. However, axial force increase in
each subsequent section is restricted and not larger than k,R,.
With the regular placement of supports, transverse force is
u(l) = 0.5j1. Then according to (16), axial force will be

t, =1 =k, u(l) +jL, ) = kjl(n - 0.7), (24)

for the given length /, = 0.8/.

As it follows from (24), axial forces in adjacent areas differ
by less than 5 % after 20 runs, and by less than 1 % — after
100 runs, respectively. With such an error, we can assume that
the forces, as well as other parameters of the stress-strain state,
are the same.

Substituting expressions of rotating angles (19) in 6,(0) =
=0,(/), we obtain

—a(l—coslt)+Bsinlr :%l.

The same equation can be obtained using (15) expressing
the weight of an arbitrary section.

The expression of transverse force (21) at the end of the
segment gives the following equation

@: acos/t+PBsin/t :]—l.
2 2t

The solution of the system of these two equations with re-
spect to o and  and the expressions (18—21) shows deflections
of the rod x, rotation angles 0, bending moments ¢, transverse
forces u, respectively

. 2 . . _ . _
X(s)= Jl ‘sm/r(s%nrsil COSTS +js(l s);
2t It ksmlr 1-cosit 2t
0(s) = jl.slnlt(c9srs_ sints +/(l—2s);
2t k sinlt 1-cos/t 2t
P . )
q(s):L.smlt(s%nrs COSTS +i;
2 It Lsmlr l-cosit) t
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Fig. 3. Diagrams of the deformation and force parameters of the
horizontal casing, combined for the first and last sections:

a — the buckling of the sections; b — the intersection angles; ¢ —
bending moments; d — transverse forces; e — axial compression
forces; solid lines — segments from 5 to 1; dashed lines — segments
from 100to 96; K — free end section (support 0)

u(s)=—

Jl »sinlr[ costs  sints ]

2 sinlt 1-cos/t

As 06(//2) =x'(l/2) =0, then the largest buckling in the mid-
dle of the segment is
jI*(3tely/4) 3
3 2 (25)
384\ (1747 (Iv/4)

Decomposition of the expression containing & = /t/4 in
parentheses in a series gives

3 (tgg 2, 17., 62
A | B P L U LR
5,2[ g ] Y55 05 Toasc T

Xy =X(1/2) =

With 7 = 0, this row equals 1, and the buckling fully coin-
cides with (10). When /t = 2, then the series and buckling
grow indefinitely. Therefore, it is necessary to establish restric-
tions on the curvature growth of pipe bucklings; for example,
their increase may not exceed 50 % (it may not be more than
1.5 times of its original value). To do this, we need to solve the
transcendental equation derived from (25)

3tg(lt/4) — 3(lt/4) = 1.5(Ic/4)3.

Its solution is /t/4 =0.911. Expression (24) helps to find the
number of runs with permissible length n = (It)?/(kjF) + 0.7.
To restore the permissible buckling in the subsequent areas,
the distance between supports should be reduced by 10 %, be-

cause .4/1/1.5 =0.9.

Friction moments on centralizers. Friction force applied to
the centralizer’s outer surface with a diameter d exerts friction
moment m, = k,R,d/2 in the support cross section. Then, equa-
tion (22) for the ultimate support will have the following form

i 2
—a, (), sin(lT), + B, (), cos(lx), — 17[1 = —%.
1 1

The equation of the moment equilibrium (8) should be
written as g, (/,, 1) — ¢,(0) = —m,,, where the moment friction
is m, = k(u, (1) — u,(0))d/2 (13).

Using expressions of transverse forces (21), we obtain

2

n+l

2
(IT);, cos(/t) N

n n+l
2 13 13+1
(Iv)2, sin(lT),,,,
+B,, — 2 ———ml |
B}'H-l /3”

Substituting this friction moment together with expres-
sions (20) into the equation of moment equilibrium, it is nec-
essary to group addends with the same coefficients o and f3.

Deviation of the real well from the horizontal. Due to geo-
logical, technical and technological deviations during well
drilling, individual sections may not coincide with the hori-
zontal. As a result, casing supports have slight displacements
vertically up or down, and the local axes of the sections be-
tween the supports are actually reciprocal turns, causing the
basic bending moments to change. Therefore, at cross sections
of such a rod, the equation of deformation compatibility
should be the equality of anti-zenith angles at the end of the
next (counting from the free end) and at the beginning of the
previous sections 9, 1(/,, ;) — 3,(0) =0.

To determine the actual profile of the well before installing
the casing means to conduct its deep inclinometry — to mea-
sure the actual anti-zenith inclination angles of the section
axes to the vertical (with a step of 10 m). Knowing these an-
gles, we can determine the zenith angle of any section on the
segment of the rod [10]: O(s) =0, + 0(s), O, 1(/,, 1) =0, +
+6,.,(,.) and 9,(0) =9, + 6,(0). Consequently, instead of
equation (7), the system needs to apply the equation of defor-
mation compatibility

en+1([n+l) _en(o) :ﬁn_ﬁn+l'

Pipe column pulling case. Well construction might face two
cases (scheduled and emergency) during which the pipe col-
umn moves in the reverse direction from the free end. In emer-
gency cases, it is necessary to pull the column out of the well to
have it repaired. The planned case is presupposed by the tech-
nology of pulling tension on the column string after its instal-
lation in a horizontal well to reduce pipe buckling and to form
large gaps to be later cemented.

‘When pulling a tube column from the well, friction forces
on the supports stretch the pipe; therefore, the axial force is
positive. By denoting ¢, = t* and using (2), we obtain the fol-
lowing differential equation
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0" —1°0 =—js — (u,+1%0,).

Both the general solution of this equation and the integral
contain hyperbolic functions

GZ(XChTS+BShTS+TL2S+%+en;
P2
x=des=ocShTs+BChm+j Sy ﬂ+6n S+Y.
T T 22 (7

Under the boundary conditions on the supports x(0) =
=x(I) = 0, two coefficients can be obtained: (8, + u,/t%) and y.
Then we determine bucklings of the rod x, angles of rotation 0,
bending moments ¢, and transverse forces u, respectively

x(s)=as shts shit +Bs chts—1 chlt-1 J s(l—s);
s It s It 2 2

0(s)=a| chrs— S8 |y gl shos - L) L1 o),
It It 22

g(s)=orshts+Brchts +L2;
T

u(s) = —at’chts — Br’shs.

Further solution of the problem is carried out according to
the method described above.

Similarly to (25), we find maximal bucklings in the sec-
tions placed far from the free end

JIt 3 (l_th(/r/4)J

X = X0/ = 384 (jap| /4

Decomposition of the expression containing & = /t/4 in a
series gives

3[_the) 2, 17 .4 62
gz[ &,] ! 5&*‘ +105{; 945<3 T

With 7 = 0, the row equals 1, and the buckling coincides
with (10). As the parameter & increases, the expression in pa-
rentheses heads to 1, and the multiplier 3/&? decreases. This
confirms that the increase in the axial force of tension # makes
the buckling of the rod between the supports decrease.

Conclusions. When a long casing string on the centralizers
is pushed into a horizontal well, it experiences transverse and
longitudinal bends under its own weight and frictional forces
causing axial compression forces. The latter represent vari-
ables in length and depend on support reactions which, how-
ever, can be found in the first approximation in non-friction
cases.

Geometric and power parameters of pipe deformations on
the sections between the supports can be determined from the
system of equations of the compatibility of section turns and
the support point equilibrium obtained by solving the differen-
tial equation of the longitudinal-porous bend of the elastic
rod. These equations contain axial force parameters, which are
also derived from the proposed system of algebraic equations.

The solution of the problem becomes possible since the sys-
tem of equations accounts for transverse forces obtained on the
basis of the established relation between transverse and axial
forces in the column and reactions and friction on the supports.
Due to the value of axial forces, calculated in the first approxi-
mation, the system becomes linear, and its iterative solution al-
lows us to find the desired parameters with high accuracy.

Our method takes into account additional moments of fric-
tional forces affecting centralizers and the influence of wells
deviations from the horizontal on the change of deformation-
force parameters. The offered formulas help to calculate the
optimal separation of the casing centralizers and the solution of
the problem is provided for the case of its reverse motion.

The results obtained might serve for the analysis of the
stress-deformed state of the casing column in the technologi-
cal process of a horizontal well construction which allows oil-
men to increase its reliability and durability.
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JedopmyBanHs 10Broi 00caaHOI KOJOHH
HA IEHTPATOPAaX NMPH BCTAHOBJIEHHI
B TOPH30HTAJIbHY CBEPIJIOBHHY

1. 1. ITanituyx, b. C. Hezamaii, I’ J[. Maauk

IBaHO-®paHKiBCHKUIT HAlIOHATBLHUI TEXHIYHUI YHiBepCH-
TeT HadTu i ra3y, M. IBaHo-DpaHKiBChK, YKpaiHa, e-mail:
paliychuk.igor.if@gmail.com

MeTta. Po3po06ieHHSI METOAMKU PO3paxyHKy rapaMeTpiB
HarpyXeHo-1e(popMOBaHOTO CTaHy CTUCHEHOI 00CaIHOT KO-
JIOHU, SIKY TPOLUTOBXYIOTb Y TOPU3OHTAJIbHY CBEPUIOBUHY
IMiJ1 vac ii CrnopykKeHHs.

Meroauka. 3ajgavya pos3B’s3aHa ILIJISIXOM IHTErpyBaHHS
nrdepeHIiaTbHOTO PiBHSHHS TTO3I0BXHBOTO 3TMHY TOBTOTO
CTPWXKHS Tl Ji€l0 BIAacHOi Baru. Y mepuioMy HaOJIMXKEeHHi
3HalIeHi peakilii Ha oropax-leHTpaTopax 0e3 ypaxyBaHHS
OChOBUX CUJ TepTsi. s BU3HaUeHHs AedopMaliiiHuX i Cu-
JIOBUX TIapaMeTpPiB Ha MIMTHKAX MiX OMOpaMU 3aCTOCOBaHA
cucTeMa ajredpaiyHuX PiBHSIHb HA OCHOBI PiBHSIHb CyMic-
HOCTI AeopMalliii i piBHOBaru 3ruHaJIbHUX MOMEHTIB B OTTO-
PHUX NIEPETUHAX.

PesympraTin. 3HalineHo 3araqbHUI PO3B’I30K OCHOBHOTO
nudepeH1iaIbHOro PiBHIHHS AedopMalliii ropu30HTaIbHOT
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KOJIOHUM TpYO 3 YpaxXyBaHHSIM TepTs Ta OCbOBUX CHUJI, IO [i-
IOTh Mill Yac ii mpocyBaHHS. 3a MOro JOTIOMOTOIO BUBEIEHI
dopmynu 1Sl po3paxyHKy MPOTMHIB, KYTiB TOBOPOTIB Iepe-
TUHIB CTPUXHS, MOro BHYTPILIHIX 3rUHAJILHUX MOMEHTIB i
MoTepeyHUX CUJI Ha AUISTHKAX MixX oropaMu. YpaxoBaHi 10-
JIaTKOBI MOMEHTU CUJI TepTs, IO AiIOTh Ha LIEHTpaTopax.
3HaiineHi po3B’sI3KU 3a1aui ISl BUMTAIKY MPOTUIIEXKHOTO Ha-
MPSIMKY PyXy 00cagHOi KOJIOHMU.

HaykoBa HoBH3HA. 3amporOHOBaHE PiBHSIHHS 3B’SI3KY
MiX TIONEpPeYHMMU # TIO3JIOBXHIMU CWIaMU B JOBIOMY
CTPUWKHI Ta peaklilisiMU i1 cuiiaMu TepTs Ha onopax. Cucrema
PiBHSIHBb JOTIOBHEHA PiBHSIHHIMU MOMEPEYHUX CUII, IO JAJI0
3MOTy OJIHOYAaCHO BM3HA4YaTU OCbOBi CTUCKaJIbHI cuiu. Po3-
pobJieHa MeToaMKa JliHeapu3allii cucTeMy ajreopaiaHUX piB-
HSIHb Ta 11 iTepalliiHOro po3B’si3aHHS 3 BUCOKOIO TOYHICTIO.

IMpakTyna 3naunmicTb. OTpUMaHi pe3yabTaTy CIPSIMO-
BaHi Ha BpaxyBaHHSI BUMOT TEXHOJIOTiI CITOPYIKEHHSI TOPU-
30HTAJIbHOI CBepAJIOBMHU. BuBeneHi dopMynn st po3pa-
XYHKY OTNITUMaJIbHOI BiZICTaHi MixX LIeHTpaTopaMu. Po3rnsHy-
TO BIUIMB BiIXWieHb HAIpPSIMKY IiJISTHOK CBEPIUIOBMHU Bil
TOPU3OHTAJIi Ha 3MiHY Hampyx)keHo-Ie(OPMOBAHOTO CTaHY
00canHOi KOJOHHM, IO AO3BOJISIE MiABMIIMTU HaIilHICTh i
JIOBTOBIYHICTb 11 eKCIUTyaTallii.

KutouoBi ciioBa: eopuszonmanvha ceéeponoguna, o6cadna Ko-
JNOHA, NPYICHUTI CMPUICEHb, NO3006JICHIl 32UH, cuaa mepms,
0Cbo6e CMUCKAHHS

JedopmupoBanne IJIMHHOI 00CAXHOM
KOJIOHHBI HA LIEHTPATOPaX NPH YCTAHOBKE
B TOPH30HTAJIbHYI0 CKBAXKHHY

H. U. Ilaauiiuyk, b. C. Hezamaii, I JI. Masuk

MBaHo-®paHKOBCKMIT HAIMOHAJIBHBIM TEXHUYECKUN YHM-
BepcuTeT HedTH U rasza, . MBaHo-®DpaHKOBCK, YKpauHa,
e-mail: paliychuk.igor.if@gmail.com

Ileas. PazpaboTka MeTOIMKU pacyeTa rmapaMeTpoB Ha-
MPSKEHHO-1e(OPMUPOBAHHOIO COCTOSIHUSI CKATOU 00cam-
HOI1 KOJIOHHBI, KOTOPYIO MPOTAJIKUBAIOT B TOPU30HTATbHYIO
CKBaXKMHY IIPU €€ COOPYKEHUU.

Meroauka. 3agaya peleHa IIyTeM MHTErPUPOBAHUS
InbdepeHINaTbHOTO ypaBHEHUSI TMPOAOJBLHOIO M3rubda
UIMHHOTO CTEPXHS IIOJ AEWCTBUEM COOCTBEHHOIO Beca.
B mepBoM mpHOIMKEHUM HaWAEHBI peakiMd Ha OIMopax-
LieHTpaTopax 0e3 yueTa OCeBbIX CuI TpeHus. 1 onpenese-
HUST 1e(OPMALIMOHHBIX ¥ CUJTOBBIX TTapaMEeTPOB Ha yJacTKax
MEXKIy OIopaMu IIpUMeHeHa CUCTeMa ajIiredpandyecKux ypaB-
HEHWI1 Ha OCHOBE YpaBHEHUII COBMECTHOCTH IeopMaIinii u
paBHOBECHS U3rMOAIOIIMX MOMEHTOB B OTTIOPHBIX CEYCHUSIX.

Pe3yabraThl. HalineHo ob1iee pelieHre OCHOBHOTO AU -
epeHIMaIbHOTO ypaBHEHUS Ae(hopMaLivii rOpU30HTAIBLHOMN
KOJIOHHBI TPYO C YyU4E€TOM TPEHUSI M OCEBBIX CUJI, IEHCTBYIO-
LI1X BO BpeMsi ee mpoaBikeHus . C ero moMOIIbIO BbIBEIEHbI
(opMyITBI 1T pacueTta MporudoB, YIJI0B TOBOPOTOB CEUCHUA
CTEePKHSI, €r0 BHYTPEHHUX U3rMOAIOIIMX MOMEHTOB U IOTIe-
PEYHBIX CHJI Ha YyJ9acTKaxX MEXIY OIMOpaMU. YUTEHBI JOMOJI-
HUTEIbHbIE MOMEHTBI CUJI TPEHUSI, NEHCTBYIOIIME Ha LIEH-
TpaTophl. HaiinmeHo perieHue 3amadyu i ciiydast IpOTUBO-
IOJIOXKHOTO HAIIPaBJICHUsI IBVKEHMS 00CaTHOM KOJOHHDI.

Hayunas noBu3Ha. [1pemioxeHo ypaBHEHHE CBSI3M MEXK-
Ny TIOMEPEeYHbIMU M IPOAOJbHBIMU CHJIAMU B JUIMHHOM
CTEpPXKHE U peaKIUsIMK U CUJIAMU TpeHusI Ha ortopax. Cucre-
Ma ypaBHEHMIi TOIOJHEHa YpaBHEHUSIMU MOMEPEYHbIX CHJI,
YTO MTO3BOJIJIO OHOBPEMEHHO OIPENEISITh OCEBBIE CXXMMA-
fonre cuibl. PazpaboraHa metonuka JvHeapy3aluyd CUCTe-
MBI aJIre0panyecKuX ypaBHEHUI U €€ UTEPALIMOHHOTO PeLe-
HMSI C BBICOKOI TOYHOCTBIO.

IIpakTiyeckas 3HaYMMOCTb. [loJydeHHBIEC pe3yabTaThl
HaIpaBJIeHbl Ha y4eT TPeOOBaHUI TEXHOJOTHHU COOPYKEHUSI
TOPU30HTAILHOM CKBaXKMHBI. BbIBemeHbI (DOPMYJIBI IJIST pac-
yeTa OINTHMAJTbHOTO pACCTOSHUS MEXIy LIEHTPaTOPaMU.
PaccMOTpeHO BIMsIHYE OTKJIOHEHUIA HAITPaBIEHMS yI4aCTKOB
CKBaXXMHBI OT TOPU30HTAIN Ha U3MEHEHUE HAMPSIKEHHO -6~
(OopMUPOBAHHOTO COCTOSIHUSI 0OCATHON KOJIOHHBI, YTO I10-
3BOJISIET ITOBBICUTD HAIEXKHOCTh U IOJITOBEYHOCTD €€ DKCITTY-
aTaluu.

KiioueBbie ciioBa: copusonmanvHas ckeajycuna, oocaouas
KOAOHHA, YApY2ull cmepiiceib, NPOOOAbHbLI U32Ub, cula mpe-
HUs1, 0cegoe cocamue

Pexomendoeano 0o nybaikayii 0dokm. mexH. HaykK
1. 1. Yyouxom. Jlama nadxodxcenns pykonucy 25.01.19.

54 ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2019, N2 5


mailto:paliychuk.igor.if@gmail.com

