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Deformation of the long casing string on centralizers 
in t he process of its installation in a horizontal well

Purpose. Development of a method for calculating parameters of a stress-deformed state of compressed casing pushed into a 
horizontal well during its construction.

Methodology. The problem solution presupposes integrating the differential equation of the longitudinal bend of a long rod 
under its own weight. In the first approximation, reactions on the center-axis bearings are found disregarding the axial forces of 
friction. Our system of algebraic equations determines the deformation and force parameters at the sections between the supports 
based on the equations of the compatibility of the deformations and the equilibrium of the bending moments in the support sec­
tions.

Findings. A general solution of the basic differential equation of deformations of a horizontal pipe column is found taking into 
account friction and axial forces acting during its lowering. It forms the basis for calculating bucklings, rotation angles of rod inter­
sections, its internal bending moments and transverse forces at the sections between the supports. It also makes allowance for ad­
ditional moments of frictional forces acting on the centralizers. The solution of the problem for the reverse motion of the casing 
column is found.

Originality. The equation of connection between transverse and longitudinal forces in a long rod and reactions and forces of 
friction on supports is offered. The system of equations takes into account the equations of transverse forces, which allow determin­
ing the axial compressive forces simultaneously. The linearization method of the system of algebraic equations and its iterative 
solution with high accuracy is developed.

Practical value. The obtained results take into account the requirements of the construction technology of a horizontal well. 
Formulas for calculating the optimal distance between the centralizers are derived. The influence of deviations of the well direction 
from the horizontal on the change of the stress-deformed state of the casing which allows oilmen to increase its reliability and 
durability is considered.

Keywords: horizontal well, casing string, flexible rod, longitudinal buckling, friction force, axial compression

Introduction. Horizontal drilling is used to achieve produc­
tive subsurface layers in the construction of modern oil and gas 
wells [1, 2]. The column of steel casing pipes is lowered into the 
well from the mouth to the bottom and the annular space is 
cemented in accordance with the requirements of construction 
technology. This column rests on centralizers ensuring the co­
herence of the well pipes and walls, preventing their contact 
and forming a cement ring of the same thickness and strength 
[3]. The centralizers are made of curved steel strips shaped as a 
rotational ellipsoid and fixed regularly on pipe columns [4].

The weight of boring casing facilitates their running into 
the vertical, inclined and curved wells. However, to push the 
column into the canopy and horizontal areas, additional effort 
is needed and energy is needed to overcome frictional forces.

Literature review. The literature concerned with mechani­
cal deformations of long casing strings in horizontal wells is 
quite diverse. Many researchers have dealt with different as­
pects of pipe buckling in horizontal wellbores.

Rachkevich R. [1] explored drill pipe columns compressed 
in a horizontal well under their own weight. The stress-strain 
state of a drill string during its compression in a horizontal 
borehole is considered. The function of the elastic axis of the 
drill string as a wave curve is obtained, which enables one to 
improve the analytical models: evaluation of decrease in axial 
force depending on the drill string elastic axis shape, determi­
nation of the force of pressing of the string to borehole walls, 
and calculation of normal stresses in the cross section of drill 
pipes.

However, he examined only the section of the pipes with a 
significant axial force, a sinusoidally buckled column, and its 
ability to lean against the opposite walls every semiperiod. The 
problem solution is constrained by the flat bend shape and dis­
regards friction and substantial torque required for drilling.

Gulyayev V. and Glazunov S. [2] analyzed the behavior of 
a real drill column rotating in the channel of a horizontal well. 
They formulate a problem of the bifurcation buckling and 
small bending vibrations of a rotating drill string lying in a 
horizontal wellbore. With allowance for friction forces and 
additional constraints, differential equations have been de­
rived, for which solutions of eigenvalue problems of free vibra­
tions of drill strings of finite and unlimited length have been 
constructed.

These papers [2] took into account the equation of weight 
force equilibrium, wall behavior, friction, compression forces 
and their torques and obtained a solvable homogeneous dif­
ferential equation of the fourth order for bending deformations 
of a compressed rod, which rests on the wall of a cylindrical 
channel and rotates. Their research solved the problems deal­
ing with axial force eigenvalues critical for the rod stability 
loss, as well as the rotational frequencies critical for its bending 
oscillations. In this case, deformation and power parameters 
of the stress-strain state of the horizontal drill column were 
not determined.

Vytvytskyi I., et al. [3] formulated the problem of rational 
centering of the casing under the complex configuration of 
well axis using elastic-rigid centralizers. The model of the 
“casing-well” system is under consideration. In the simulation 
system, the column in the hole is loaded by two sets of forces: 
the forces of gravity, distributed along the axis of the pipe and 
pressure forces caused by the complex configuration of the well 
axis and distributed between the centering devices. The influ­
ence of structural peculiarities of the cyclically symmetric 
“bow” type centralizers on their rigidity and toughness char­
acteristics has been taken into account.

According to the authors [3], the obtained results provide 
for optimizing the exact number and intervals of equipping the 
casing with centering devices and, thereby, avoiding the for­
mation of dead zones in the annulus. This will give the oppor­
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tunity to achieve high-quality cement job and make casing of 
the well of any configuration reliable and time-proof.

Shatskyi I., et al. considered the problem of the interaction 
of elastic rod casing centralizers with the wellbore wall [4]. The 
paper aims at studying the influence of the axial mobility of the 
centralizer’s ends on the parameters of its rigidity and strength. 
These characteristics are necessary to assess the possibility of 
the casing string and quality of well completions.

Gao G. and Miska S. [5] studied the sinusoidal postbuck­
ling configuration of a long pipe constrained in a horizontal 
well. In this paper, the buckling equation and natural bound­
ary conditions are derived with the aid of calculus of varia­
tions. The natural and geometric boundary conditions are 
used to determine the proper solution that represents the post-
buckling configuration. Effects of friction and boundary con­
ditions on the critical load of helical buckling are investigated. 
Friction can increase the critical load of helical buckling sig­
nificantly. Analytical solutions for both sinusoidal and helical 
post-buckling configurations are derived, and a practical pro­
cedure for modeling of axial load transfer is proposed.

Mitchell R. F. described analytical solutions for pipe buck­
ling in vertical and horizontal wells [6] and lateral buckling of 
pipe with connectors in horizontal wells [7].

Researchpaper [6] presents two new analytic solutions for 
the horizontal well problem. These analytic solutions are valu­
able both for predicting previously unanticipated buckling be­
havior and for providing guidance in further numerical evalu­
ations of this problem. Buckling length change calculations are 
determined analytically, and pipe curvature, bending moment, 
and bending stresses are evaluated. The contact loads between 
tubing and wellbore are determined, then used to limit the 
range of validity of the solutions. The critical force for helical 
buckling is determined for horizontal wells.

Article  [7] indicate that bending stresses are greater be­
cause of connector standoff. Laterally buckled pipe with con­
nectors is analyzed for the first time here. It presents an ana­
lytic solution of the beam-column equations in a horizontal 
wellbore with pipe weight. Pipe deflections, contact loads, and 
bending stresses are determined with explicit formulas. Sag 
between connectors is calculated so that pipe body contact 
with the wellbore between connectors can be determined.

Ren Fushen, et al. [8] focused on differential equation of 
the dynamic buckling and equations of the critical load of the 
sinusoidal buckling and the spiral buckling. This paper focuses 
on the rotational drill string in horizontal well. The differential 
equation of the dynamic buckling is established considering 
some various factors, including friction, the drill string-bore­
hole interaction, and rotation, and the equations of the critical 
load of the sinusoidal buckling and the spiral buckling are de­
rived.

In 1996, J. H. Sampaio presented an innovative mathemat­
ical model for mechanical buckling of drillstrings within 
curved bore-holes in his PhD dissertation. Unlike the drill 
pipe, the casing is run down without being rotated. When cen­
tralizers are not installed, frictional forces distributed along its 
entire length of the column increase quite heavily affecting it 
when moving further away from the free end. In this case, 
there is a complex longitudinal bend of the rod in the space of 
the horizontal cylindrical canal.

Miller J., et al. [9] thoroughly investigated this phenome­
non using Kirchhoff’s model for elastic rods, supplemented by 
its frictional interaction with channel walls, its computer real­
ization and field simulation.

The researchers proved that the rod depends on the axial 
force increase and the distance from the free end: moving far­
ther away, the rod is sinusoidally buckled with the period de­
creasing and amplitude increasing. As the axial force of the 
corresponding supercritical value reaches the long rod, it ro­
tates into the spiral line touching the cylindrical surface. When 
the rotation number exceeds a certain value, the rod blocks the 
channel and stops its further movement.

To prevent this self-locking in sloping and horizontal parts 
of the well, casing is installed on centralizers serving as sup­
ports, and when moving, they act like stripes to reduce friction 
with the well walls.

Our previous research [10] resulted in the differential 
equation of deformations of the casing column as an elastic 
rod under its own weight action in the section between two 
adjacent centralizers arbitrarily oriented regarding the vertical

	 q′′ - t0(q - q0) + u0 + j(s - s0)(sin n + q cos n) = 0,	 (1)

where q is the angle between the tangent to the rod’s curved 
axis in the intersection with the coordinate s and the local axis 
passing through the two supports; n is the anti-zenith angle to 
the vertical of this local axis of the n th section inclination; j is 
the rod’s specific gravity; s0 is the coordinate of the rod’s inter­
section in which the following initial parameters are given: 
q0 – the inclination angle of the tangent to the local axis; t0 – 
axial force; u0 – transverse force.

In equation (1), all force factors (weight j, forces t and u, 
moments q) are divided by stiffness EJ (E – material elasticity, 
J – the transverse inertia moment). This is based on the fact 
that bending deformations of the casing column should not 
exceed elasticity limit and be proportional to bending mo­
ments with the coefficient EJ [2]. Thus, preserving the solu­
tion universality, one can investigate elastic deformations of a 
long rod with a single stiffness on its bend. Besides, the bend­
ing moment equals the rod curvature.

Unsolved aspects of the problem. It is necessary to determine 
geometrical and power parameters of casing deformations when 
the column slowly advances into a horizontal well. The column 
tube is a long, indistinguishable rod supported by centralizers 
(equally spaced hinges) to keep casing centered in a wellbore. 
Weight distribution along the pipe length makes its sections be­
tween the supports bend. Friction forces arise on centralizers as 
the column advances and causes axial compression forces and 
longitudinal buckling in the pipe body, thus increasing their de­
formations. The force magnitude varies at different segments 
and increases with distance from the free end.

Fig. 1 visualizes forces affecting casing design on central­
izers. The notation expresses the following: n - 1, n, n + 1 – 
numbers of segments and supports; ln, ln + 1 – sections lengths 
between the supports; j – weight distribution on casing pipes; 
Rn - 1, Rn, Rn + 1 – reactions on supports; Fn - 1, Fn, Fn + 1 – fric­
tional forces on supports; tn - 1, tn + 2 – axial compression forces.

The section numbering of the horizontal pipe starts from 
its free end: the last segment has number 1, the second last one 
has number 2 and so on. The support in the initial intersection 
of each section (where s0 = 0) has a segment number. The co­
ordinate s is the initial intersection that sets the direction of the 
column’s free end, with the support number 0.

Purpose. The objective of this article is to develop a meth­
od for calculating parameters of an intense-deformed state of a 
long horizontal indistinguishable rod in the sections between 
the supports under the simultaneous action of the longitudinal 
force and uniformly distributed transverse load. To do this, we 
need to solve the differential equation of longitudinal bend (1) 
taking into account the rod’s axial compression force.

For all sections of the horizontal well, n = 90°; then the 
basic equation (1) will have the following form

	 q′′ - tn(q - qn) + un + js = 0,	 (2)

Fig. 1. Scheme of forces acting on the casing, supported on the 
centralizer
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where qn is the inclination angle of the tangent to the horizon­
tal; tn is axial force; un is transverse force; qn is bending mo­
ment.

Fig. 2 shows all these variables in the calculation diagram 
of the equilibrium of forces and moments in the casing section. 
Here, q, t, u, q are, respectively, the same parameters at a dis­
tance s from the initial intersection along the rod’s curved axis; 
zn is the local axis passing through the two supports of the nth 
section.

Equation (2) is the integral of the differential equation of 
the longitudinal bend of the rod with account of its own weight 
[1]. Its solution specifies the functions of the core buckling 

( ) ;x s ds= q∫  angles of crossings q = q(s); internal bending mo­
ments q(s) = dq/ds = q′ (this is also the rod curvature) and in­
ternal transverse forces u(s) = -dq/ds = -q′ [10].

Solving the problem: the first approximation. First, we be­
lieve that friction might be disregarded. Consequently, the 
rod’s axial compression forces are not available. The basic 
equation (2) is simplified

q′′ = -js - un.

Its integral is
4 3 2

,
24 6 2n
s s sx ds j u s= q = - - + α + b + γ∫

where a, b, g are integration constants.
No buckling on the supports provides the following bound­

ary conditions: x(0) = x(l) = 0 (where l is segment length), 
which helps to find un and g. Hence, we obtain the functions of 
rod buckling x, rotation angles q, bending moments q, and 
transverse forces u.

	 ( ) ( ) ( )4 3 3 2 3 2
2( ) ;

24 2
jx s s ls s ls s l s

l l
α b

= - - - - - - 	 (3)

	 ( ) ( ) ( )3 2 2 2 2
2( ) 4 3 3 2 3 ;

24 2
js s ls s ls s l

l l
α b

q = - - - - - - 	 (4)

	 ( ) ( )2
2( ) 2 3 6 ;

4
jq s s ls s l s

l l
α b

= - - - - - 	 (5)

	 2( ) 3 6 .
4
lu s j s

l l
  α b

= - - + + 
 

	 (6)

We might derive unknown coefficients a and b for each 
segment from the system of linear equations for the boundary 
conditions at segment edges (on supports). For the indistin­
guishable rod, such conditions include deformation compati­
bility and bending moments equilibrium. Hence, considering 
rotation angles equality (4) and internal moments (5) in the 
support intersections of adjacent sections, we have

	 qn + 1(ln + 1) - qn(0) = 0;	 (7)

	 qn + 1(ln + 1) - qn(0) = 0.	 (8)

Expression (5) generates the first equation of the system 
provided there is no bending moment at the pipe’s free end: 
q1(l1) = 0. Consequently, bucklings, bending angles and bend­
ing moments in the first section will be larger than those in 
farther sections. When removed from the free end, its effect 

extinguishes, the segments are balanced and interact in the 
connected intersections under similar conditions. Due to the 
same length, their stress-strain is symmetrical regarding the 
mid-point of the run between the supports. Therefore, there 
are no rotations in the support sections. The last equation 
closing the linear system is obtained from expression (4) for 
the selected most-distant segment (n + 1) if qn + 1(0) = 0.

For the numerical evaluation of the desired parameters of 
the problem, a system of 10 linear equations for five sections 
was compiled and solved by programming in Mathcad. For this 
purpose, expressions (4, 5) were used under conditions (7, 8) 
for supports 1‒4 and the first and last equations. The results 
showed that the moment on support 4 differs from that on sup­
port 5 only by 0.56 %. Consequently, with this error, we can 
assume that already the fifth section has symmetric deflections.

With a symmetric buckling pattern, the support moment is

	
2

(0) ( ) ,
12n n
jlq q l= = - 	 (9)

while the largest curvature radius of the rod’s buckling is

	
4

max ( 2) .
384
jlx x l= = - 	 (10)

According to construction technology requirements, the 
pipe’s maximum deflection should be limited to avoid its fric­
tion on well walls and guarantee a clearance for high-quality 
cementing. Then, restrictions, for example xmax ≤ l/1000, 
might determine permissible distance between supports: 

3
max 0.384 .l j≤

Our calculations prove that with the same distance be­
tween the supports in the final section buckling is 2.5 times 
larger than the allowance as there is no bending moment at the 
free end. Nonetheless, this buckling immediately decreases by 
8 %, if the final section length is reduced to

	 1 2 3 0.8165 .l l l= = 	 (11)

In this case, the bending moment on support 1 equals mo­
ment (9)

2 2
1 1 2(0) 8 ( ) 12,q jl q l jl= - = = -

and all the sections, starting with number two, have a symmet­
ric buckling pattern regardless of the number involved in the 
system of equations.

At the free end, the support behavior coincides with the 
transverse force

	 R0 = u1(l1) = 3jl1/8.	 (12)

The reaction of any intermediate support causes difference 
(increase) of internal transverse forces in the joint cross sec­
tion of two adjacent sections

	 Rn = un + 1(ln + 1) - un(0).	 (13)

We established that the final section length reduction (11) 
when the symmetric buckling pattern is established in all seg­
ments ensures that the responses on all the supports equal the 
section weight: Rn = jl (except for support 1, where it is more 
than 1 %).

The same equation system is solved for reduced length l1 = 
= 0.8l. Besides, it was found that on the final support the reaction 
is less than the calculated one (12) only by 0.72 %; on support 2, 
the reaction differs from the weight of the section by 0.26 %; on 
subsequent supports reactions equal the sections weight (the dif­
ference is less than 0.07 % and disappears after the fifth one).

Thus, the solution to the problem of deforming a long hor­
izontal rod on supports without friction and axial forces can be 
found in closed form (3–6). Due to this, reactions on supports 
become known in the first approximation.

Fig. 2. The calculation diagram of the balance of internal forces 
and moments on the pipe section (the distributed weight j is 
not shown)
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Axial forces mechanism. As the pipe string advances in a 
horizontal well, axial forces arise only due to friction forces on 
the supports, and in the area between the supports the axial 
force in the pipe body remains constant.

Let us establish the connection between the support reac­
tion, transverse force and axial force in a long rod. For this, we 
apply a linear model of the friction force F, which is propor­
tional to the support reaction Rn of the nth section: Fn = ktRn, 
where kt is friction coefficient.

At the free end, the reaction of support (12) exerts friction 
force and axial compression force t1 in the 1st section

	 t1 = ktR0 = kt ⋅ u1(l1).	 (14)

The reaction on support 1 according to balance (13) will be

R1 = u2(l2) - u1(0).

The difference in internal transverse forces on the opposite 
edges of any pipe part is equal to its weight, regardless of the 
stress-strain state

	 un(ln) - un(0) = jln.	 (15)

Then axial force in segment 2, exerted by frictional force 
on support 1 and axial force from the edge of segment 1, is

t2 = ktR1 = kt(u2(l2) + jl1).

The reaction of support 2, the weight of section 2 and axial 
force in section 3 are, respectively,

R2 = u3(l3) - u2(0);

u2(l2) - u2(0) = jl2;

t3 = ktR2 + t2 = kt(u3(l3) + j(l2 + l1)).

In general, in the nth section, the axial force tn is caused by 
friction force of on support (n - 1) and axial force tn - 1 acting 
on the adjacent segment (n - 1) (closer to the free end). There­
fore, the response to support (n - 1), weight of the segment 
(n - 1) and the axial force in the nth section are respectively

Rn - 1 = un(ln) - un - 1(0);

un - 1(ln - 1) - un - 1(0) = jln - 1;

	 tn = ktRn - 1 + tn - 1 = kt (un(ln) + jLn - 1),	 (16)

where 
1

1
1

n

n i
i

L l
-

-
=

= ∑ is the length of the pipe column from sup­

port (n - 1) to the free end.
These equations express the relation (equilibrium) be­

tween external and internal forces in an arbitrary n 
th region and 

on the support (n - 1).
Consequently, when casing is lowered into a horizontal 

well, the axial force in the pipe body between the supports de­
termines the column section weight at its free end and the 
value of lateral force at the section end. For a frictionless case, 
this force is calculated using (6). When frictional forces are ob­
vious, the rod experiences a longitudinal – beside transverse – 
bend. Therefore, we observe a different value of the transverse 
force. The key to its solution is basic equation (2).

The solution of the basic equation of deformation. When the 
column moves, its pipes are compressed, and the axial force is 
negative t < 0. If | t | = t2, then we will take into consideration its 
sign in the equation of deformation (2) and get

	 q′′ + t2q = - js + t2qn - un.	 (17)

The general solution of this linear nonhomogeneous dif­
ferential equation of the 2 

nd order is quite understandable

2 2cos sin .n
n

j s u
s sq = α t + b t - + q -

t t

Hence, the rod buckling in the section between the sup­
ports is

2

2 2
sin cos .

2
n

n
s s ujsx ds s

t t  
= q = α -b - + q - + γ t t t t 

∫

Boundary conditions on supports x(0) = x(l) = 0 make it 
possible to determine integration constants (qn - un/t2) and g, 
as well as the rod buckling x, rotation angles q, bending mo­
ments q, and transverse forces u, respectively

	

2

sin sin( )

( )1 cos 1 cos ;
2

s lx s s
s l

s l ss l js
s l

 t t
= α - +  t t 

- - t - t
+ b - + ⋅ t t t 

	 (18)

	

2

sin( ) cos

1 cossin ;
2

ls x s
l

l j ls s
l

 t′q = = α t - + t 
   - t

+b t - + -   t t   

	 (19)

	 2( ) sin cos ;jq s s s′= q = -αt t +bt t -
t

	 (20)

	 u(s) = - q ′ = at2 cos ts + bt2 sin ts.	 (21)

Expansion of the system of equilibrium equations to account 
for axial forces. According to the boundary conditions at the 
edges of the segments (on the supports), it is necessary to 
make a system of equilibrium equations which will generate 
unknown integration constants.

According to (20), for the final support, on which the free 
end of section 1 was backed, the following equation can be made

	 1 1 1 1
1 1 1 1

1 1 1

( ) sin( ) ( ) cos( )( ) 0.l l l l jq l
l l t

t t t t
= -α + b - = 	 (22)

Here and in the following equations we use intentionally 
formed parameters (lt)n, which also occur as arguments of 
trigonometric functions.

According to (19), we offer one equation of deformation 
compatibility (7) for each nth support, where

1
1 1 1 1

1

1 1
1 1

1 1

sin( )( ) cos( )
( )

1 cos( )sin( ) ;
( ) 2

n
n n n n

n

n n
n n

n n

l
l l

l

l j l
l

l t

+
+ + + +

+

+ +
+ +

+ +

 t
q = α t - +  t 

 - t
+ b t - -  t 

sin( ) 1 cos( )(0) 1 .
( ) ( ) 2

n n n
n n n

n n n

l l jl
l l t

 t - t
q = α - -b + 

t t 

According to (20), we can make another equation – sup­
port point equilibrium (8), in which

1 1
1 1 1

1

1 1
1

1 1

( ) sin( )( )

( ) cos( ) ;

n n
n n n

n

n n
n

n n

l l
q l

l
l l j

l t

+ +
+ + +

+

+ +
+

+ +

t t
= -α +

t t
+ b -

( )(0) .n
n n

n n

l jq
l t
t

= b -

All these equations contain the parameter 21 1n nt = t  
which is inverse to axial force magnitude that must be deter­
mined from the system of equations. Thus, for each rod sec­
tion, three unknowns must be identified: an, bn, 1/tn. To calcu­
late them, we use the third equation obtained due to the rela­
tion established between its friction force, reaction on the sup­
port, transverse force and axial force in the rod.
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To support the free end in accordance with (14)
2
1

1 1( ) ,
t

u l
k
t

=

therefore, an additional equation can be offered for segment 1 
in accordance with (21)

1 1
1 1 1 12

1

( ) 1cos( ) sin( ) .
t

u l
l l

k
= α t +b t =

t

For any nth section in accordance with (16)

1( ) ,n
n n n

t

t
u l jL

k -= -

therefore, according to (21), we can make the third equation

1
2

( ) 1cos( ) sin( ) .n n n
n n n n

n tn

u l jL
l l

t k
-= α t +b t + =

t

Obviously enough, the previous two equations are not suf­
ficient for section 1; therefore, our next equality will close the 
system. For example, for the beginning of section (n + 1), it 
will account for fixed end qn + 1(0) = 0 or free restraint qn + 1(0) = 
= 0. Moreover, the nonlinearity of solution (21) makes it ap­
plicable to the weight of segment (n + 1)th under condition 
(15). Hence, we form the last equation of the system

( ) 1
1 1 1 1

1
1 cos( ) sin( ) 0.n

n n n n
n

j l
l l

t
+

+ + + +
+

-α - t +b t - =

General methodology of solving the problem. The resulting 
system of algebraic equations is nonlinear. It contains the 
function of an unknown parameter l l tt =  depending on the 
axial force t in each segment which in turn is to be determined 
from the system as 1/t.

The proposed model for the axial force formation in a rod 
makes the problem solution quite possible. Substituting axial 
force (16) in basic equation (17), we have

	 q′′ + kt(un(ln) + jLn - 1)q = - js + tnqn - un.	 (23)

As the length ln and distance Ln from the segments to their 
free ends are known, after the rod deformation the boundary 
parameters un(ln), un, qn, tn get their specific constant values.

Parameter kt in equation (23) projects its solution as it is 
the coefficient of friction and can take values within 0 ≤ kt ≤ 
≤ kmax <1 and results in a function describing the rod’s stress-
strain state in the area between the supports. The solution of 
the basic equation with kt = 0 (in non-friction cases) takes the 
closed form (3–6) and serves as the first approximation.

We apply Poincare’s theorem on the continuous depen­
dence of a differential equation solution on a parameter. With 
a gradual minor increase in the parameter, equation (23) with 
a nonzero kt will slightly deviate from the found solution of the 
first approximation. Thus, when axial forces (0 < kt < 1) are 
insignificant, the solutions of the basic equation (namely, the 
function of the buckling distributions, bending angles, bend­
ing moments and transverse forces on the rod sections) will 
not change dramatically (will not jerk), as its deviation is min­
imal from the solution (3–6).

Proceeding from this, the following methodology for 
problem solving was developed.

Initially, we find the transverse forces un(ln) at the end of 
each section in the first approximation. With regular place­
ment of supports – this is un(l ) = jl/2, and for the free end – 
(12). Where the lengths ln of each segment are different, it is 
necessary to compile and solve the corresponding equations 
system of deformation compatibility and support points equi­
librium (7, 8) for the same number and length of the sections, 
which provides finding of all values of un(ln).

Then, applying formula (16) to each section, we calculate 
axial forces tn and determine values of ( )n n nl l tt =  as known. 
Their substitution into the system of algebraic equations trans­
forms the functions of parameters (lt)n into known coeffi­
cients, and the system itself becomes linear regarding unknown 
an, bn, 1/tn.

The solution of this system gives more accurate values of tn 
and parameters (lt)n in the next approximation. The substitu­
tion of the latter into the system of equations and its solution 
should be repeated until the desired value accuracy of axial 
forces tn is achieved.

Calculation analysis. Our algorithm is implemented in Mat­
Lab software environment. Determination of all parameters of 
the stress-strain state in 100 segments of a rod (a system of 300 
equations), primarily axial forces with an accuracy of 14 digits, 
takes 386 iterations and 10 secs on a single core microprocessor 
Intel Pentium 4 with a working frequency of 2.6 GHz.

Fig. 3 presents calculation results of parameters of a stress-
deformed state of a horizontal casing column with a diameter 
of 140 mm and a wall thickness of 10.5 mm (l = 12; kt = 0.5; j = 
= 1.85 ⋅ 10-4 m-3; EJ = 1.7 ⋅ 106 Nm2).

They show that from the 2nd to the 100th run deformation 
and power parameters increase: maximum curvature and 
turns – by 66 %, support points – by 44 %, moments in the 
middle of the segment – by 78 %, axial forces – by 75 times. It 
should be noted that distribution of transverse forces varies 
from the linear pattern caused by a uniformly distributed 
transverse load to a sinusoidal configuration resulting from a 
significant static force and a longitudinal buckling of the run.

Accounting for technological conditions of a well construc-
tion. Constraints on maximum bucklings. When the distance 
from the free end of the pipe increases, significant growth of its 
bucklings is unacceptable. However, axial force increase in 
each subsequent section is restricted and not larger than ktRn. 
With the regular placement of supports, transverse force is 
u(l ) = 0.5jl. Then according to (16), axial force will be

	 tn = t2 = kt (u(l ) + jLn - 1) = ktjl(n - 0.7),	 (24)

for the given length l1 = 0.8l.
As it follows from (24), axial forces in adjacent areas differ 

by less than 5 % after 20 runs, and by less than 1 % – after 
100 runs, respectively. With such an error, we can assume that 
the forces, as well as other parameters of the stress-strain state, 
are the same.

Substituting expressions of rotating angles (19) in qn(0) = 
= qn(l ), we obtain

( )1 cos sin .jll l
t

-α - t +b t =

The same equation can be obtained using (15) expressing 
the weight of an arbitrary section.

The expression of transverse force (21) at the end of the 
segment gives the following equation

2
( ) cos sin .

2
u l jll l

t
= α t +b t =

t

The solution of the system of these two equations with re­
spect to a and b and the expressions (18–21) shows deflections 
of the rod x, rotation angles q, bending moments q, transverse 
forces u, respectively

2 ( )sin sin 1 cos( ) ;
2 sin 1 cos 2

js l sjl l s sx s
t l l l t

- t t - t
= - ⋅ - + t t - t 

sin cos sin ( 2 )( ) ;
2 sin 1 cos 2

jl l s s j l ss
t l l t

 ⋅ t t t -
q = - - + t - t 

2 sin sin cos( ) ;
2 sin 1 cos
jl l s s jq s

l l l t
 t t t

= ⋅ + + t t - t 
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sin cos sin( ) .
2 sin 1 cos

jl l s su s
l l

 ⋅ t t t
= - - t - t 

As q(l/2) = x′(l/2) = 0, then the largest buckling in the mid­
dle of the segment is

	
4

max 3 2
3tg( 4) 3( 2) .

384 ( 4) ( 4)
ljlx x l

l l
 t

= = - -  t t 
	 (25)

Decomposition of the expression containing x = lt/4 in 
parentheses in a series gives

2 4 6
2

3 tg 2 17 621 1 ... .
5 105 945

 x
- = + x + x + x + xx  

With t = 0, this row equals 1, and the buckling fully coin­
cides with (10). When lt = 2p, then the series and buckling 
grow indefinitely. Therefore, it is necessary to establish restric­
tions on the curvature growth of pipe bucklings; for example, 
their increase may not exceed 50 % (it may not be more than 
1.5 times of its original value). To do this, we need to solve the 
transcendental equation derived from (25)

3 tg (lt/4) - 3(lt/4) = 1.5(lt/4)3.

Its solution is lt/4 = 0.911. Expression (24) helps to find the 
number of runs with permissible length n = (lt)2/(ktjl3) + 0.7. 
To restore the permissible buckling in the subsequent areas, 
the distance between supports should be reduced by 10 %, be­
cause 4 1 1.5 0.9.=

Friction moments on centralizers. Friction force applied to 
the centralizer’s outer surface with a diameter d exerts friction 
moment mn = ktRnd/2 in the support cross section. Then, equa­
tion (22) for the ultimate support will have the following form

2
1 1

1 1 1 1 1 1
1 1

( )( ) sin( ) ( ) cos( ) .
2

jl l d
l l l l

t l
t

-α t t + b t t - = -

The equation of the moment equilibrium (8) should be 
written as qn + 1(ln + 1) - qn(0) = -mn, where the moment friction 
is mn = kt(un + 1(ln + 1) - un(0))d/2 (13).

Using expressions of transverse forces (21), we obtain

2 2
1 1

12 2
1

2
1 1

1 2
1

( ) ( ) cos( )
2

( ) sin( ) .

t n n n
n n n

n n

n n
n
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k d l l l
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l

+ +
+

+

+ +
+

+

 t t t
= -α + α +


t t

+ b 


Substituting this friction moment together with expres­
sions (20) into the equation of moment equilibrium, it is nec­
essary to group addends with the same coefficients a and b.

Deviation of the real well from the horizontal. Due to geo­
logical, technical and technological deviations during well 
drilling, individual sections may not coincide with the hori­
zontal. As a result, casing supports have slight displacements 
vertically up or down, and the local axes of the sections be­
tween the supports are actually reciprocal turns, causing the 
basic bending moments to change. Therefore, at cross sections 
of such a rod, the equation of deformation compatibility 
should be the equality of anti-zenith angles at the end of the 
next (counting from the free end) and at the beginning of the 
previous sections n + 1(ln + 1) - n(0) = 0.

To determine the actual profile of the well before installing 
the casing means to conduct its deep inclinometry – to mea­
sure the actual anti-zenith inclination angles of the section 
axes to the vertical (with a step of 10 m). Knowing these an­
gles, we can determine the zenith angle of any section on the 
segment of the rod [10]: (s) = n + q(s), n + 1(ln + 1) = n + 1 + 
+ qn + 1(ln + 1) and n(0) = n + qn(0). Consequently, instead of 
equation (7), the system needs to apply the equation of defor­
mation compatibility

qn + 1(ln + 1) - qn(0) = n - n + 1.

Pipe column pulling case. Well construction might face two 
cases (scheduled and emergency) during which the pipe col­
umn moves in the reverse direction from the free end. In emer­
gency cases, it is necessary to pull the column out of the well to 
have it repaired. The planned case is presupposed by the tech­
nology of pulling tension on the column string after its instal­
lation in a horizontal well to reduce pipe buckling and to form 
large gaps to be later cemented.

When pulling a tube column from the well, friction forces 
on the supports stretch the pipe; therefore, the axial force is 
positive. By denoting tn = t2 and using (2), we obtain the fol­
lowing differential equation

Fig. 3. Diagrams of the deformation and force parameters of the 
horizontal casing, combined for the first and last sections:
a ‒ the buckling of the sections; b ‒ the intersection angles; c ‒ 
bending moments; d ‒ transverse forces; e ‒ axial compression 
forces; solid lines – segments from 5 to 1; dashed lines – segments 
from 100 to 96; K – free end section (support 0)

a

b

c

d

e
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q′′ - t2q = - js - (un + t2qn).

Both the general solution of this equation and the integral 
contain hyperbolic functions

2 2ch sh ;n
n

ujs s sq = α t + b t + + + q
t t

2

2 2
sh ch .

2
n

n
us s j sx ds s

 t t
= q = α + b + + + q + γ t t t t 

∫

Under the boundary conditions on the supports x(0) = 
= x(l ) = 0, two coefficients can be obtained: (qn + un/t2) and g. 
Then we determine bucklings of the rod x, angles of rotation q, 
bending moments q, and transverse forces u, respectively

2
sh ch 1sh ch 1 ( )( ) ;

2
l ls s j s l sx s s s

s l s l
   t t-t t - -

= α - +b - - ⋅   
t t t t t   

2
sh ch 1( ) ch sh ;

2
l l j ls s s s

l l
     t t -

q = α t - + b t - - -     t t t     

2( ) sh ch ;jq s s s= αt t + bt t +
t

u(s) = -at2 ch ts - bt2 sh ts.

Further solution of the problem is carried out according to 
the method described above.

Similarly to (25), we find maximal bucklings in the sec­
tions placed far from the free end

4

max 2
th( 4)3( 2) 1 .

384 4( 4)
j l l

x x l
ll

 t
= = - ⋅ -  tt  

Decomposition of the expression containing x = lt/4 in a 
series gives

2 4 6
2

3 th 2 17 621 1 ... .
5 105 945

 x
- = - x + x - x + xx  

With t = 0, the row equals 1, and the buckling coincides 
with (10). As the parameter x increases, the expression in pa­
rentheses heads to 1, and the multiplier 3/x2 decreases. This 
confirms that the increase in the axial force of tension t makes 
the buckling of the rod between the supports decrease.

Conclusions. When a long casing string on the centralizers 
is pushed into a horizontal well, it experiences transverse and 
longitudinal bends under its own weight and frictional forces 
causing axial compression forces. The latter represent vari­
ables in length and depend on support reactions which, how­
ever, can be found in the first approximation in non-friction 
cases.

Geometric and power parameters of pipe deformations on 
the sections between the supports can be determined from the 
system of equations of the compatibility of section turns and 
the support point equilibrium obtained by solving the differen­
tial equation of the longitudinal-porous bend of the elastic 
rod. These equations contain axial force parameters, which are 
also derived from the proposed system of algebraic equations.

The solution of the problem becomes possible since the sys­
tem of equations accounts for transverse forces obtained on the 
basis of the established relation between transverse and axial 
forces in the column and reactions and friction on the supports. 
Due to the value of axial forces, calculated in the first approxi­
mation, the system becomes linear, and its iterative solution al­
lows us to find the desired parameters with high accuracy.

Our method takes into account additional moments of fric­
tional forces affecting centralizers and the influence of wells 
deviations from the horizontal on the change of deformation-
force parameters. The offered formulas help to calculate the 
optimal separation of the casing centralizers and the solution of 
the problem is provided for the case of its reverse motion.

The results obtained might serve for the analysis of the 
stress-deformed state of the casing column in the technologi­
cal process of a horizontal well construction which allows oil­
men to increase its reliability and durability.
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Деформування довгої обсадної колони 
на центраторах при встановленні 

в  горизонтальну свердловину

І. І. Палійчук, Б. С. Незамай, Г. Д. Малик
Івано-Франківський національний технічний універси­
тет нафти і газу, м. Івано-Франківськ, Україна, e-mail: 
paliychuk.igor.if@gmail.com

Мета. Розроблення методики розрахунку параметрів 
напружено-деформованого стану стисненої обсадної ко­
лони, яку проштовхують у горизонтальну свердловину 
під час її спорудження.

Методика. Задача розв’язана шляхом інтегрування 
диференціального рівняння поздовжнього згину довгого 
стрижня під дією власної ваги. У першому наближенні 
знайдені реакції на опорах-центраторах без урахування 
осьових сил тертя. Для визначення деформаційних і си­
лових параметрів на ділянках між опорами застосована 
система алгебраїчних рівнянь на основі рівнянь суміс­
ності деформацій і рівноваги згинальних моментів в опо­
рних перетинах.

Результати. Знайдено загальний розв’язок основного 
диференціального рівняння деформацій горизонтальної 
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колони труб з урахуванням тертя та осьових сил, що ді­
ють під час її просування. За його допомогою виведені 
формули для розрахунку прогинів, кутів поворотів пере­
тинів стрижня, його внутрішніх згинальних моментів і 
поперечних сил на ділянках між опорами. Ураховані до­
даткові моменти сил тертя, що діють на центраторах. 
Знайдені розв’язки задачі для випадку протилежного на­
прямку руху обсадної колони.

Наукова новизна. Запропоноване рівняння зв’язку 
між поперечними й поздовжніми силами в довгому 
стрижні та реакціями й силами тертя на опорах. Система 
рівнянь доповнена рівняннями поперечних сил, що дало 
змогу одночасно визначати осьові стискальні сили. Роз­
роблена методика лінеаризації системи алгебраїчних рів­
нянь та її ітераційного розв’язання з високою точністю.

Практична значимість. Отримані результати спрямо­
вані на врахування вимог технології спорудження гори­
зонтальної свердловини. Виведені формули для розра­
хунку оптимальної відстані між центраторами. Розгляну­
то вплив відхилень напрямку ділянок свердловини від 
горизонталі на зміну напружено-деформованого стану 
обсадної колони, що дозволяє підвищити надійність і 
довговічність її експлуатації.

Ключові слова: горизонтальна свердловина, обсадна ко-
лона, пружний стрижень, поздовжній згин, сила тертя, 
осьове стискання

Деформирование длинной обсадной 
колонны на центраторах при установке 

в  горизонтальную скважину

И. И. Палийчук, Б. С. Незамай, Г. Д. Малик
Ивано-Франковский национальный технический уни­
верситет нефти и газа, г. Ивано-Франковск, Украина, 
e-mail: paliychuk.igor.if@gmail.com

Цель. Разработка методики расчета параметров на­
пряженно-деформированного состояния сжатой обсад­
ной колонны, которую проталкивают в горизонтальную 
скважину при ее сооружении.

Методика. Задача решена путем интегрирования 
дифференциального уравнения продольного изгиба 
длинного стержня под действием собственного веса. 
В  первом приближении найдены реакции на опорах-
центраторах без учета осевых сил трения. Для определе­
ния деформационных и силовых параметров на участках 
между опорами применена система алгебраических урав­
нений на основе уравнений совместности деформаций и 
равновесия изгибающих моментов в опорных сечениях.

Результаты. Найдено общее решение основного диф­
ференциального уравнения деформаций горизонтальной 
колонны труб с учетом трения и осевых сил, действую­
щих во время ее продвижения. С его помощью выведены 
формулы для расчета прогибов, углов поворотов сечений 
стержня, его внутренних изгибающих моментов и попе­
речных сил на участках между опорами. Учтены допол­
нительные моменты сил трения, действующие на цен­
траторы. Найдено решение задачи для случая противо­
положного направления движения обсадной колонны.

Научная новизна. Предложено уравнение связи меж­
ду поперечными и продольными силами в длинном 
стержне и реакциями и силами трения на опорах. Систе­
ма уравнений дополнена уравнениями поперечных сил, 
что позволило одновременно определять осевые сжима­
ющие силы. Разработана методика линеаризации систе­
мы алгебраических уравнений и ее итерационного реше­
ния с высокой точностью.

Практическая значимость. Полученные результаты 
направлены на учет требований технологии сооружения 
горизонтальной скважины. Выведены формулы для рас­
чета оптимального расстояния между центраторами. 
Рассмотрено влияние отклонений направления участков 
скважины от горизонтали на изменение напряженно-де­
формированного состояния обсадной колонны, что по­
зволяет повысить надежность и долговечность ее эксплу­
атации.
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ния, осевое сжатие

Рекомендовано до публікації докт. техн. наук 
І. І. Чудиком. Дата надходження рукопису 25.01.19.

mailto:paliychuk.igor.if@gmail.com

