Особливості перетікань реактивної потужності у схемі живлення дугової сталеплавильної печі з покращеною електромагнітною сумісністю

Рейтинг користувача:  / 0
ГіршийКращий 

Authors:

А. А. Маліновський, д.т.н., професор, orcid.org/0000-0001-9765-3494, Державний вищий навчальний заклад Національний університет „Львівська політехніка“, м. Львів, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.; Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.; Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

В. Г. Турковський, к.т.н., доцент, orcid.org/0000-0003-1869-8139, Державний вищий навчальний заклад Національний університет „Львівська політехніка“, м. Львів, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.; Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.; Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

А. З. Музичак, к.т.н., orcid.org/0000-0002-6330-1076, Державний вищий навчальний заклад Національний університет „Львівська політехніка“, м. Львів, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.; Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.; Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

Ю. В. Турковський, orcid.org/0000-0001-7657-7031, Фізична особа підприємець, м. Львів, Україна

Abstract:

Мета. Запропонувати використання для живлення дугових сталеплавильних печей змінного струму перетворювача з характеристикою „сталий струм – стала напруга“.

Методика. Для визначення параметрів режиму установки використовувалося програмне середовище MatLab Simulink із матричним формуванням рівнянь електромагнітного стану. Усереднені за певний інтервал роботи печі значення координат режиму розраховувались з урахуванням стохастичного характеру навантаження на основі положень теорій імовірності.

Результати. Показано, що використання описаного вище перетворювача дає можливість обрати бажаний обсяг перетікань реактивної потужності між електричною мережею й пічною установкою та забезпечує, за рахунок підтримання сталого струму в робочих режимах, практично незмінне значення потоку реактивної потужності. У результаті суттєво зменшуються коливання напруги в мережі та вирівнюються завантаження фаз. Показана можливість підтримання в робочих режимах печі сталого значення споживання реактивної потужності та можливість впливати на перетоки цієї потужності.

Наукова новизна. Показана можливість здійснення динамічної компенсації реактивної потужності дугової печі за допомогою пристрою зі статичними параметрами.

Практична значимість. Використання перетворювача „стала напруга – сталий струм“ дозволяє оптимізувати обсяг споживання реактивної потужності та оплату за неї, а також покращує електромагнітну сумісність печі.

References.

1. Zhezhelenko, I. V., Shidlovsky, A. K., Pivniak, G. G., Saenko, Yu. L. and Noiberger, N. A., 2012. Electromagnetic compatibility of consumers. Moscow: Mashinostroyeniye.

2. Seker, M., Mammedov, A., Hiseyinov, R. and Ko­cka­nat, S., 2017. Power Quality Measurement and Analysis in Electric Arc Furnace for Turkish Electricity Transmission System. Elektronika ir Elektrotechnika, 23(6). DOI: 10.5755/j01.eie.23.6.19691.

3. Toma, A., Popa, G. N., Iagar, A. and Deaconu, S. I., 2010. Experimental analysis of electric parameters of a 100 t UHP electric arc furnace. In: 2010 IEEE International Conference on Industrial Technology. 14‒17 March 2010, Vina del Mar, Chile [online]. Available at: <https://www.researchgate.net/publication/251927323_Expemental_analysis_of_electric_parameters_of_a_100_t_ UHP_electric_arc_furnace> [Accessed 24 December 2017].

4. Martell-Chavez, F., Ramirez-Argaez, M., Llamas-Terres, A. and Micheloud-Vernack, O., 2013. Theoretical Estimation of Peak Arc Power to Increase Energy Efficiency in Electric Arc Furnaces. The Iron and Steel Institute of Japan International, 53, p. 743‒750.

5. Stopar, K., Kovacic, M., Kitak, P. and Pihler, J., 2014. Electric-arc-furnace productivity optimization. Materials and Technologies, 48(1), pp. 3‒7.

6. Djeghader, Y. and Labar, H., 2013. Investigation of Voltage Unbalance Problems in Electric Arc Furnace Operation Model [online]. Available at: <http: //ljs.academicdirect.org/A22/037_048.htm> [Accessed 17 January 2018].

7. Deacony, S. I., Popa, G. N. and Tihtomir, L., 2010. Comparative Study for EAF’s Reactive Energy Compensation Methods and Power Factor Improvement. WSEAS Transactions on Systems [online], 9(9), pp. 979‒988. Available at: <https://dl.acm.org/citation.cfm?id=1865391> [Accessed 11 January 2018].

8. Novitskiy, A., Konotop, I. and Westermann, D., 2013. Design of Reactive Power Compensation Devices on the Base of Dynamical Simulation of Steelmaking Process. In: International Conference on Renewable Energies and Power Quality (ICREPQ’13), Bilbao, Spain, 20‒22 March, 2013. RE&PQJ, 1(11), March 2013 [pdf], pp. 1164‒1167. Available at: <http://www.icrepq.com/icrepq’13/565-novitskiy.pdf> [Accessed 27 February 2018].

9. Samet, H. and Mojallal A., 2014. Enhancement of electric arc furnace reactive power compensation using Grey-Markov prediction method. IET Generation Transmission & Distribution, 8(9), pp. 1626‒1636.

10. Xu, D. and Yongming, Y., 2013. A novel AC electric arc furnace model and simulation for power quality study. Journal of Theoretical and Applied Information Technology, 49(3), pp. 887‒892.

11. Estrada-Villa, G. R., Cano Plata, E. A. and Ustariz-Farfan, A.J., 2014. Modeling electric arc furnace to estimate flicker levels in power systems using ATP. In: 16th International Conference on Harmonics and Quality of Power (ICHQP. 25‒28 May 2014, Bucharest, Romania [online]. Available at: <https://www.researchgate.net/publication/271481855_Modeling_electricarc_furnace_to_estimate_flicker_levels _in_power_systems_using_ATP> [Accessed 13 November 2017].

12. Sam Morello, Thomas J. Dionise and Thomas L. Mank, 2015. Installation, Startup and Performance of a Static Var Compensator for an Electric Arc Furnace Upgrade. In: 2015 IEEE Industry Applications Society Annual Meeting. DOI: 10.1109/IAS.2015.7356881.

13. Esfahani, M. T. and Vahidi, B., 2016. Electric arc furnace power quality improvement by applying a new digital and predicted-based TSC control. Turkish Journal of Electrical Engineering & Computer Sciences, 24, pp. 3724–3740.

14. Grünbaum, R., Hasler, J.-F. and Rasmussen, J., 2011. Statcom for mitigation of flicker emanating from a large EAF. In: 21st International Conference on Electricity Distribution Frankfurt, 6-9 June 2011 [pdf]. Available at: <http://www.cired.net/publications/cired2011/part1/papers/CIRED2011_0337_final.pdf> [Accessed 9 February 2018].

15. Varetsky, Y. and Gajdzica, M., 2015. Energizing arc furnace transformer in power grid involving harmonic filter installation. Przegląd Elektrotechniczny, 4, pp. 64‒69.

16. Nikolaev, A. A., 2017. Development of an improved method for selecting the power of a static thyristor compensator for an arc furnace. Power engineering of metallurgy, energy saving and electrotechnical systems. Vestnik Magnitogorsk State Technical University, 15(3), pp. 74‒92.

17. Malinovskyi, A. A., Turkovskyi, V. H., Muzy­chak, A. Z. and Turkovskyi, Yu. V., 2018. The Efficient Power Supply Scheme of Alternating Current Electric Arc Furnaces. In: 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems. DOI: 10.1109/IEPS.2018.8559585.

18. Seheda, M. S. and Ravlyk, N. O., 2014. Limiting of internal overvoltages in electric networks of power station auxiliaries during single-phase ground faults. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, рp. 116‒119.

19. Nikolaev, A. A., Tulupov, P. G. and Savinov, D. A., 2017. Statistical Analysis of Random Fluctuations of Currents in the Electric Arc Steel-making Furnace for Different Melting Techniques. In: International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 16-19 May 2017, St. Petersburg, Russia, DOI: 10.1109/ICIEAM.2017.8076206.

 повний текст / full article



Відвідувачі

2838952
Сьогодні
За місяць
Всього
258
5843
2838952

Гостьова книга

Якщо у вас є питання, побажання або пропозиції, ви можете написати їх у нашій «Гостьовій книзі»

Реєстраційні дані

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Журнал зареєстровано у Міністерстві юстиції України.
Реєстраційний номер КВ № 17742-6592ПР від 27.04.2011.

Контакти

49000, м. Дніпропетровськ,
пр. К. Маркса, 19, корп. 3, к. 24 а
Тел.: 47-45-24
e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

Ви тут: Головна Співпраця Партнери UkrCat Архів журналу 2019 Зміст №2 2019 Електротехнічні комплекси та системи Особливості перетікань реактивної потужності у схемі живлення дугової сталеплавильної печі з покращеною електромагнітною сумісністю