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Purpose. Since fractal image coding is time-consuming and is prone to causing “blocking artifact”, the article
aims to combine fractal image coding, wavelet transform and compressed sensing to put forward a method which
can shorten the coding time effectively and improve the quality of a reconstructed image.

Methodology. The compressed sensing algorithm can quickly compress and highly restore sparse matrixes.
The paper made use of this feature to conduct fractal coding for a low-frequency sub-image after wavelet transform,
followed by recoding the samples of low-frequency differential sub-graphs and high-frequency sub-images by
means of the compressed sensing algorithm for the purpose of compensating the quality of reconstructed images.

Findings. Compared to the traditional fractal coding method, the algorithm in the paper (hereinafter referred to
as “this Algorithm™) can shorten the time considerably and get a maximum speed-up ratio by up to 6.45 times. Com-
pared to the compressed sensing coding method, the quality of the reconstructed images is improved significantly.

Originality. The innovation of the paper lies in applying the compressed sensing theory to the fractal coding
algorithm to compensate the quality of the reconstructed images obtained by means of fractal coding based on
wavelet transform.

Practical value. This Algorithm can shorten the coding time on the basis of ensuring the quality of a recon-
structed image, and has certain significance for promoting the fractal coding method.

Keywords: fractal image coding, wavelet transform, compressed sensing, reconstructed image, sparse ma-

trixes, speed-up ratio

Introduction. The method of fractal image coding
has found wide application due to its characteristics of
high compression ratio and fast decoding. However,
being applied, this method has two drawbacks, namely,
long encoding duration and blocking artifact. The long
encoding duration is mainly attributed to the long tra-
verse duration in the search of matching blocks. In or-
der to solve this problem, Literature [1] proposes a fast
encoding algorithm based on relevant information fea-
tures: the sub-blocks are partitioned into two categories
according to the relevant information features, so as to
convert the issue of sub-block search into the issue of
searching for the same type of neighbouring parent
blocks based on the relevant information features,
thereby accelerating the encoding process. Literature
[2] realizes fuzzy clustering by using pixel value space
and 1D-DCT vector, thus increasing the encoding
speed by 40 times under the precondition of maintain-
ing equal decoding quality. Literature [3] realizes
neighbourhood search by taking advantage of the phe-
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nomenon that blocks with similar edge shapes tend to
concentrate in certain specific areas. Works [4] pro-
pose neighbourhood search methods respectively
based on the similarity ratio and relative error to substi-
tute the global search method, thereby shortening the
encoding duration. In addition, the fractal compres-
sion method divides the original image into regular
blocks and encodes them separately, resulting in errors
at the block boundaries, which cause the “blocking ar-
tifact”. Studies have also been conducted to solve this
problem. On the basis of the elaboration of how the
length and distribution of characteristic track relate to
encoding performance, literature [5] proposes a new
sub-block characteristic function, and accordingly ob-
tains better PSNR values under the precondition of
maintaining the same encoding duration. By applying
discrete cosine transform, literature [6] finds the best
parent block and mapping through the adjustment of
grayscale transformation, so as to lower the mean
square error to below the allowable value, thus achiev-
ing the purpose of improving image quality and cutting
down encoding duration. Literature [7] puts forward a
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fast fractal image coding algorithm based on structural
information feature, presents the definition of struc-
tural information feature, conducts codebook classifi-
cation and nearest neighbour search by using this fea-
ture as a feature quantity, matches sub-blocks in the
neighbourhood given by the search results, and thus
achieves the encoding. In light of the characteristics of
local images, Literature [8] designs an image encoding
algorithm by combining the self-adaptive partitioning
method with a variety of block classification technolo-
gies for reducing encoding duration, thus significantly
improving the visual effect of image encoding and in-
creasing the encoding speed by thousands of times.

In order to overcome the two shortcomings of fractal
coding described above, the hybrid encoding algorithm,
which is a combination of factual algorithm and other
algorithms, has become one of research topics nowa-
days. By combining fractal coding and compressed-
sensing encoding in the wavelet domain, the paper at-
tempts to utilize the compressed sensing approach to
process sparse high-frequency sub-graphs so as to com-
pensate for the distortion and detail loss occurring in the
fractal coding of low-frequency sub-graphs. The encod-
ing for compressed sensing is not a time-consuming
process and therefore will not bring a large burden to the
encoding end. Experimental results demonstrate that
this Algorithm compensates to some extent for the im-
age quality loss in fractal coding in the presence of cer-
tain requirements for compression ratio and duration.

The basic fractal image coding algorithm. Jac-
quin proposed the local iterated function system
(LIFS), which is a fractal compression encoding system
based on partition and works in the following way: par-
titioning the original image into non-overlapping range
blocks and overlapping domain blocks, traversing the
range block set to search for the best matching block for
each domain block, saving the information on similar
blocks, and eliminating the self-similarity of an image
to achieve the goal of image compression. The basic
steps of fractal image coding algorithm are as follows:

Step 1: Segment the original image with a size of

N x N into non-overlapping n X n range blocks
N/n
(R-blocks), and store them in the set R, P= UR
i=1
then, segment Pinto overlapping 2z x 2n domain blocks
N/2n

(D-blocks), and store them into the set D, P = U D,.
i=1

Step 2: Conduct four-neighbourhood pixel averag-
ing for D-blocks, make their sizes equal to those of
R-blocks, before performing eight kinds of isometric
transformation of D-blocks; denote the D-blocks that
have gone through the isometric transformation by
wy( D7), where w; is the type of isometric transforma-
tion and j = 1,2, ..., 8. Subsequently, conduct bright-
ness transforms shown in (1), where, s is the contrast
factor, o is the brightness offset factor, / is the unit ma-
trix, and D is the block resulting from the compressed
mapping of D-block.

Dj; = s(wy(Dy)) +ol. (1)
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Step 3: Compare R-blocks with Dj; to calculate the
error between the two, as shown in (2) Traverse the set
Dj; to get Dj; that the smallest error value E(R;, Dj
corresponds to that is, the best matching block for thls
R;. Then, record the position and isometric transfor-
mation type of this D-block.

E(R,D))= ||R

(2)

Step 4: Following the identification of the best
matching block, compute according to (3), where R is

the mean of R-blocks and D is the mean of D-blocks,
to obtain the IFS code, which is composed of the best
matching block position 7, isometric transformation
type w;, contrast adjustment coefficient o; and bright-
ness adjustment coefficient s;.

(R-RiLw/(D;-DD)
, 0=R—-s-D. (3)

Step 5: Repeat the above steps to obtain the fractal
codes for all the R-blocks of the image, thereby consti-
tuting an IFS.

The compressed-sensing encoding algorithm.
The traditional process of signal acquisition and pro-
cessing mainly comprises of four parts, namely, sam-
pling, compressing, transmitting and decoding. In or-
der to acquire accurate reconstructed signal, the sam-
pling process must satisfy the Nyquist—Shannon sam-
pling theorem, that is to say, the sampling frequency
should not be lower than twice as high as the highest
frequency in the analog signal spectrum. In the process
of signal compression, the signal is first diluted, and
then a small number of coefficients with large absolute
values in the signal are encoded, while the coefficients
which are equal to or close to zero are removed. During
data compression, the removal of most of the data ac-
quired in sampling will not affect the recovery effect.
For example, when photographing with a megapixel
camera, only a small amount of useful information
about the image will be stored and a huge amount of
useless information will be removed, before recon-
struction is performed based on the acquired data.

According to the compressed sensing theory, if there
is an intrinsically sparse or compressible signal, the data
following the compression may be exploited directly,
with the purpose of avoiding the acquisition of a large
amount of useless information. The advantage of com-
pressed sensing is that the required amount of observa-
tion data in signal sampling is far smaller than the
amount of data obtained with the traditional signal-
sampling method, thus the restriction of the Nyquist—
Shannon sampling theorem is overcome and the acqui-
sition of high-resolution signals becomes a possibility.

The theoretical basis of compressed sensing is as
follows: if the transformation coefficient ® for a one-
dimensional signal with a length of Nunder of orthog-

N
onal basis set v is sparse, then x = ¥Y® or x= Zai(p,.
i=1
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Thus, the coefficient vector ® = ¥7x or a; = {x, ¢;), and
such O is called the sparse representation of the sig-
nal x. If an observation matrix @, that is unrelated
to vy, is found, linear transformation between this ma-
trix and the coefficient vector is conducted to obtain
the measured value
y=0x=0¥Y0 =A0. 4)

In (4), ® refers to a M x N matrix, M =
= O(K -log(N/K)), M < N, and A5 = ®¥.

Subsequently, the measured value is applied to
solve the following problem

O=min|® st y=ove.

ly

Thus, the transformation coefficient is obtained,
and through high-probability reconstruction by in-
verse transformation, an image that approximates the

original image is generated x ="¥0.

The theoretical frame diagram of the traditional
signal compression is presented in Fig. 1.

The theoretical frame diagram of compressed sens-
ing is presented in Fig. 2.

Compressed sensing is characterized by:

1. The applicability of one observation matrix to
different sparse matrices, since the observation is un-
related to the original matrix or the recovered matrix.

2. Short encoding duration: the sampling process can
be completed only through obtaining the observed value
with the formula y = ®x, thus, the difficulty in com-
pressed sensing lies in the signal-reconstruction process.

3. Random data acquisition, since the data design
for the observation matrix is random and independent
from the original sparse matrix.

Therefore, the compressed sensing theory mainly
involves the sparse representation of a signal, the design
of observation matrix, and the signal reconstruction.

Signal diluting. In the study of signal compres-
sion, continuous efforts have been made to find a way
of representing all information within a small amount
of information, thereby, shortening the encoding dura-
tion and enhancing the compression ratio. Any signal
can be represented by an orthogonal basis set, that is,

N
X=Ya¥, or X=Y0O,
i=0

where © ={a,, a,, ..., ay}. The signal can be considered
sparse, if ® only contains a small amount of data, or if
O only contains a small amount of data with large ab-

store, transfer

compressible high-speed _>| H compress |_> reconstructed
signal ™ sampling transform P signal

Fig. 1. The traditional process of signal acquisition

store, transfer

compressible sparse obtains reconstructed
signal transform obervation signal

1 }

Fig. 2. The signal acquisition in compressed sensing
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solute values and most of the data in it is close to zero.
If a small amount of data with far above-zero absolute
values is centrally distributed in a signal, this signal can
be considered compressible, and the preservation and
accurate recovery of such a signal can be realized by
acquiring a small amount of data from the sparse sig-
nal. Ordinary signals, however, are not sparse, thus
signal diluting has become an urgent research topic.

Sparse decomposition of a signal is usually con-
ducted based on orthogonal basis. Usually, sparse
transformation basis can be flexibly selected according
to the characteristics of the signal itself, and the com-
monly used transformation bases include discrete co-
sine transform (DCT) basis, fast Fourier transform
basis, Gabor basis and redundant dictionary.

The design of observation matrix. It is known
that the process of compressed-sensing encoding is

y=x.

Hence, the design of an observation matrix is vital
to guarantee the quality of the reconstructed signal,
that is, to guarantee the validity of the measured value.
In the design of the observation matrix, the projection
matrix must satisfy the requirement of restricted isom-
etry property (RIP) in order to ensure the retention of
the original structure of the signal during the linear
projection, before the measured value of the original
signal in the linear projection is obtained by multiply-
ing the original signal by the observation matrix.

For a signal vector v with strict K sparsity and a
length of N, @ is an observation matrix with a size of
M x N, let avectorset T e {1, 2,..., N} and |T]| < K,
and put the column vector, to which the elements of
the set 7 selected from the set @ correspond, into a
new matrix ®’; for example, 7= {1, 2, 3} means that ®’
is composed of the 1st, 2nd and 3rd column matrices
of the matrix ® and that its size is M x |T.

If the matrix @ satisfies the following formula, it
means the matrix meets the K-order restricted isome-
try standard.

l-¢g,< ||cD'u
7

Signal reconstruction. In image decoding, signal
reconstruction is generally conducted with the greedy
algorithm, including the algorithms of orthogonal
matching pursuit (OMP), matching pursuit (MP), weak
matching pursuit (weak MP) and LS-OMP. When the
number of columns in the observation matrix is smaller
than that of its lines, the greedy algorithm is especially
applicable to the reconstruction. Its basic idea is to
choose the smallest number of lines out of the observa-
tion matrix to form an approximate representation of the
observation matrix. As the most used kind of greedy al-
gorithm, the OMP algorithm has a variety of types, such
as an orthogonal type and a relaxation type. RIP matrix
is one of the frequently applied matrices in compressed
sensing, and when the original data matrix is a RIP ma-
trix, the OMP algorithm is a good choice for encoding.

The implementation process of the OMP algo-
rithm is as follows:

<l+g,, O<e<l.
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Input: The original image x, the observation matrix
@ = {a,, a,, ..., ay}, the measured value y, and the it-
eration number k;

Output: The reconstructed image X;

Procedure of the algorithm:

Initialization: Reconstruction x° = 0; residual error
r’=y, index set I’ = @, and iteration number # = 1;

1. Compute the inner product of the margin and
each column of the observation matrix ®@.

2. The element with the largest absolute value in g”,
k =argmax

ie{1,2,...N} & [l]|

3. Update the index set I =T1" — 1 U {k} and the
original sub-set @, =® uia,}.

l—xnfl
4. Compute the approximate solution by using the

n T o7
least square method x =(C[>F,,d>r,,) d)rn y.

5. Update the margin "=y — @ - x".
6. If n < k, and r" is greater than the limit, then 7=
=1+ 1, and return to Step 1); if n > k or r".

Is smaller than the limit, then output X =x".

This algorithm. Although the mere use of fractal
compression can lead to a high compression ratio,
long encoding duration and “blocking artifact” during
decoding have restricted the application of the fractal
compression. In order to solve these two problems, a
variety of hybrid encoding methods emerge. The paper
proposes the fractal coding algorithm combined with
the compressed sensing algorithm, with the aim of
compensating for the image quality loss in fractal im-
age coding based on wavelet transform.

Wavelet transform and fractal coding are combined
herein: the image first goes through wavelet decompo-
sition before fractal coding of low-frequency sub-
graphs is conducted. Through wavelet transform, the
image is divided into sub-graphs with different fre-
quencies in different directions, among which, the
ones located in the upper left corner are low-frequency
sub-graphs with about 99 % of the original image en-
ergy, and the other ones are collectively called high-
frequency sub-graphs. Following wavelet decomposi-
tion, most of the information is preserved on the low-
frequency sub-graphs, which resemble the original
image, as shown in Fig. 3.

This Algorithm involves the combination of wavelet
transform and fractal coding. Encoding only low-fre-
quency sub-graphs will cause the loss of high-frequency
sub-graph information; moreover, fractal image coding
algorithm is a lossy coding algorithm, and part of the
data regarding the original image will be missing on the
reconstructed image (the lost data is the low-frequency
differential sub-graph obtained by subtracting low-fre-
quency sub-graphs from the reconstructed image). In
order to improve the quality of the reconstructed im-
age, the compressed sensing algorithm is combined
with the fractal coding algorithm in this paper. The ap-
proach of compressed-sensing encoding is applied to
the sparse matrix composed of the low-frequency dif-
ferential sub-graph and the high-frequency sub-graphs,
and then the reconstructed image resulting from that is
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Fig. 3. Level- 1 wavelet decomposition

fused with the reconstructed image acquired in fractal
coding, so as to compensate for the image quality loss
occurring during the image construction with the frac-
tal coding method based on wavelet transform; in addi-
tion, the encoding for compressed sensing is fast and
will not bring a significant effect on the encoding dura-
tion of the hybrid encoding algorithm.

The specific steps of this Algorithm are as follows:

Input: the original image P and the observation
matrix @;

Output: The reconstruction image P;.

Steps:

1. Perform Level-1Haar wavelet transform of P to
obtain low-frequency sub-graphs LL and high-fre-
quency sub-graphs LH, HL, HH.

2. Extract low-frequency sub-graphs for fractal
compression processing to get the reconstructed im-
age LL’.

3. Obtain low-frequency differential sub-graph
through calculation LL, = LL — LL'.

4. Put together the differential sub-graph and the
high-frequency sub-graphs to form a sparse data ma-
trix M=[LL,, LH; HL, HH].

5. Perform compressed sensing of M, measure the
matrix @ to obtain the measured value R = ® * M, con-
duct compressed-sensing encoding of the measured val-
ue R, and obtain the image M, through reconstruction.

6. Fuse M, with LL’to form the image p= M, + LL'.

7. Perform inverse wavelet transform of the image P
to generate the reconstructed image P;.

8. Compute the root-mean-square error (MSE)
and peak signal-to-noise-ratio (PSNR), and then re-
turn to the reconstructed image P,.

As a hybrid encoding algorithm, the fractal image
compression method proposed herein involves both the
wavelet transform algorithm and the compressed sens-
ing algorithm, and has the following characteristics:

1. Through wavelet decomposition and Level-NV
wavelet transform of an image, the size of the low-fre-

1
quency sub-graphs is only e of that of the original im-

age, and fractal compression of the low-frequency sub-
graphs can lead to significantly shorter encoding duration.

2. Through wavelet decomposition of the image
into low-frequency and high-frequency sub-graphs,
no energy change occurs, and most of the energy is
retained on the low-frequency sub-graphs; thus, a re-
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constructed image that resembles the original image
can be obtained through fractal coding of only low-
frequency sub-graphs.

3. The high-frequency sub-graphs resulting from
wavelet decomposition and the reconstructed low-fre-
quency differential sub-graph feature little information
and sparse distribution, which serve as the preconditions
for encoding them by means of compressed sensing.

4. The sparse matrix composed of the low-frequency
differential sub-graph and high-frequency sub-graphs
are encoded by means of compressed sensing, before the
reconstructed image is fused with that resulting from
fractal coding, so as to compensate for the image quality
loss occurring during image construction with the frac-
tal coding method based on wavelet transform.

Experimental results. Based on MATLAB, the
basic fractal coding algorithm, the compressed-sens-
ing encoding algorithm and this Algorithm were sepa-
rately applied to the experiment with five 256 x 256
images with 256 gray levels, namely, Baboo, Boat,
Goldhill, Lena and Peppers. The R-block size for the
basic fractal coding algorithm is 2 x 2, and Level-1
Haar wavelet transform and the fractal coding algo-
rithm with 2 x 2 R-blocks are employed for this Algo-
rithm. Fig. 4—5 show the comparisons among the re-
constructed images respectively for Lena and Boat,
resulting from encoding with the three algorithms.

According to Fig. 4—5, the mere use of the com-
pressed sensing algorithm leads to slightly poorer qual-
ity of the reconstructed image than the other two algo-
rithms, while the reconstructed image for this Algo-
rithm appears identical to that for the basic fractal
coding algorithm, which proves the feasibility of this

Fig. 4. Comparisons among the reconstructed im-
age for Lena, resulting from encoding with the
three algorithms:

a — the compressed sensing algorithm; b — the basic
Jractal coding algorithm; ¢ — this Algorithm

Fig. 5. Comparisons among the reconstructed im-
ages for Boat, resulting from encoding with the
three algorithms:

a — the compressed sensing algorithm; b — the basic
[fractal coding algorithm; ¢ — this Algorithm
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Algorithm. Table below shows the experiment data ob-
tained when encoding the five images respectively by
using the three algorithms: encoding duration 7°
(unit: S) and PSNR (unit: dB).

According to Table, compared with the basic fractal
coding algorithm, this Algorithm leads to slightly lower
PSNR values yet significantly shorter encoding duration
— the maximum speed-up ratio can increase by 6.45
times; compared with the compressed-sensing encoding
algorithm, this Algorithm leads to slightly longer encod-
ing duration yet obviously better quality of the recon-
structed image. Based on comprehensive consideration
of encoding duration and quality of the reconstructed
image, this Algorithm is arguably an effective means.

Conclusion. In the paper, the compressed sensing
theory is integrated into the fractal coding algorithm in
an innovative way, so as to shorten the encoding dura-
tion without the loss of quality of the reconstructed
image. In this Algorithm, an image is decomposed
through wavelet transform into low-frequency and
high-frequency sub-graphs, and despite the small
amount of original-information content on the high-
frequency sub-graphs, the removed information is en-
coded and reconstructed in order to improve the qual-
ity of the reconstructed image in the fractal compres-
sion algorithm. In the encoding of the coefficient ma-
trix composed of the high-frequency sub-graphs and
the low-frequency differential sub-graph, the com-
pressed sensing algorithm is chosen owing to the spar-
sity of this coefficient matrix, which is in line with the
precondition of compressed sensing; furthermore,
considering the large speed of compressed-sensing en-
coding, the addition of the compressed sensing algo-
rithm will not have a significant impact on the encod-
ing duration in the hybrid coding algorithm.
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Meta. Ockinbku hpakTajibHe KOTYyBaHHSI 300pa-
>KeHb 3aiiMae 6araTo Jyacy Ta CXUJIbHE JI0 TTOSIBU ,,0JTOKY-
ouux apredakTiB®, 151 poOoTa MpUCBsYeHa 00’ €aHaAH-
HIO (DpaKTaTbHOTO KOMYBaHHSI 300pakeHb, BCIUBIICT-
TMEePETBOPEHHS i1 CTUCIIMX BUMIpPIB TakK, 1100 3arpono-
HYBaTHU METO, IKUI TO3BOIUTD €(heKTUBHO CKOPOTUTH
yac KOMyBaHHS Ta ITOKPAIIUTHU SIKiCTh PEKOHCTPYIOBa-
HOTO 300pakeHHSI.

MeTtoauka. AJTOPUTM CTUCIMX BUMIPIB MOXe
IIBUAKO CTUCKYBATU i CUJIbHO BiZHOBJIIOBATU PO3Pi-
JIKeHi MaTpulli. Y maHiii poOOTi BUKOpUCTaHA LIS 0CO-
OJIUBICTB IJIs1 MPOBeAeHHS (PpaKTaIbHOTO KOAYBaHHSI
JIJISI HU3bKOYACTOTHOT KOMIIOHEHTH 300paskeHHS ITic-
JIsl BEWBJIET-TIEPETBOPEHHSI, a TIOTiM TIepEKOIyBaHHS
BUOOPOK HU3BKOYACTOTHUX IUMPEpeHIiaTbHUX CyO-
rpadiB i BUCOKOYACTOTHUX KOMITOHEHT 300pakeHb 3a
IOTIOMOTOI0 aJITOPUTMY CTHUCIIMX BHUMIpIiB, 3 METOIO
KOMIIEHCALIil SIKOCTi BiTHOBJIEHUX 300paKeHb.

Pe3yabraTi. Y NOpIiBHSIHHI 3 TpaIULIMHUM METO-
oM (bpaKTaTbHOTO KOAYBaHHS, JITOPUTM, 3aIIPOITOHO-
BaHWi1 y JaHiii podoti (mami mo Tekcry ,lleii Anro-
pUTM®), JO3BOJISIE 3HAYHO CKOPOTUTM Yac, i JicTaTu
MaKCHMaJIbHEe MPUCKOPEHHS MPOLYKTUBHOCTI 10 6,45
pas3iB. Y MOPiBHSIHHI 3 METOIOM CTUCIUX BUMIpIB, SIKiCTh
BiTHOBJIEHMX 300pakeHb 3HAYHO ITOKPAIITYETHCS.

HaykosBa noBusHa. Ilonsirae B Tomy, 110 BOHa
MPOIOHYE 3aCTOCYBAHHS T€OPil CTUCIUX BUMIPiB 10
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¢dpakTaIbHOTO aJTOPUTMY KONYBAHHS aOU KOMIIEH-
CyBaTU SIKiCTb BiTHOBJIEHUX 300paxXeHb, OTPUMAHUX
3a IOTIOMOTOI0 (PPAKTAIIbHOTO KOMYBaHHS HAa OCHOBI
BEUBJICT-TIEPCTBOPCHHSI.

IIpakTuuna 3HauumicTsh. Lleit Ainroputm no3Bo-
JISIE CKOPOTUTHU Yac KOAYBaHHSI Ha OCHOBI 3a0e3re-
YEHHSI SIKOCTI BilIHOBJIEHOTO 300pa>keHHsI Ta Ma€ Be-
JIMKe 3HaAYeHHS JIJIsl TPOCYyBaHHS (ppakTaIbHOTO Me-
TOMY KOTYBaHHSI.

KmiouoBi cnoBa: ¢ppakmanvue xodyeamnHs 30-
bpasicenv, eellerem-nepemeoperHts, CIuUcAi eUMi-
DU, PEKOHCMPYKUIsl 300padceHHs, po3piodceHi ma-
mpuuyi, KoepiyieHm npUCKOpeHHs

IHeab. IMockonbKy ¢pakTaibHOE€ KOAWPOBAHUE
M300paxkeHNI 3aHMMAaeT MHOTO BPEMEHU U TTOABEP-
JKEHO TIOSIBJICHUIO ,,0JIOKUPYIOIINX apTe(daKTOB™, 3Ta
paboTa TOCBAIIEHA OOBEIMHEHUIO (DpaKTaJIbHOIO
KOOUPOBaHUSI M300paxkeHUIi, BelBJIeT-Ipeodpa3o-
BaHUS 1 CXKaTbIX U3BMEPEHUI TAKMM 00pa30oM, YTOObI
MPEAIOXUTb METOI, KOTOPBI MO3BOIUT (P HEeKTUB-
HO COKPaTUTh BPEMSI KOMMPOBAHUS U YJIYUIIUTh Ka-
YeCTBO PEKOHCTPYMPOBAHHOTO N300paskeHUSI.

MeTommka. AJITOPUTM CXKaTbIX U3MEPEHUI MO-
KET OBICTPO CXKMMAaTh U CWIHLHO BOCCTaHABIMWBATb
pa3pexXeHHbIC MaTpUIIbl. B maHHOI paboTe MCIOob-
30BaHa 3Ta 0COOECHHOCTb IS TIPOBEACHUS (PPAKTAITb-
HOTO KOOMPOBAHUS 711 HU3KOYaCTOTHON KOMITOHEH-
TBI N300pakeHUSI TOCTIC BEUBJIET-TIpeoOpa3oBaHMsI, a
3aTeM IePEKOINPOBAHMST BBIOOPOK HM3KOYACTOTHBIX
nuddepeHInaabHbIX CyO-rpaoB U BbICOKOYACTOT-
HBIX KOMITIOHEHT U300pakeH!i C TTOMOIIIBIO aJITOPUT-
Ma CXKaTbIX U3BMEPEHUI, C LIEJIbIO KOMITEHCALMU Kaye-
CTBa BOCCTAHOBJIEHHBIX U300pakeHU.

PesyabraThl. [1o cpaBHEHUIO C TpaaUIIMOHHBIM
MeTOIOM (hpaKkTaIbHOTO KOAWPOBAHMSI, aJTOPUTM,
MPEITOXKEHHbI B JaHHOI paboTe (majiee Mo TeKCTy
»ITOT AJITOPUTM®), TIO3BOJISIET 3HAYUTEJIBHO COKpa-
TUTb BpeMsl, ¥ MOJIYYUTh MAaKCUMaJIbHOE YCKOPEHUE
MIPOU3BOIUTENBHOCTHU 10 6,45 pa3. 1o cpaBHEHUIO C
METOIOM CXKAThIX M3MEPEHMIA, KaueCTBO BOCCTAHOB-
JICHHBIX U300pakeHUI 3HAYUTEIIHHO YIy4IIaeTCs.

Hayuynas HoBM3HA. 3aKJIIOYAEeTCS B TOM, YTO OHA
npeajaraeT MpMMEHEHUE TEOPUHN CXKAThIX U3MEPEHU I
K (bpakTaJbHOMY aJrOpUTMy KOAWPOBAHUSI, YTOOBI
KOMIIEHCHUPOBATh Kau€CTBO BOCCTAHOBJIEHHBIX M30-
OpakeHWi1, MOJyYEHHBIX C TTOMOIIBIO (DpaKTATBHOTO
KOIVMPOBaHMS HA OCHOBE BEMBIIET-TIPEOOpa30BaHUsI.

IIpakTuyeckass 3HAYMMOCTb. DTOT AJITOPUTM
TTO3BOJISIET COKPATUTh BPEeMsT KOMMPOBAaHUS Ha OCHO-
Be obOecreyeHUsT KadyeCcTBa BOCCTAHOBIIEHHOTO M30-
OpakeHUSI M UMeeT OOJIBIIOe 3HAUCHME TSI TIPOIBHU-
KEeHMS (paKTaIbHOTO METOIA KOTNUPOBAHMSI.

KiroueBble cioBa: gpaxmanvHoe Koouposauue
uzobpadicenull, geilenem-npeoopas’osanue, Cocamaole
usmepeHuUsi, peKOHCMPYKUYUsl U300paxcenusi, paspe-
JHCeHHble Mampuubl, Ko3pguyueHm ycKopeHus

Pexomendosarno 0o nyoéaikauii dokm. mexH.

Hayk B. B. Thamywenkom. Jlama HaOxo0xceHHs
pyxonucy 27.07.15.
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