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OEHHOCTU CHUTHaJla BO BpEMEHHOM 1 4acCTOTHOM 00-
Jgactax. MneHtudukaumo MoaadbHbIX MapaMeTpOB,
KoTopas 3pOEKTUBHO JOCTUTAETCS C TTOMOIIILIO aHa-
Jm3a aBHBIX KommoHeHT (PCA), MoxHO paccma-
TPUBATh KaK TUIT CUCTEMHOTO paclo3HaBaHMUSI.
Pe3yabraTtbl. [lockonbKy mMeTon aHanusa IaB-
HBIX KOMITOHEHT YyBCTBUTEJIEH K ['aycCOBY LIyMy npu
U3MEPEHUSIX, B paboTe MpeaiaraeTcss HOBbI METOJ,
KOMOMHUPOBAHUS MOAABJEHHUS IIyMa Ha OCHOBE
BeMBJIET-TIpeoOpa3oBaHus ¢ METOIOM aHaiu3a IJ1aB-
HBIX KOMIIOHEHT, U MpUMEHSIETCS 3Ta TEeXHMUKa B
UaeHTUUKALIUU MOJAIbHBIX TapaMeTPOB.
Hayuynas HoBusHa. CurHajbl NOAIAI0TCS pas3io-
JKEHMIO Ha BEMBJIETHI C HECKOJIBKUMU CJIOSIMU, a IO~
JIydeHHBIE BelBiIeT-KO3(OUIIMEHTHI IPeaBapUTETb-
HO 00pabaThIBAIOTCSI B COOTBETCTBUM C ITOPOTOBBIM
3HaYeHuEeM. 3aTeM OHM PEKOHCTPYUPYIOTCI C YMEHb-
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Purpose. Specific to the existing discontinuity and constant deviation in denoising of wavelet threshold func-
tion, this paper analysed the integrated denoising function of traditional wavelet threshold function.

Methodology. Through analysis of the defects of wavelet soft threshold function and hard threshold function
and according to the characteristics of the traditional threshold function as well as the design idea and procedure,
the paper establishes an integrated threshold function on the basis of the traditional threshold function and offers
a simulation diagram extracted from the corresponding threshold function. Through the simulation diagram of
the threshold function, it analyses the advantages of integrated threshold function.

Findings. According to the result, the integrated threshold function established on the basis of the character-
istics and design idea of wavelet soft threshold function and hard threshold function integrates the advantages of
traditional threshold functions, effectively overcoming the discontinuity of the hard threshold function and con-
stant deviation of the soft threshold function.

Originality. Based on the structure and characteristics of the traditional wavelet threshold function, the article
puts forward an idea how to combine the traditional wavelet threshold function and the fusion function which is
not only used to transform the traditional threshold function, but also adds the fusion coefficient to modify it,
which makes the fusion function adaptive.

Practical value. The results of the paper can effectively improve the denoising ability of an image, which apart
from effective removal of image noise, reserves detailed information of images, laying solid foundation for in-
depth processing of a high-quality image.

Keywords: wavelet transformation, threshold function, fusion threshold function, image denoising

Introduction. With the development of informa-
tion technology, people are more and more dependent
on information transmitted by digital images. Howev-
er, images often have certain noise in the process of
transmission and acquisition [1]. Meanwhile, when
noise reaches a certain degree, it will blur the charac-
teristics of images and greatly affect the further analysis
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and application of images [2—3]. Therefore, to make
the subsequent image processing go on smoothly, peo-
ple keep developing all kinds of denoising methods to
preprocess images, to obtain better recovered images
and satisfy demands of various image applications.
Traditional image denoising methods include two
types: spatial domain and frequency domain [4-—5].
Typical spatial-domain filters include mean filters and
wiener filters. A mean filter signifies each pixel value in
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an image with the average of all pixel values in the set
neighbourhood of the pixel, while a Wiener filter uses
statistical information of spatial domain of an image. It
is a classic linear filter based on minimum mean square
error and has a good denoising effect on Gaussian
noise. However, the aforementioned traditional de-
noising methods only have a local analytical ability for
spatial domain and frequency domain. While sup-
pressing image noise, image edges and other details
are lost, which makes the processed image blurred or
distorted. It cannot satisfy high requirements of subse-
quent processing of images.

On the other hand, wavelet transformation based
on wavelet domain has a good time-frequency locali-
zation property [6]. It can not only remove noises in
images effectively, but also retains all details in images
simultaneously. Moreover, in the process of wavelet
denoising, the structure of threshold function greatly
affects its denoising effect. Traditional soft and hard
wavelet threshold functions were first presented by
Donoho in 1995 [7]. Image denoising on the basis of
soft and hard thresholds has also been widely applied
in practice and contributes to achieving a good image
denoising effect. However, traditional soft and hard
wavelet threshold functions still have large material
defects [8]. For example, when processing an image
with complex noise, the derived image may be subject
to distortion and deviation.

For this reason, based on traditional soft and hard
wavelet threshold functions, this paper analyses struc-
tures and defects of traditional threshold functions.
According to the characteristics, design ideas and pro-
cedures of traditional threshold functions, this paper
presents fusion threshold functions based on tradition-
al wavelet threshold functions and develops new wave-
let threshold functions. Through relevant image de-
noising simulation, the benefits of fusion threshold
functions in image denoising are analysed.

Wavelet transformations of two-dimensional
images. The data form of images is two-dimensional
signals, and multi-resolution analysis of two-dimen-
sional signals is similar to that of one-dimensional and
only requires changing the space L?(R) into L*(R*R).
The scaling function ¢(x) introduced into one-dimen-
sional signals is also changed into ¢(x, ).

Suppose {V};c z is a multi-resolution analytical
space of L*(R). Then we have a multi-resolution analy-
sis of subspace L*(R*R) constituted by the tensor space

V).,V =V,®V,. The two-dimensional scaling

J
function ¢@(x, y) of two-dimensional multi-resolution

analysis {ij} ez isshown in Eq. 1.

o(x, y) = o)), (1)

where ¢@(x) is a one-dimensional scaling function of
{V}};c z- This equation shows the one-dimensional sep-
arability of the two-dimensional scaling function. For
each je Z, the function system {g;, ,(x, y) =
= ¢, ()9, (W1, mye Z 2\ constitutes an orthonor-

mal basis of the space {ij} jez- The calculation of
subscriptsj, » and m is shown in Eq. 2
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where {ij} jez 18 called a separable multi-resolution
space of L*(R*R). Since both ¢(x) and ¢(y) are low-

(Pj,n,m(x, y) = Zj(p(x - zjn)(p(y — 2J'm)’

pass scaling functions, the derived {V'},., isasmooth
low-pass space.

If w(x) is an orthogonal wavelet of one-dimension-
al multi-resolution analysis {¥},. », then three wavelet
functions of two-dimensional multi-resolution analy-
sis are

v'(x, ») = e()w(y);
V2, ¥) = y(0)e(y); (3)
v (x, y) = y(x)y(y).

For eachj e Z, their integer translation systems are

v =0,,()y,, ()
Wi,n,m ey)=v,,(X)e,,»); 4
V) =y, (Y, ().

The superscripts in Eq.4 above are just indices.

They form an orthonormal basis of {I’ij} ez There-
fore, the above three orthogonal bases contain at least
a band pass y(x) or y(y). So they are all band-pass. In
other words, all of these three parts reflect the details.
Hence, the function

W ()} =27y (x =2 n,y -2' m},

where j > 0, ¢ = 1, 2, 3 is an orthogonal basis of
L*(R x R). Other parameters are integers. e = 1, 2, 3 is
corresponding to three different directions, i.e., hori-
zontal, vertical and diagonal ones. So for two-dimen-
sional image signal f(x, y) € L*(R x R), at the resolu-
tion of 27, we have

A S =(F(X9),9,,,(6),(n,m) e Z;
Dif =(fy)v,,, (e (nm)e Z*;
DS =(f )V, (5 0)) (nm)e 2%
D f =(f W), (6 0))(nm) e Z°.

The above Eq. 5 shows that at the resolution of 27,
the image is decomposed into four sub-images, A4,f,
D.f, D:f and D;f. Amongthem, 4,f stands for an
approximation of the original image at the resolution
of 27 (i.e., low frequency part of the image, represent-

(5

edasLL). Dj Jf stands for an error of such approxima-
tion (i. e., high frequency part of the image). Djl. f cor-
responds to the high frequency part in a vertical direc-
tion, i.e., horizontal edge (detail) information (repre-

sented as LH). Df f is corresponding to the high fre-
quency part in horizontal direction, i.e., vertical edge

(detail) information (represented as HL). While Dj f
corresponds to the high frequency part in a diagonal
direction (represented as HL). Fig. 1 shows a multi-
resolution wavelet decomposition of a two-dimen-
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Fig. 1. 3-Level Wavelet Decomposition of a Two-dimensional Image:
a — Wavelet Tree Structure; b — Pyramid Structure of Wavelet Decomposition

sional image vividly, suggestive of 3-level wavelet de-
composition of image. The superscripts in the image
stand for the number of wavelet decomposition levels.
From the image, it can be seen that at every decompo-
sition level, the image is decomposed into four fre-
quency bands: LL, LH, HL and HH. At the next level
of decomposition, only low frequency component L
is decomposed.

Fig. 2 below demonstrates an example of applying
different wavelet functions on a two-dimensional pic-
ture “Lena” for the purpose of 2-level and 3-level de-
compositions.

It is obvious from Fig. 2 that decomposed images of
different wavelet functions vary and the levels of de-
composition of the same wavelet function are also dif-
ferent. From the overall decomposition results, image
decomposition using wavelet algorithm can obtain key
information in all parts of an image and lay a founda-
tion for further image processing.

Wavelet transformation image denoising based
on fusion threshold functions. Fused and Opti-
mized Threshold Functions. In the process of de-
noising, a threshold function is actually processing a
coefficient derived from wavelet transformation. The-
refore, in essence, a threshold function processes sig-
nals with noise. A wavelet coefficient corresponding
to an image signal contains a lot of important infor-
mation. It has fewer data and larger amplitude varia-
tion. The distribution of wavelet coefficient corre-
sponding to noise occurs just the other way around.
Thus, we can get a denoised image simply by screen-
ing the estimate of wavelet coefficient through the
threshold function and finally reconstructing through
the wavelet coefficient. The threshold denoising
method is easy to implement and only requires a small
amount of calculation. It is widely applied in practice.
After threshold processing, the derived processed
wavelet coefficient is also relatively intact. Thus, we
can reconstruct a wavelet coefficient directly and get a
denoised image.
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At present, there are two traditional wavelet thresh-
old processing methods, one of which is a hard thresh-
old method, as shown in Eq. 6 below

w1 0|

The wavelet coefficient derived from the hard
threshold method has poor continuity. The recon-
structed signal may change suddenly or oscillate, as
shown in Fig. 3, a. Another method is a soft threshold
method, which is shown in Eq. 7 below

w1 (s)-]

The wavelet coefficient derived from the soft
threshold method has good continuity. But when the
wavelet coefficient is large, the processed wavelet coef-
ficient will have a certain deviation from the actual
wavelet coefficient and lead to an error in the recon-
structed result, as shown in Fig. 3, b below.

Although soft and hard thresholds have achieved a
good effect in practical application, this method itself
has some shortcomings. For example, in the hard
threshold algorithm, when x = %#, it is not continuous.
So the derived estimated coefficient X may be distort-
ed during reconstruction. While for the soft threshold
function, when |x| > #, the derived estimated coeffi-
cient X has a great deviation from the actual coeffi-
cient. Thus, there will be a greater error between a de-
rived image and an actual image after reconstruction.
In view of shortcomings of traditional threshold func-
tions, this paper will improve all traditional threshold
functions comprehensively. The selected fused tradi-
tional threshold function mixes include comprehen-
sive improvement of the fusion of a semi-soft thresh-
old and an eclectic threshold and comprehensive im-
provement of the fusion of the soft threshold, semi-
soft threshold and eclectic threshold. The improve-

X |x|2t

0 x|<t’ ©

x—t |x|2t

0 K>r @)
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Wavelet Decomposition — Wavelet Type bior4.4, Levels: 3 Wavelet Decomposition — Wavelet Type sym4, Levels: 3

.rj m.

B

Size: 256 x 256 Size: 256 x 256
a b
Wavelet Decomposition — Wavelet Type sym4, Levels: 2 Wavelet Decomposition — Wavelet Type bior4.4, Levels: 2

Size: 256 x 256 Size: 256 x 256
c d

Fig. 2. Image Decomposition Results of Different Wavelet Functions. Fig. 2, a and Fig. 2, b: 3- Level De-
composition Results of Wavelet Functions Biord4 and Sym4; Fig. 2, c and Fig. 2, d: 2- Level Decomposi-
tion Results of Wavelet Functions Bior4 and Sym4
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Fig. 3. Two Traditional Threshold Functions:
a — Soft Threshold Function; b — Hard Threshold Function
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ments of above fusion threshold functions are referred
to Fusion Threshold Function A and Fusion Thresh-
old Function B respectively, as shown in Eq. 8 and 9

x=T(x,1t)=
_ 2 )
sgn(x) LZaDUmpIimpD) oy g ls s,
2t —1,)

Where tmp = |x| - t,, tmp1 =|x| - at, a is the control
factorand 0 <a < 1.

| x| -2kt S
A ) o M3
X= T(x’t) = Joc ! )
kD x| <7

x|t

Where A= l+e( 2 2), generally let k& = 2.

All threshold functions established above fuse the
advantages of traditional threshold functions. Thus
they can effectively overcome the shortcomings of dis-
continuity in hard threshold and constant deviation in
soft threshold. All fusion threshold functions are
shown in Fig. 4 below.

Wavelet Transformation Image Denoising
Procedures Based on Fusion Threshold Functions.

Step 1: To decompose an image with noise into
N levels using the wavelet ‘wname’. The approximate
detail coefficient C and the width L corresponding to
the detail coefficient of image transformation are ob-
tained.

Step 2: To get a preset threshold of the fixed thresh-
old function using the VisuShrink threshold method.
To process the threshold function of the image ap-
proximate detail coefficient C derived from Step 1 and
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Fig. 4. Two Fusion Threshold Functions:

obtain the image approximate detail coefficient after
the threshold function processing.

Step 3: To completely reconstruct the image ap-
proximate detail coefficient after processing the thres-
hold function derived from Step 2 and the width L
corresponding to the detail coefficient derived from
Step 1 at a single time using ‘wname’ and obtain a de-
noised image.

Step 4: To calculate the mean square error (MSE),
root mean square error (RMSE), peak signal-to-noise
ratio (PSNR) and signal to noise ratio (SNR) between
the denoised image and original image and then evalu-
ate the denoising effect. The smaller indices MSE and
RMSE are, the better, while the bigger indices PSNR
and SNR are the better.

Image denoising experiment result analysis. In
order to validate the denoising effect of the proposed
fusion threshold functions in this paper, the author
compares denoising between fusion threshold func-
tions and traditional threshold functions.

In the process of image denoising experiment, by
adding Gaussian noise with the value of # = 0 and the
variance of o = 20 artificially, meanwhile considering
the amount of calculation and denoising effect of al-
gorithm in the process of wavelet decomposition, the
wavelet function “db8” is selected for decomposition.
Supposing that the number of wavelet decomposition
levels is 3 let the control coefficient of fusion thresh-
old function be 0.1. “Lena” image, which is 512 x 512
in size and 256 in grey scale, is used as an analysis
object of the model denoising experiment. The origi-
nal image and imnoised image are shown in Fig. 5
below.

The image approximation coefficient derived from
“db8” wavelet function decomposition and approxi-
mation coefficients after processing with all threshold
functions are shown in Fig. 6 below. The derived de-
noising results are shown in Fig. 7 below.

Output Target

| 1
-1 -0.5 0 0.5 1
Enter the target

b

a — Fusion Threshold Function A; b — Fusion Threshold Function B
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Fig. 5. Experimental Lena Images:

a — Original Image; b — Imnoised Image
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Fig. 6. Image Approximation Coefficients after Processing with All Threshold Functions:

a — Approximation Coefficient Derived from Wavelet Decomposition; b — Hard Threshold Processing Results; ¢ —
Soft Threshold Processing Results; d — Processing Results of Fusion Threshold A; e — Processing Results of Fusion

Threshold B

Fig. 7. Denoising Results of All Threshold Functions:

a — Hard Threshold Denoising Results; b — Soft Threshold Denoising Results; ¢ — Denoising Results of Fusion
Threshold A; d — Denoising Results of Fusion Threshold B
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From the results in Fig. 6 above, we can see that the
estimated wavelet threshold coefficient derived from
the hard threshold function processing has a certain
discontinuity, while the soft threshold processing re-
sults are too smooth. The details of the image may be
lost easily. For Fusion Threshold Functions 4 and B,
continuity and smoothness have been taken into ac-
count when estimating the wavelet coefficient, so the
characteristics of discontinuity and over-smoothness
have not emerged.

It can be seen from Fig. 7 above that hard thresh-
old denoising can better retain the edge details of an
image, but oscillation will occur. Soft threshold de-
noising has a smooth effect, but the processing of the
edge details is inferior to that of the hard threshold.
The overall feeling is fuzzy. On the other hand, Fusion
Threshold Functions 4 and B do not only retain the
edge details of an image, but also achieve a smooth
effect. Compared with traditional threshold func-
tions, they improve distortion and oscillation favour-
ably. The relevant denoising evaluation indices of all
threshold functions are shown in Table below. From
the denoising evaluation index results below, we can
see that Fusion Threshold Functions A and B have a
better denoising effect than traditional threshold
functions.

Conclusions. This paper first analyses the image
transformation process of two-dimensional wavelet
decomposition, takes an image approximation coeffi-
cient derived from two-dimensional wavelet decom-
position as the basis of extraction and analyses the
structures and defects of traditional threshold func-
tions. According to the characteristics of traditional
threshold functions and basic design ideas and proce-
dures, it presents two fusion threshold functions based
on traditional threshold functions and gives a simula-
tion diagram of corresponding threshold function ex-
traction. Through the simulation diagram of the
threshold function, it can be seen that fusion threshold
functions integrate advantages of traditional threshold
functions, overcome the discontinuity of the hard
threshold function and constant deviation in the soft
threshold function. Finally, with “Lena” image, which
is 512 x 512 in size and 256 in grey scale, as an example,
by imnoising corresponding Gaussian noise artificial-
ly, the author denoises the image with all threshold
functions. The results show that the proposed fusion
threshold function algorithms in this paper can retain
all details in images apart from removing noises in im-
ages effectively. By calculating relevant denoising eval-

uation indices, compared with traditional threshold
functions, the fusion threshold functions have im-
proved all denoising evaluation indices.
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MerTa. Y 3B’53Ky 3 iCHYBaHHSIM XapaKTepHUX MO-
CTiliHMX JeBialill i pO3PUBHOCTI LIYMOIIONABISIOUOT
MOPOroBoi (hyHKIIii BeiiBeTa, y pOOOTi aHAIi3yIOThCS
MOXJIMBOCTI HOBOI1 IIIyMO3aryIlIyoJoi (pyHKIIi B pe-
3yJIbTaTi iHTErpallii TpaauLiiHUX BEHBIETHUX TTOPO-
roBUX (DYHKIIIM.

Metoauka. lllnsixom aHanizy HEHOJIKiB M’SIKO1
MOPOroBoi MYHKIIII Ta JKOPCTKOI MOPOroBOi (hyHKILii
BElBJIETa, 3TiIHO 3 XapaKTEePUCTUKAM TPAAULIIAHOI
IMOPOTOBOI (DYHKIIii, a TaKOX 3amymMy U IIpoIedypi
pO3po0OKM, pobOTa BCTAHOBIIOE IHTErpOBAHY IOPO-
roBy (PyHKIIII0O Ha OCHOBI TpagMIIiliHOI ITOPOroBOI
(YHKIIIT Ta TIPOTIOHYE CXeMY MOJETIOBAHHS, 1110 BU-
JIydeHa 3 BiAIoBiZHOI MOporoBoi ¢yHKIil. 3a 1o1mo-
MOTOI0 CXEMHU MOJIEJIIOBAHHS TOPOroBoi (PYHKIIii, y
po06OTi aHaMi3yIOThCSI TIepeBaru iHTErpoBaHOI MOPO-
roBoi (pyHKIIi1.

Table
Denoising Effect of Different Threshold Functions (¢ =0, o = 20)
Threshold Function MSE RMSE PSNR SNR
Original Image with Noise 400.7895 20.0197 22.1016 16.4453
Hard Threshold Function 86.0618 9.2770 28.7827 27.5931
Soft Threshold Function 113.1806 10.6386 27.5931 21.9367
Fusion Threshold Function A 89.9547 9.4844 28.5906 22.9342
Fusion Threshold Function B 74.9180 8.6555 29.3849 23.7286
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PesyawsraTu. 3rinHo 3 pe3yjapraTaMu, iHTerpoBaHa
noporoBa (OYHKIIisl, BCTAHOBJIEHA Ha OCHOBi M’SIKO1
JKOPCTKOI MOPOroBUX BelBAETHUX (DYHKIiH, 00’ €nHY€E
mnepeBaru TPamUIiifHUX TMOPOrOBUX (DYHKIIIN, ehek-
TUBHO JI0JIAlOYU PO3PUBHICTH KOPCTKOI MOPOTrOBOI
¢yHK1Iii Ta AeBiallii M’ K01 ITOpOTOBOI (DYHKIII.

HaykoBa HoOBH3HA. Y Xxomi HocCimkeHHs (iab-
Tpalii IIyMy BeHBJIETHOI MOpPOroBoi (pyHKIIii BCTa-
HOBJIEHO, 110 TIOTepeaHi JOCHiIXEHHSI BUKOPUCTO-
BYBaJIU TpaAuLifiHi TOpOroBi (YHKIIIT AJIsI TpOBEaeH-
Hs orepallii IpsiMoi nedopmMalltii, ajge HEXTyBaJIU Tie-
peBaramMu TpaauliiiHOI MoporoBoi MyHKIii BeliBie-
Ta. 3aBISIKUA XapaKTepUCTUKaAM 1 i1esiM TpaauiliiiHOL
BEUBJIETHOI TOPOroBOi (PyHKIIil, podoTa 00’€mHYE
TpamuliiiHi BEHBIETHI M’IKY I XXOpPCTKY ITOPOTOBi
dyHK1ii, 1110 3abe3rneuye ornepaiilo aedopMmaliii Ta
3MiIOHICTB IO caMoaarTallii.

IIpakTuyna 3HaYnMicTh. OTpuMaHUil y poOOTi
pe3yabTaT 103BoJIsIe e(heKTUBHO MMOKpallyBaTH 31aT-
HIiCTh (iabTpalii LIyMiB 300pakeHHs, 110 He JIUIIIe
MoOXe e(peKTUBHO BUAAJISITU LIIYM, ajie i TaKoxX 30epi-
ratu aetajabHy iH(opmalliio 300paxkeHHs1, 3aK1aaato-
YU MilIHY OCHOBY 151 TTOIJIMOJIEHOI 0OPOOKU BUCO-
KOSIKICHOTO 300pakeHHSI.

KunrouoBi ciioBa: geiigrem-nepemeopents, no-
poeosa yHKUis, NOpoeoea QYHKUYis 3AUMMsL, ULY-
MO3A2AYUEHHS 300PaANCCHHS

Ilean. B cBsI3M ¢ cylliecTBOBaHMEM XapaKTEePHbIX
MOCTOSIHHBIX JA€BUALIMKA W Pa3pbIBHOCTU IIyMOIIO-
JIaBJISIOLIE MOPOroBoi (DYHKIIMU BeliBieTa, B pabo-
T€ AHAIM3UPYIOTCS BO3MOXHOCTHM HOBOW WLIyMOIIO-
napistolniein (GyHKIMM B pe3yabraTe WHTErpaluuu
TPaIULIMOHHBIX BEUBJIETHBIX TOPOTOBBIX (DYHKIIWIA.

Metonuka. IlyTém aHanM3a HeAOCTAaTKOB MSIT-
KO MoporoBoii (PyHKUMU U KECTKOW IMOPOTOBOM
¢dyHKIIMM BeliBleTa, COMIACHO XapaKTEepUCTUKAM
TPaAULIMOHHOU MOPOroBoii (PyHKIIMU, a TaKXKe 3a-
MBICJIY U TIpolienype pa3paboTKu, paboTa ycTaHaBIM-
BaeT MHTCTPUPOBAHHYIO IIOPOTOBYIO (DYHKIIUIO Ha
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OCHOBE TPAIUIIMOHHOW MOPOroBoi (QYHKUIUU U
MpeTaraeT CXeMy MOICTUPOBaHNs, U3BJICUCHHYIO U3
COOTBETCTBYIONIEH IToporoBoit ¢yHKOuM. Ilocpem-
CTBOM CXEMBbI MOJICJTMPOBAHMS IIOPOTOBOM (DYHKIIUM,
B paboTe aHAIM3UPYIOTCS MPEUMYIIEeCTBA MHTETPU-
pOBaHHOI MOPOTOBOI (DYHKIIVN.

PesyabraTtsl. CornacHo pesyiabTaTaM, MHTETPU-
poBaHHasl moporoBasi (byHKIIMSI, YCTAaHOBJICHHAsI Ha
OCHOBE MSITKOM M XKECTKOM MOPOTOBbIX BEUBJIETHBIX
GyHKIIMI, 0ObeAUHSIET MPEeUMYILECTBA TPAAULIMOH-
HBIX MOPOTOBBIX (PYHKIIUI, 3D (PEKTUBHO TIpeoaoe-
Basl Pa3pbIBHOCTb KECTKOI MOPOroBOM (DYHKLIUU U
JIeBUALIMU MSITKOI MOPOroBoii (DYHKIIMU.

Hayunas noBusHa. B xozne uccienosaHust puib-
Tpalluu llIyMa BEWBJETHOW MOPOroBoii (yHKIUU
YCTAHOBJICHO, YTO TIPEOBIAYIINEe MCCICIOBAaHUS HC-
MOJIb30BAJIM TPATUIIMOHHBIC TOPOTOBBIE (DYHKIINU
JIJISI TIPOBEACHUST OTNepaluu MpsMoii nedhopmaiuu,
HO INpeHeOperaiu NpenmMyIecTBaMu TPaIuLMOHHON
oporoBoii GyHKIIMK BeliBiieTa. biaronapst xapakre-
pUCTHUKAM U UOESM TPAOAULIMOHHOMN BEMBJIETHOM I10-
poroBoii pyHKIIMU, paboTa 00bEAUHSIET TPAAULIMOH-
Hble BEWBJIETHbIE MSTKYI0 M XKECTKYIO TOPOTrOBbIe
GyHKLUMM, YTO obecrieurMBaeT orepauuio aedopma-
LIMU U CITOCOOHOCTH K cCaMOaanTalluu.

IIpakTuyeckass 3HaYMMOCTB. [lodyyeHHBINT B
paboTe pe3yapTaT IMo3BoJsieT 3(PMEKTUBHO YIyqIIaTh
CIIOCOOHOCTh (PMIIBTpAIIMM IITYMOB M300pakeHMs,
YTO HE TOJIBKO MOXET 3(P(PEeKTUBHO yIATIATH IITyM, HO
TaKXXe COXPaHSTh NeTabHYI0 MH(MOPMAIINIO N1300pa-
JKEHMSI, 3aKjiaablBasi IIPOYHOE OCHOBAHUE IS YITTy-
OJIeHHOM 00pabOTKM BBICOKOKAYECTBEHHOTO M30-
OpakeHusl.

KiioueBble ciioBa: eeiigrem-npeobpaszosarue,
nopoeosasi QQyHKuus, nopo2oeas GYHKYUS CAUs-
HUS, WYMONO0OABAeHUe U300padceHUs

Pexomerndoeano 0o nybaikauii 0oKkm. mexH.

nayk B. B. Tnamywenkom. lama Ha0xo0xceHHst py-
konucy 27.05. 15.
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