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Purpose. To study dynamic processes in nonlinear oscillatory systems with quasi-zero stiffness and with one or many
degrees of freedom, which are widely used in industry for cargo and personnel vibration isolation during transportation. The
previous studies of such systems were based only on the numerical approaches. In this paper, we propose to investigate thor-
oughly the dynamics of the above mentioned systems and the conditions for the occurrence of resonance phenomena in them
using the asymptotic methods of nonlinear mechanics and applying the apparatus of special periodic functions.

Methodology. The methods of studying resonance oscillations of vibration isolation equipment are based on the asymp-
totic methods of nonlinear mechanics, wave theory of motion and the use of special Ateb-functions.

Findings. In this work, for the nonlinear quasi-zero stiffness vibration isolation systems with one and two degrees of
freedom, we analytically obtained the conditions of resonance oscillations, threshold values of resonance amplitudes depend-
ing on the system parameters.

Originality. For the first time, the dynamic processes in systems with concentrated masses and quasi-zero stiffness were
analyzed based on analytical approaches. In contrast to numerical approaches, the analytical approaches allow investigating
the features of the dynamics of such systems more precisely.

Practical value. The proposed method may solve the problems of analysis, and the problems oscillatory systems synthe-
sis at the design stage, as they allow us to choose such elastic properties of dynamical systems that prevent resonance phe-
nomena. These modes of equipment operation may assure efficient and safe transportation.

Keywords: mathematical model, nonlinear oscillations, quasi-zero stiffness, vibration isolation system, resonance, spe-
cial functions

Introduction. Background and literature review.
Further increase in machine productivity, intensification of
technological processes and the application of new tech-

nologies based on the theory of oscillations are closely
connected with the condition that the modern machine de-
vices should reliably operate in a wide range of loadings,
amplitudes and forced oscillations. In particular, rotary
power tools are widely used in industrial production. How-
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ever, a significant drawback of this class machines is the
high level of vibration loads. Therefore, the problem of re-
ducing the harmful effects of vibration on the operator
body to the level of public health standards is relevant
technical problem. Various vibration isolation devices are
used in order to prevent negative consequences of vibra-
tions and to reduce their level in modern technology. Scien-
tific researches of vibration isolation efficiency problem in
transport, agriculture, printing machine-building, as well as
the latest developments of vibro-protection devices con-
structions indicate that the protection of machine units from
vibration is one of the required elements of technological
progress. The analytical method for dynamic processes in-
vestigations for a certain class of nonlinear discrete vibra-
tion isolation systems is developed in this paper.

The problem of the development of the effective analyt-
ical methods that allow optimal engineering solutions by
choosing parameters of an oscillation system is closely
connected with the problem of constructing and investigat-
ing ordinary differential equations solutions describing mo-
tions of mechanical systems. Classical analytical methods
for nonlinear systems with one degree of freedom are gen-
eralized to systems with finite number of freedom degrees
[1]. However, the increasing number of freedom degrees of
a system leads to significant complications in analytical
calculations and does not lead to more accurate results. The
use of numerical methods in many cases makes it impossi-
ble to make general conclusions about the important issues
of dynamics: stability of movement, prediction of reso-
nance phenomena, selection of rational parameters at the
design stage in order to provide the desired laws of mo-
tion, certain amplitude-frequency characteristics (AFC), etc.
Effective general results about characteristics of dynamic
processes can be obtained only by using adequate mathe-
matical models and performing the detailed analysis of the
solutions of corresponding differential equations.

The most coherent and complete structure for investi-
gating nonlinear oscillatory systems with a small parameter
is obtained in [2], where the so-called asymptotic Krylov-
Bogolyubov-Mitropolski method (KBM) is generalized to
the case of non-autonomous systems and systems with ma-
ny degrees of freedom.The asymptotic KBM method was
developed in case of more complex systems as well [3].
The dynamic processes that occur in systems with finite
number of freedom degrees are described by systems of se-
cond order ordinary differential equations [4, 5]. The num-
ber of equations in the system depends on the freedom de-
grees number. To describe the dynamic processes in sys-
tems with distributed parameters, partial differential equa-
tions are used. The presence of even “small nonlinearities”
in these systems causes significant difficulties for analytical
research. First, this is due to the complexity of the construc-
tion and analysis of the solutions of nonlinear differential
equations systems or nonlinear partial differential equations
systems. However, the presence of dissipative and external
disturbing forces in real mechanical systems leads in many
cases to the rapid damping of oscillations with higher fre-
quencies and setting of dynamic processes with a frequency
close to one of the range of fundamental frequeces (in most
cases, the first fundamental frequency or frequency of
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forced disturbance). Taking into account the aforementio-
ned property of nonlinear dynamical systems while con-
structing the approximate solutions of differential equa-
tions, which describe oscillatory processes in systems, sim-
plifies the use of mathematical tools (including asymptotic
methods of nonlinear mechanics). Single-frequency method
of constructing two-parametric set of solutions is effective
in the study of complex oscillatory systems. For some clas-
ses of mechanical systems (strongly non-linear with » de-
grees of freedom, nonlinear systems with distributed pa-
rameters), this method is at present the only possible ana-
Iytical method of investigation.

Resonance phenomena in vibration isolation systems
with one degree of freedom close to “zero” stiffness sys-
tems. Vibration isolation technique based on the use of sys-
tems known as vibration isolation zero stiffness systems has
become widespread in recent decades. Examples of such
systems are shown in fig. 1, @, 1, b. Despite the wide range,
they are described mathematically by one-type ordinary dif-
ferential equations with strong nonlinearity, namely

d*x dx
mdt—2+,b’g+cx+cox3=f(t)« (1)
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Fig. 1. Zero stiffness mechanical systems with one degree
of freedom
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In equation (1):
e mis mass of the body which is exposed to vibration
load, that arises due to the basis movement in accordance
with the law g (?). The function f(¢) in this case takes the

2

-m d gz(t) 5
dt

e [ is the proportionality coefficient in the power of re-

following form f(;) =

sistance, which, for simplicity, is assumed to be propor-
dx
ar’
e ¢, ¢, are fixed values, determined through stiffness and

tional to the velocity of the body R =— ,BV V=

c,A
—27 for scheme b;

cz(A+Z)
JB

A
equal c:2cl—2czT for @ and c=¢,

_26,(A+1)
I
e function g(t), and therefore f(¢) is periodic in time

for scheme @ and ¢ = for scheme b;

and the maximum periodic perturbation is small compared
to the restoring force, i.e. max f(¢) << max(cx+cox3)

It should be noted:

a) in the above mentioned “reduced” stiffness, A is the
previous deformation of auxiliary springs, the length of
which in unstrained state is equal to /;

b) depending on the ratio between the parameters ¢,,¢,, A,/
the coefficient ¢ can be positive, negative or equal to zero;

¢) numerical integration and appropriate results analysis
on its basis for particular cases of the specified equation
were conducted before (see, for example, [5]).

Note. Start of reference systems in the above mentioned
vibration isolation systems is in the static equilibrium posi-
tion or in the position, where the horizontally placed elastic
elements are unstrained.

Due to above mentioned facts, further, we will only
consider the case of small values of ¢ in comparison with
the parameter ¢;. This allows to investigate the dynamic
processes of the considered vibration isolation system using
dependence [4] at first approximation for nonresonance

case x(t)—aca[3,1, /zﬂa,ﬂy} where the parameters a
m

and y are defined from the system
B
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As to resonance oscillations at the frequency y , they:

a=

1) take place when the amplitude is close to
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2) are described by differential equations
da  8p

H m
— / a, cos 3+ S sin g
dt 3fm ( 1 ﬂl )

d9
E=2354z38\/;(a a)—

H

z ——(@, cos 9+ B, sin @) -
2c¢

Normal oscillations of a system with two degrees of
fireedom. Analogues of the above vibration isolation sys-
tems for the case of two degrees of freedom are systems,
the models of which are shown in fig. 2, a; 2, b. Taking in-
to account that the horizontal elastic elements satisfy the

linear law of elasticity #; =c,A ( =12 3) and vertical elas-

tic elements satisfy the nonlinear law of -elasticity
F;.3 =c;5A%,; (j=12), equations that describe the motion

of the specified mechanical system are reduced to the form

d*x cilAy +1
m 21 +(c; + 4( 43 4)))613 +ey (0 —xy)° -
dt 14
dxl
x + =0;
l4 ﬂ
d*x cs(As +1
m, 22 +(c3 + 3 53 5))xg +c5(x, —xl)3 -
dt F
d
( )x2 +ﬂ x2 = (2)

5

In relations (2):

m,, m, are the masses of the first and second bodies re-
spectively ;

X,,X, are coordinates of the mentioned bodies at an
arbitrary point of time;

¢, is the proportionality factor in a restoring force of 7 -
th elastic element;

I, and A, are the length and the initial deformation in

the equilibrium position of the system of i - th elastic ele-
ment respectively.

We denote
_ 2,(A,+1,)). ~ ¢
=14 3 2=
m I m
_ 1 Cs(xs +15) .-~ Cy — C4K4 .
C3 =— C3 3 2 Cy = > l ’
ny I3 my myly
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Fig. 2. Scheme of the mechanical system with two degrees
of freedom

Then the differential equations can be represented in a
more compact form

2

d"x _ _ _ — dx
21 +ox + 500 —x,)) =2x - B =,
dt dt
: @3
Q+E3x13 -0 (x —xz)3 =CyX; _Bzﬂ .
di? dt

Below we consider the case when the masses of both
bodies are equal, and the resistance and the previous de-
formations of elastic elements are small. This suggests that
the maximum values of the right parts of equations (3) are
small, and therefore one can use common pertrurbations
methods for their research. According to them, first of all,
we will describe the dynamic process of the generating sys-
tem
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— in the case of a mechanical system that

d*x
1, =3, = 3 .
th +cx; +6,(x,—x,)" =0;

> 4

X
2 L a3 = 3 _
?+c3x2—cz(x]—x2) =0.

Solutions to (4) will be sought in the form

X (t) = aca(3,1, w(a)t + 1//),

5
0 (0)= abea3.1, olak +v) ©)

To find the unknown parameters of (4), taking into ac-
count (5), we obtain the algebraic equation

b4+(c3—2jb3—(c1—2}7—1:0- (6)
¢ ¢

In the case where extreme horizontal springs are the
same, and the previous vertical deformation of springs and
their lengths are equal, that is, ¢, =¢; =¢, real roots of an

algebraic equation (6) are equal to

’ ¢, \c\4c,

b1, (J ™

C, ¢, \ 4c,
Using (5), we can write the solutions to (4) as:

a) x :aca(3,1,\/z-at + 6’); Xy = aca(3,1,\/;at + 9) ;
b) x = aca(3,1, 2¢, +c-at+ 19);

Xy = —aca(S,l,,/2cz +c-at+ 9);

3
2
_4 .
©) x; =aca3,1, [c+c, <5 # ~at+6) >
202 462
-2_ el
U PR # ux
2C2 402
3
c ¢’ —4ec, 8
xca(3,1, [cte,| —+, [——— |at+0); (®)
2c, 4c;

3
2
-4 .
d) x; =aca(3,1, |c+c, £ - # ~at+6)>
2C2 462

c c—4cc,
x2= 1—_+ —2 X
252 46‘2
5 3
—4
xaca(3,1, [c+c, < % ~at +6).
202 4C2

From the obtained results, it follows that:
1) in the case of @) normal forms of oscillations x;, and

x, occur in one phase, and for the case b) they occur in op-
posite phases;
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2) normal oscillations in forms ¢) and d) occur if the
stiffnesses of springs are connected by the relationship
c > 4c,.

Having determined the normal oscillations forms of the
unperturbed system (8), we proceed to consider perturbed
equations in the first approximation. Due to the general
methods of perturbation theory for nonlinear oscillations
systems, the ratio of (8) can be also considered as a solution
to equations (4) with the condition that they will have pa-
rameters @ and @ as functions of time. In order to find the-
se parameters, we obtain a system of differential equations

27
i=—2 Ik(l+b)ca(3,l,ll//)sa(l,3,lt//)dl// =0;
27ra)(a) 0
2z
. g 2
0=—-— | k(l+b 3Ly )dy =
27ra)(a)~([ (+ )“ (m '//) 4
_ £0.4571 k(l +b)’
o(a)
where k=k =k, ; I=M:1.6692.
Jz1(0.75)

As expected, the amplitude of the normal modes of os-
cillations of the considered system remains constant in the
first approximation of asymptotic distribution, as a system
is conservative. Regarding to frequencies of perturbed os-
cillations Q,, s=12,3,4, they depend on the amplitude
and are determined by the ratio

£0,4571

ola)

where @(a) = 1/%[c+c2(l+bs)3]a and b, are determined in

accordance with (7).

Q, =w(a) + k(1+b,),

Tc
200+

150}
100

50r-

0

Fig. 3. Graphics of periods dependence of normal oscilla-
tions modes on the amplitude 1 —a); 2—b); 3 —c); 4—
d)

Fig. 3 shows the dependence of the period of oscillation
normal modes on the amplitude for the four above descri-
bed cases (a — d) of the solution form to the equation (4).
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From the received graphs, it follows that:

1) when the amplitude increases, the period for all nor-
mal oscillation modes of the conservative system under
consideration falls;

2) for the equel values of the amplitude the oscillation
period is the largest if the motion of bodies is in one phase.

Conclusions. The paper develops the research method
for oscillations of the system with quazi-zero stiffness,
which is used to protect equipment from vibration loads. In
this paper, resonance conditions of the mentioned systems
are obtained and the laws of non-resonant and resonant am-
plitudes changes are described. On basis of the presented
method, we obtained the equations in a standard form, de-
scribing the laws of change of dynamic process influential
parameters for both non-resonant and resonant cases. The
developed method to study oscillatory processes of strongly
nonlinear systems with kvazi-zero stiffness allows solving
not only the problem of analysis, but also the equally im-
portant synthesis problem of technical oscillatory systems at
the design stage, choosing such elastic properties of dynam-
ical systems that prevent resonance phenomena.
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Merta. JlocmiKeHHS AWHAMIYHUX TIPOLIECIB y HeJIi-
HIMHIX KOJMBAJBHUX CHCTEMaX KBa3iHYJIBOBOI KOPCTKOCTI
3 OmHUM Ta OaraThbMa CTYIEHSIMHU BUIBHOCTI, IO IIMPOKO
BUKOPHCTOBYIOTBCS y TIPOMHMCIIOBOCTI JUISi BIOpO3axucry
BaHTAXIB Ta MEpCOHANy IpU TpaHcHopTyBaHHI. Taki cuc-
TEMH paHillle B JITEpaTypl JOCITIIKYBAIUCh BUKIIFOYHO Ha
0a31 ynceNbHUX MAXoMiB. Y wii poOOTI IPONOHYEThCS 32
JIOTIOMOT'OI0 aCUMIITOTUYHHX METO/IiB HENIHIHHOI MEXaHIKH
13 3aCTOCYBaHHSM amapary CreliabHUX MepioaHuX QyH-
KIIif TPYHTOBHO MOCIIIUTH THHAMIKY BiOPO3aXHCHHX CH-
CTEM Ta YMOBH BUHUKHEHHSI PE30HAHCHUX SIBUIL y HUX.

Metoauka. BuBueHHST pPe30HAHCHHUX KOJMBAHb BiOPO-
3aXHCHOTO OOJIaJHAHHsI 0a3yeThCsl HA ACHMITOTUYHNX Me-
TO/IaX HENIHIHHOI MEXaHIKU, XBUIILOBIH TEOpii pyxy Ta BHU-
KOPHUCTaHHI CreliabHIX Ateb-(yHKIii.

PesyabTatn. Y po0oTi Aisi BKa3aHUX HEIHIMHUX
BIOpO3aXMCHUX CHUCTEM KBa3iHYJILOBOT dKOPCTKOCTI 3 OJIHUM
Ta JIBOMa CTYIEHSIMH BUIBHOCTI aHAJITHYHO OTPUMaHi yMO-
BU PE30HAHCHUX KOJIMBAaHb Ta IOPOTOBI 3HAYEHHS Pe30-
HAHCHUX aMIUTITY/I 3aJIC)KHO BiJT TapaMeTpiB CHCTEMH.

HaykoBa HoBu3Ha. [lomsirae B ToMy, 110 BIEpIIe aHa-
JIi3 IMHAMIYHHX TPOIIECIB ¥ CHCTEMAaxX KBa3iHYIIBOBOI JKOpPC-
TKOCTI 13 30CepeKeHIMH MacaMH 37iHiCHeHe Ha 0a3i aHai-
THUYHMX IIXOIB, IO T03BOJISIOTH, Ha BiIMIHY BiIl YHCEITb-
HMX IIJXOJIB, TOYHIIIE JIOCIIIATH 0COOIMBOCTI JUHAMIKA
TaKHX CHCTEM.

IMpakTHyHa 3HAYMMICTH. 3alpOINOHOBAaHA METOIMKA
JIO3BOJISIE PO3B'sI3aTH HE TUIbKM 3ajadi aHajizy, ajie i He
MEHIII BKJIMBI 3a/1a4i CHHTE3y TEXHIYHHUX KOJIMBAILHUX
CHCTEM IIIe Ha CTaJii MpOeKTyBaHHS, BUOpATH TaKi TPYXKHi
XapaKTePUCTHKU JIMHAMIYHUX CHUCTEM, IO YHEMOKIIMBIIIO-
I0Th y HUX pEe30HAHCHI siBuIIa. Taki pexkuMu podoTH obna-
JTHAHHS JIO3BOJIFOTH 3/iHCHIOBAaTH e()eKTUBHI Ta Oe3redHi
TIepEBE3CHHSL.

ISSN 2071-2227, HaykoBuii BicHuK HI'Y, 2015, N 3

KnrouoBi cioBa. mamemamuuna mooens, HeniHIlHI KO-
JIUBAHHS, KBAZIHYILOBA JHCOPCMIKICTb, BIOPO3AXUCHA CUC-
mema, pe3oHanc, cneyianbHi QYHKYii

Heunb. VccnenoBanue qUHAMHYECKUX IIPOLIECCOB B He-
JIMHEMHBIX KOJIEOATEIBHBIX CUCTEMAX KBaBHHyJ'IeBOﬁ KECT-
KOCTHU C OJHMM WJIKM MHOT'MMMU CTCIICHAMUH CBO60}IBI, KOTO-
pple IIMPOKO HCIOJB3YIOTCA B IPOMBIIUICHHOCTH JUIA
BHOPO3AIIUTHI TPY30B U TIEPCOHANA MPU TPAHCTIOPTHUPOBKE.
Takue cuctembl paHee B JIMTEpaType HCCIIEJOBAIUCH HC-
KITIOUUTENIHHO Ha 0a3e YHCIIEHHBIX IT0JX0/10B. B o101 pado-
Te TPE/IaraeTcsi C MOMOIIBI0 ACHMIITOTHYECKHX METOJIOB
HEJIMHEHHOM MEeXaHWKH C NMPUMEHEHWEM amnrnapara CIrielu-
TBHBIX MEPUOINYECKHUX (DYHKIMH OCHOBATEILHO HCCIIE/IO-
BaTh JIMHAMHKY YKa3aHHBIX CUCTEM M YCIIOBHS BO3HHMKHO-
BEHHMS PE3OHAHCHBIX SBJICHHUH B HUX.

Metoauxka. V3ydeHne pe30oHaHCHBIX KOJeOaHMA BHOPO-
3aIIITHOTO 00OPYHOBAHMS Oa3HUpyeTCsl HA aCHMITTOTHYECKIX
METO/IaX HENMHENHOW MEXaHMKH, BOJIHOBOI TEOPUM JIBMIKE-
HFISL M MICTIONTF30BaHUH CHICIHATTBHBIX Ateb-(QyHKITHIA.

Pesynbrarsl. B pabote i yKa3aHHBIX HEJMHEHHBIX
BI/l6pO3aI]11/ITHbIX CHUCTEM KBaSHHyJ'IeBOﬁ JKECTKOCTU C OIHUM
W JIByMsl CTETICHSIMU CBOOOIbI aHATMTHYECKH TIOTYYeHBI yC-
JIOBUSI PE30HAHCHBIX KOJeOaHHil 1 MOPOTOBbIC 3HAYCHUS pe-
30HACHBIX aMIUIMTYA B 3aBUCUMOCTH OT MapaMETpPOB CUCTEC-
MBI.

Hayunas HoBH3HA. 3aKFOYaeTCs B TOM, YTO BIICPBBIC
aHaIN3 TUHAMHAYECKHX TPOIECCOB B CHCTEMaX KBAa3HHYIIC-
BOW JKECTKOCTH C COCPEIOTOYCHHBIMIA MacCaMH OCYIIIECTB-
JIeH Ha 0a3e aHAIUTUYECKUX ITOJIXOJI0B, KOTOPBIC MO3BOJIS-
0T, B OTJIMYHE OT YHCJICHHBIX ITOJIXOJI0B, TOYHEE HCCIICIO-
BaTh OCOOCHHOCTH AWHAMUKH TAKHX CHCTEM.

IMpakTHyeckasi 3HAYUMOCTD. [Ipe/UIOKeHHAsT METO/TH-
Ka TMO3BOJISIET pelliaTh HEe TOJBKO 33/1a4d aHajin3a, HO U He
MeHee Ba)KHbIC 3a/[aull CHHTE3a TeXHUUYECKUX KoyeOaTelnb-
HBIX CUCTEM €HIC Ha CTAAUU IMPOCKTUPOBAHUA, BLIGpaTI) Ta-
KM€ YIPYTH€ XapaKTEPUCTUKU ITUHAMHYECKUX CHCTEM, KO-
TOpPBIC JICNTAIOT HEBO3MOJKHBIMU B HUX PE30HAHCHBIC SIBJIC-
Hus. Takwe pexxuMbl pabOThI 00OPYIOBAHHS TIO3BOJISIOT
OCyIIeCTBIATh AP HEKTUBHBIC 1 OC30TIACHBIC ITCPCBO3KH.

KunroueBble cioBa: mamemamuueckas mooens, Heu-
Helinble KONeOanusl, KeA3UHyIe8ds JHCeCmKoCmy, GUOpO3a-
WUMHASL CUCMeEMd, PE3OHANC, CNeYUaIbHble (yHKYUU
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