УДК 622.831.3

С.П. Минеев¹, д-р техн. наук, проф., С.Н. Федотов², канд. техн. наук, О.В. Витушко³, канд. техн. наук 1 – Государственное высшее учебное заведение "Национальный горный университет", г. Днепропетровск, Украина, e-mail: sergmineev@gmail.com

2 – Институт прикладной математики и механики НАН Украины, г. Донецк, Украина

3 – Институт геотехнической механики им. Н.С. Полякова НАН Украины, г. Днепропетровск, Украина

ОЦЕНКА ВЛИЯНИЯ НЕОДНОРОДНОСТИ ПРОЧНОСТНЫХ СВОЙСТВ УГОЛЬНОГО ПЛАСТА НА ПЕРЕРАСПРЕДЕЛЕНИЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ГОРНОГО МАССИВА

S.P. Mineyev¹, Dr. Sc. (Tech.), Professor, S.N. Fedotov, Cand. Sc. (Tech.), O.V. Vitushko³, Cand. Sc. (Tech.) 1 – State Higher Educational Institution "National Mining University", Dnipropetrovsk, Ukraine, e-mail: sergmineev@gmail.com 2 – Institute of Applied Mathematics and Mechanics of National Academy of Sciences of Ukraine, Donetsk, Ukraine 3 – Polyakov Institute of Geotechnical Mechanics of National Academy of Sciences of Ukraine, Dnipropetrovsk, Ukraine

ESTIMATION OF INFLUENCE OF HETEROGENEITY OF COAL LAYER STRENGTH PROPERTIES ON REDISTRIBUTION OF THE PRESSURE-DEFORMED CONDITION OF COAL MASSIF

Рассмотрено влияние неоднородности угольного пласта по прочности на изменение напряженнодеформированного состояния анизотропного горного массива, имеющее место при ведении горных работ в зонах геологических нарушений. Исследование влияния неоднородности пласта выполнено на основе решения задачи теории упругости. Оценка показывает существенное повышение газодинамической опасности при ведении горных работ в зонах сингенетических нарушений.

Ключевые слова: выбросоопасность, горный массив, напряженно-деформированнное состояние, угольный пласт, скачкообразное изменение свойств, пластическая зона, газодинамическая опасность

горных работ на выбросоопасных Ведение угольных пластах в зонах геологических нарушений относят к особо сложным условиям [1]. В подобных условиях происходит большое количество газодинамических явлений, в том числе с тяжелыми последствиями. Одним из типов геологических нарушений являются неразрывные, в которых имеет место пониженная прочность и значительная препарация угля, а, кроме того, особенно выбросоопасные пласты характеризуются увеличенной изменчивостью прочности угля [2]. При ведении горных работ на выбросоопасных угольных пластах в зонах геологических нарушений при обосновании конкретного способа снижения выбросоопасности большой интерес представляет картина перераспределения напряжений в горном массиве, когда забой приближается к участку угля, механические характеристики которого скачкообразно изменяются. Поэтому авторы попытались произвести оценку влияния резкого изменения прочностных свойств угля в призабойной зоне пласта на перераспределение напряженно-деформированного состояния горного массива. Планируемую оценку было решено произвести на основе решения плоской задачи теории упругости по исследованию влияния неоднородности угольного пласта на напряженнодеформированное состояние анизотропного массива горных пород.

Ранее в ряде работ были выполнены исследования влияния изменения параметров угольного пласта на напряженно-деформированное состояние массива горных пород [3–5]. С учетом отмеченного, для выполнения необходимых расчетов была решена задача в следующей постановке.

Представим схему отработки исследуемого нами угольного пласта в следующем виде (рис. 1). На схеме представим угольный пласт мощностью 2h, расположенный на глубине H от дневной поверхности. Угол падения пласта будет обозначен через α . Угол \forall' фиксирует положение плоскостей изотропии горных пород. Будем считать, что угольный пласт на участках $\left(-x_2^l, -x_p^l\right), \left(x_p^r, x_2^r\right), \left(-x_p^l, -x_1\right), \left(x_1, x_p^r\right)$ деформируется в соответствии со своими пластическими свойствами [6, 7]. Координаты границ исследуемых нами пластических областей в призабойной части пласта $-x_2^l$, x_2^r соответственно являются неизвестными.

Естественное состояние массива вызвано его собственным весом и в системе координат xOy описывается формулами, приведенными ранее в работе [5].

[©] Минеев С.П., Федотов С.Н., Витушко О.В., 2011

Рис. 1. Расчетная схема для оценки напряженнодеформированного состояния при разработке наклонного угольного пласта

Для определения дополнительных напряжений и перемещений в массиве воспользуемся методом суперпозиции и сформулируем две группы смешанных граничных условий. Условия, относящиеся к первой группе, связаны с нормальным деформированием массива пород кровли. Они будут иметь вид

$$\begin{split} \sigma_{y} &= m\gamma H \bigg(1 - \frac{\sin \alpha}{H} x \bigg) - (a_{l}x + c_{l}); - x_{2}^{l} < x < -x_{p}^{l} \\ \sigma_{y} &= m\gamma H \bigg(1 - \frac{\sin \alpha}{H} x \bigg) - (n_{l}x + m_{l}); \\ - x_{p}^{l} < x < -x_{1}; \\ \sigma_{y} &= m\gamma H \bigg(1 - \frac{\sin \alpha}{H} x \bigg); \\ - x_{1} < x < x_{1}; \quad (1) \\ \sigma_{y} &= m\gamma H \bigg(1 - \frac{\sin \alpha}{H} x \bigg) - (n_{r}x + m_{r}); x_{1} < x < x_{p}^{r}; \\ \sigma_{y} &= m\gamma H \bigg(1 - \frac{\sin \alpha}{H} x \bigg) - (a_{r}x + c_{r}); x_{p}^{r} < x < x_{2}^{r}; \\ \tau_{xy} &= 0; |x| < \infty; v = h; x \in (-\infty, -x_{2}^{l}) \cup (x_{2}^{r}, +\infty). \\ B \max_{l} n_{l} &= -\frac{T_{n}^{l}}{h} \cdot \frac{1 - K (T_{n}^{l}, -x_{p}^{l})}{2}; n_{r} &= \frac{T_{n}^{r}}{h} \cdot \frac{1 - K (T_{n}^{r}, x_{p}^{r})}{2}; \\ a_{l} &= -\frac{T_{n}}{h} \cdot \frac{1 - K (T_{n}, -x_{p}^{l})}{2}; a_{r} &= \frac{T_{n}}{h} \cdot \frac{1 - K (T_{n}, x_{p}^{r})}{2}; \\ K (T, x) &= \frac{2 |\tau_{xy}^{\circ}(x, 0)|}{T} - 1; \\ m_{l} &= C (T_{n}^{l}, c_{p}^{l}, K (T_{n}^{l}, -x_{p}^{l})) + n_{l}x_{1}; \\ m_{r} &= C (T_{n}^{r}, c_{p}^{r}, K (T_{n}^{r}, x_{p}^{r})) - n_{r}x_{1}; \\ c_{l} &= -n_{l} (x_{p}^{l} - x_{1}) + C (T_{n}, c_{p}, K (T_{n}, -x_{p}^{l})) + a_{l}x_{p}^{l}; \end{split}$$

$$c_r = n_r \left(x_p^r - x_1 \right) + C \left(T_n, c_p, K \left(T_n, x_p^r \right) \right) - a_r x_p^r;$$

$$C \left(T_n, c_p, \kappa_p \right) = T_n \frac{\sqrt{1 - c_p}}{1 - \kappa_p} \left(\frac{\pi}{2} - \kappa_p \sqrt{1 - \kappa_p^2} - \arcsin \kappa_p \right),$$

где T_n, T_n^l, T_n^r – пределы текучести при сдвиге в плоскости xOy для угля исследуемого пласта; c_p, c_p^l, c_p^r – параметры пластической анизотропии пласта, величины которых изменяются в интервале $(-\infty, 1)$ [7]. T_n и c_p для угольного пласта $(-\infty, -x_2^l) \cup (x_2^r, +\infty), T_n^l$ и c_p^l для участка пласта $(-x_p^l, -x_1), T_n^r$ и c_p^r для участка (x_p^r, x_2^r) .

Решение смешанной задачи (1), которое исчезает на бесконечности, находится с помощью формул Келдыша-Седова [8] и, соответственно, имеет вид

$$\Phi^{(i)}(z_1) = \frac{\mu_2}{\mu_2 - \mu_1} F(z_1); \qquad \Psi^{(i)}(z_2) = -\frac{\mu_1}{\mu_2 - \mu_1} F(z_2), \qquad (2)$$

где $z_i = x + \mu_i y_i$, $(i = 1, 2); \mu_i$ – корни характеристического уравнения; F(z) – функция, записываемая следующим образом

$$F(z) = \frac{\gamma Hm}{2} \left(1 - \frac{\sin \alpha}{H} \left(z - \sqrt{(z + x_2^l)(z - x_2^r)} \right) \right) + \\ + \left[a_l \, \vartheta \left(- x_2^l, -x_p^l \right) + a_r \, \vartheta \left(x_p^r, x_2^r \right) \right] \frac{\sqrt{(z + x_2^l)(z - x_2^r)}}{\pi} + \\ + \frac{a_l z + c_l}{2\pi i} \ln \frac{\chi (z, -x_p^l)}{\chi (z, -x_2^l)} - \frac{a_r z + c_r}{2\pi i} \ln \frac{\chi (z, x_p^r)}{\chi (z, x_2^r)} + (3) \\ + \left[n_l \, \vartheta \left(- x_p^l, -x_1 \right) + n_r \, \vartheta \left(x_1, x_p^r \right) \right] \frac{\sqrt{(z + x_2^l)(z - x_2^r)}}{\pi} + \\ + \frac{n_l z + m_l}{2\pi i} \ln \frac{\chi (z, -x_1)}{\chi (z, -x_p^l)} - \frac{n_r z + m_r}{2\pi i} \ln \frac{\chi (z, x_1)}{\chi (z, x_p^r)}; \\ \vartheta (t_1, t_2) = \operatorname{arctg} \sqrt{\frac{x_2^r - t_1}{x_2^l + t_1}} - \operatorname{arctg} \sqrt{\frac{x_2^r - t_2}{x_2^l + t_2}}; \\ \chi (z, x) = \frac{-2i\sqrt{(z + x_2^l)(z - x_2^r)} \sqrt{(x_2^l + x_1^l x_2^r - x_1)} + (x_2^r - x_2^l)(z + x_1^l - 2(zx - x_2^r x_2^l))}{(x_2^r + x_2^l)(x - z)} \cdot$$

Вполне очевидно, что решение (3) должно быть ограничено в точках $-x_2^l$ и x_2^r .

Условие локального влияния выработки на напряженное состояние горного массива может быть представлено в виде [5]

$$\frac{\gamma Hm}{2} \left(1 + \frac{\sin \alpha}{2H} \left(x_2^l - x_2^r \right) \right) + \frac{1}{2\pi} \left\{ a_1 \zeta \left(-x_p^l, -x_2^l \right) - a_r \zeta \left(x_p^r, x_2^r \right) + \frac{1}{4} + n_1 \zeta \left(-x_1, -x_p^l \right) - n_r \zeta \left(x_1, x_p^r \right) - \frac{1}{4} \right\}$$

$$-\left[a_{l}(x_{2}^{r}-x_{2}^{l})+2c_{l}\right] \vartheta(-x_{2}^{l},-x_{p}^{l})--\left[a_{r}(x_{2}^{r}-x_{2}^{l})+2c_{r}\right] \vartheta(x_{p}^{r},x_{2}^{r})--\left[n_{l}(x_{2}^{r}-x_{2}^{l})+2m_{l}\right] \vartheta(-x_{p}^{l},-x_{1})--\left[n_{r}(x_{2}^{r}-x_{2}^{l})+2m_{r}\right] \vartheta(x_{1},x_{p}^{r})\right]=0;$$

$$\zeta(t_{1},t_{2})=\sqrt{\left(x_{2}^{l}+t_{1}\right)\left(x_{2}^{r}-t_{1}\right)}-\sqrt{\left(x_{2}^{l}+t_{2}\right)\left(x_{2}^{r}-t_{2}\right)}$$

Из условий для перемещений может быть получено еще одно трансцендентное соотношение

$$M(a_{1}, c_{1}, -x_{p}^{l}, -x_{2}^{l}) + M(a_{r}, c_{r}, x_{2}^{r}, x_{p}^{r}) + + M(n_{1}, m_{1}, -x_{1}, -x_{p}^{l}) + M(n_{r}, m_{r}, x_{p}^{r}, x_{1}) + + \left[\frac{\mu Hm \sin\alpha}{2} \pi + a_{l} \vartheta(-x_{2}^{l}, -x_{p}^{l}) + a_{r} \vartheta(x_{p}^{r}, x_{2}^{r}) + \right] \frac{(x_{2}^{r} + x_{2}^{l})^{2}}{8} = 0; M(A, B, t_{1}, t_{2}) = -\left(\frac{A}{4}(2t_{1} - x_{2}^{l} + x_{2}^{r}) + B\right) \frac{\sqrt{(x_{2}^{l} + t_{1})(x_{2}^{r} - t_{1})}}{2} + + \left(\frac{A}{4}(2t_{2} - x_{2}^{l} + x_{2}^{r}) + B\right) \frac{\sqrt{(x_{2}^{l} + t_{2})(x_{2}^{r} - t_{2})}}{2}.$$
(5)

Из системы уравнений (4 –5) могут быть определены неизвестные нам размеры (длины) призабойных пластических областей $\left(-x_2^l, -x_1\right)$, $\left(x_1, x_2^r\right)$, соответственно, в зависимости от исходного горного давления, пластических свойств угля, протяженности свободно зависающих пород кровли, длин зон с измененными пластическими свойствами, а также глубины залегания, мощности и угла наклона разрабатываемого угольного пласта.

Вторая группа граничных условий связана с поперечным деформированием пород кровли и может быть записана следующим образом

$$\sigma_{y} = 0; |x| < \infty;$$

$$\tau_{xy} = l\gamma H \left(1 - \frac{\sin \alpha}{H} x \right); \quad -x_{2}^{l} < x < x_{2}^{r}; \quad (6)$$

$$u = 0; -\infty < x < -x_2^l, x_2^r < x < \infty.$$

При необходимости в дальнейшем учета влияния параметров пород почвы, отметим, что для них условия (6) являются корректными и полностью сохраняются.

Тогда решение смешанной задачи (6), как уже отмечалось, исчезающее на бесконечности, имеет вид

$$\Phi^{(2)}(z_{1}) = \frac{\gamma H}{2} \frac{l}{\mu_{2} - \mu_{1}} \Biggl\{ \Biggl(1 - \frac{\sin \alpha}{H} z_{1} \Biggr) \Biggl(1 - \frac{2z_{1} + x_{2}^{l} - x_{2}^{r}}{2\sqrt{(z_{1} + x_{2}^{l})(z_{1} - x_{2}^{r})}} \Biggr) - \frac{\sin \alpha (x_{2}^{l} + x_{2}^{r})^{2}}{8H\sqrt{(z_{1} + x_{2}^{l})(z_{1} - x_{2}^{r})}} \Biggr\};$$
(7)
$$\Psi^{(2)}(z_{2}) = -\Phi^{(2)}(z_{2}).$$

При этом напряженно-деформированное состояние горного массива, при решении рассматриваемой нами задачи, будет описываться следующими функциями

$$\Phi(z_1) = \Phi^{(1)}(z_1) + \Phi^{(2)}(z_1);$$

$$\Psi(z_2) = \Psi^{(1)}(z_2) + \Psi^{(2)}(z_2).$$
(8)

Расчеты системы трансцендентных уравнений (4) и (5) выполнены с помощью программных комплексов Borland C++ и Matlab. Результаты численных расчетов приведены в таблице 1 и 2, позволяют нам оценить влияние угла наклона пласта и изменения пластических свойств угля на протяженность в призабойной зоне участков $(x_2^l - x_1)$ и $(x_2^r - x_1)$. Численные расчеты выполнены при следующих значениях параметров: $\lambda = 0.9$; $\psi = 0^\circ$; 2h=1 м; $T_n=2,55$ МПа; $c_p=0$. Для получения данных в табл. 1 дополнительно использовались следующие характеристики: $x_1=30$ м, $x_p^l=40$ м, $x_p^r=35$ м, а для данных, приведенных в табл. 2: H=1000 м, $\alpha = 45^\circ$, $T_n^l > T_n$, $T_n^r < T_n$.

Таблица 1

$T_{n}^{l};c_{p}^{l}$	Н, м	$(x_2^l - x_1)$, м							$(x_{2}^{r}-x_{1})$, м						
T ^r c ^r		α													
1 n , c p		-60°	-45°	-30°	0°	30°	45°	60°	-60°	-45°	-30°	0°	30°	45°	60°
2,55;0	800	13,93	15,19	14,72	11,35	15,27	16,09	14,82	14,82	16,09	15,27	11,35	14,72	15,19	13,93
	1000	18,57	20,92	19,64	13,52	20,37	22,21	19,77	19,77	22,21	20,37	13,52	19,64	20,92	18,57
2,55;0	1200	24,49	28,93	25,94	15,60	26,96	30,96	26,17	26,17	30,96	26,96	15,60	25,94	28,93	24,49
2,55;0	800	14,21	15,53	15,01	11,48	15,54	16,40	15,08	20,03	21,83	20,39	14,42	19,56	20,41	18,65
	1000	19,00	21,46	20,07	13,67	20,78	22,70	20,15	26,02	29,42	26,49	16,66	25,37	27,33	24,15
1,7;0,9	1200	25,13	29,81	26,58	15,77	27,57	31,75	26,74	33,85	40,42	34,45	18,79	32,85	37,09	31,19
5,1;-10	800	5,00	6,92	6,99	5,90	7,35	7,47	6,78	14,46	15,67	14,88	11,13	14,32	14,75	13,54
	1000	9,92	11,18	10,86	8,26	11,30	11,90	10,63	19,23	21,55	19,80	13,25	19,05	20,22	18,00
2,55;0	1200	14,24	16,67	15,49	10,35	16,12	17,80	15,24	25,38	29,91	26,13	15,29	25,08	27,83	23,65
5,1;-10	800	6,54	7,33	7,34	6,08	7,66	7,82	7,09	19,68	21,42	20,02	14,20	19,17	19,97	18,27
	1000	10,38	11,76	11,33	8,43	11,74	12,43	11,04	25,49	28,78	25,94	16,40	24,80	26,67	23,60
1,7;0,9	1200	14,92	17,60	16,18	10,53	16,76	18,65	15,85	33,09	39,42	33,65	18,50	32,03	36,05	30,40

Размеры зон пластических деформаций при разных пределах текучести (T_n^l, T_n^r) и анизотропии (c_n^l, c_n^r)

Из таблицы 1 видно, что уменьшение прочности угля в исследуемой зоне горного массива приводит к увеличению длины пластической зоны. И наоборот, при приближении забоя выработки к участку угольного массива с большей прочностью, протяженность призабойной пластической зоны резко сокращается.

Данные, приведенные в таблице 2, показывает некоторое изменение длин зон пластических деформаций $\begin{pmatrix} x_2^l - x_1 \end{pmatrix}$ и $\begin{pmatrix} x_2^r - x_1 \end{pmatrix}$ в зависимости от протяженностей участков $\begin{pmatrix} x_p^l - x_1 \end{pmatrix}$, $\begin{pmatrix} x_p^r - x_1 \end{pmatrix}$ для случая, когда $T_n^l > T_n$, а

 $T_n^r < T_n$, т.е. максимум величины предела текучести находится в зоне x_2^l . Из результатов расчетов видно, что с ростом длины участка $(x_p^r - x_1)$, либо при уменьшении протяженности области $(x_p^l - x_1)$, происходит увеличение зон пластических деформаций. Причем, наблюдается значительное изменение длин пластических зон в призабойных областях пласта, в которых происходят скачкообразные изменения физико-механических свойств угля.

Таблица 2

1	$(x_2^l - x_1)$, м							$(x_2^r - x_1)$, м						
<i>х</i> _p ', м	x_p^{r} , M													
	30	32	34	36	38	40	30	32	34	36	38	40		
30	22,21	22,33	22,43	22,53	22,62	22,70	20,92	22,25	23,56	24,84	26,10	27,33		
31	19,88	19,99	20,10	20,20	20,29	20,38	20,71	22,05	23,36	24,64	25,90	27,14		
32	17,66	17,78	17,89	17,99	18,09	18,17	20,54	21,88	23,19	24,48	25,74	26,97		
33	15,58	15,70	15,81	15,92	16,01	16,10	20,41	21,75	23,06	24,35	25,61	26,84		
34	13,66	13,78	13,89	14,00	14,09	14,18	20,30	21,64	22,95	24,24	25,50	26,74		
35	11,90	12,02	12,14	12,24	12,34	12,43	20,22	21,56	22,88	24,17	25,43	26,67		

Размеры зон пластических деформаций вблизи забоя

Результаты расчетов по оценке влияния неоднородности прочностных свойств угольного пласта на перераспределение напряженно-деформированного состояния горного массива приведены в виде графиков на рис. 2–6. Так, на рис. 2–6 приведены изолинии $\sigma_y^e / \gamma H = \text{const}$ в окрестности выработанного пространства при H = 1000 м, 2h = 1 м, $x_1 = 30$ м, $\lambda = 0.9$, $\psi = 0^\circ$, $\alpha = \pm 45^\circ$, $c_p = 0$, $T_n = 2,55$ МПа. На рис. 2 представлены изобары для наклонного ($\alpha = 45^\circ$) однородного угольного пласта.

Рис. 2. Изолинии постоянных значений напряжений (^{σ [°] _y / γ H} = const) вблизи выработанного пространства при α=45°

При уменьшении предела текучести на сдвиг в одной из зон пластических деформаций (рис. 3 и 4) происходит уменьшение максимальных сжимающих напряжений в породах над пластом и удаление их от забоя вглубь массива. При этом в другой пластической зоне максимальные сжимающие напряжения увеличиваются в результате перераспределения опорного давления, а в области свободно зависающих породах кровли наблюдается рост растягивающих напряжений.

При увеличении предела текучести на сдвиг в одной из пластических зон угольного пласта (рис. 5) происходит рост концентрации напряжений в краевой части пласта, а максимальные растягивающие напряжения над выработанным пространством уменьшаются.

Рис. 3. Изолинии постоянных значений напряжений (^{σ^e_y} / γ^H = const) вблизи выработанного пространства при α=45°, xpl=30 м, xpr=40 м, Tnl=0, cpl=0, Tnr=1,7 MПа, cpr=0,9

Рис. 4. Изолинии постоянных значений напряжений ($\sigma_y^e / \gamma H = const$) вблизи выработанного про-

странства при тех же значениях характеристик, что на рис.3, но при α =-45°

Рис. 5. Изолинии постоянных значений напряжений

 $(\sigma_{y}^{e}/\gamma H = const)$ npu $\alpha = 45^{\circ}$, xpl = 35 m, xpr = 30 m, Tnl = 5, 1 MIIa, cpl = -10, Tnr = 0, cpr = 0

Рис. 6. Изолинии постоянных значений напряжений

 $(\sigma_{y}^{e'} / \gamma H) = const)$ вблизи выработанного пространства при $\alpha = 45^{\circ}$, xpl=35 м, xpr=40 м, Tnl=5,1 МПа, cpl=-10, Tnr=1,7 МПа, cpr=0,9

На рис. 6 представлены изобары в случае сочетания указанных выше изменений. Как видно из рисунка, при выбранных пределах текучести угля T_n^r , T_n^l максимум сжимающих напряжений меньше по величине и удален от забоя на большее расстояние, чем в случае отработки пласта с однородными пластическими зонами.

Таким образом, выполненные исследования показывают, что скачкообразное уменьшение прочности угля приводит к увеличению максимальных сжимающих напряжений на этом участке пласта, но при этом максимум зоны опорного давления отдаляется от забоя вглубь массива. При приближении забоя к участку угля с большей прочностью, максимальные сжимающие напряжения резко возрастают, а, соответственно, расстояние от забоя до зоны максимума опорного давления сокращается. Концентрация максимальных сжимающих напряжений вблизи забоя, в свою очередь, может привести к разупрочнению угля и дальнейшему его разрушению в виде реализации газодинамического явления в забое выработки.

Данные исследования указывают на необходимость корректировки параметров существующих противовыбросных мероприятий, применяемых в зонах нарушений на выбросоопасных угольных пластах, причем необходимо учитывать, что при подходе забоя выработки к геологическому нарушению имеет место наличие зон либо упрочненного угля, либо разупрочненного в сравнении с эталонным участком этого пласта.

Список литературы / References

1. СОУ 10.1.00174088.011-2005 Правила ведения горных работ на пластах, склонных к газодинамическим явлениям. – К.: Минуглепром Украины, 2005. – 225 с.

SOU 10.1.00174088.011-2005 Regulations of mining in strata disposed to gas-dynamic occurrences. – K.: Minugleprom Ukrainy, 2005. - 225 p.

2. Горные работы в сложных условиях на выбросоопасных пластах / С.П. Минеев, А.А. Рубинский, О.В. Витушко, А.Г. Радченко – Донецк: Східний видавничий дім, 2010. – 606 с.

Mining in difficult conditions in burst hazard strata / S.P. Mineyev, A.A. Rubinskiy, O.V. Vitushko, A.G. Radchenko – Donetsk: Skhidnyi vydavnychyi dim, 2010. – 606 p.

3. Левшин А.А. Напряженно-деформированное состояние горного массива при разработке угольного пласта с изменяющейся мощностью / Левшин А.А., Федотов С.Н. // Физика и техника высоких давлений. – Донецк, 1999. – Т.9, №2. – С. 51–58.

Levshin A.A. Stress-deformed state of rock massif when mining coal seam of variable thickness / Levshin A.A., Fedotov S.N. // Fizika i tekhnika vysokikh davleniy. – Donetsk, 1999. – Vol.9, No.2 – P. 51–58

4. *Булат А.Ф.* Напряженно-деформированное состояние анизотропного породного массива при отработке угольных пластов / Булат А.Ф., Витушко О.В., Гоман О.Г. – Днепропетровск: Полиграфист, 2000. – 216 с.

Bulat A.F. Stress-deformed state of anisotropic rock massif when mining coal seams / Bulat A.F., Vitush-ko O.V., Goman O.G. – Dnepropetrovsk: Poligrafist, 2000. – 216 c.

5. Минеев С.П. Оценка влияния изменения мощности угольного пласта на напряженнодеформированное состояние призабойной части горного массива / Минеев С.П., Федотов С.Н., Витушко О.Н. // Науковий вісник НГУ. – № 9–10, 2010.

Mineyev S.P. Estimation of influence of coal seam thickness variation on stress-deformed state of face space in rock massif / Mineyev S.P., Fedotov S.N., Vitush-ko O.N. // Naukovyi visnyk NGU. – No.9–10, 2010

6. *Качанов Л.М.* Основы теории пластичности / Качанов Л.М. – 2-е изд. – М.: Наука, 1969. – 420 с.

Kachanov L.M. Fundamentals of plasticity theory / Kachanov L.M. – 2 edition. – М.: Nauka, 1969. – 420 р. **7.** *Хилл Р.* Математическая теория пластичности /

Хилл Р. – М.: Изд-во техн.-теорет. Лит., 1956. – 407 с. *Khill R.* Mathematical theory of plasticity / Khill R. –

M.: Izd-vo tekhn.-teoret. Lit., 1956. – 407 p.

8. *Мусхелишвили Н.И.* Сингулярные интегральные уравнения / Мусхелишвили Н.И. – М.: Наука, 1968. – 512 с.

Muskheshvili N.I. Singular integral equation / Muskheshvili N.I. – M.: Nauka, 1968. – 512 p.

Розглянуто вплив неоднорідності вугільного пласта з міцності на зміну напружено-деформованого стану анізотропного гірського масиву, що має місце при веденні гірських робіт у зонах геологічних порушень. Дослідження впливу неоднорідності пласта виконане на основі рішення задачі теорії пружності. Оцінка показує істотне підвищення газодинамічної небезпеки при веденні гірських робіт у зонах сингенетичних порушень.

Ключові слова: викидонебезпечність, гірський масив, напружено-деформований стан, вугільний пласт, стрибкоподібна зміна властивостей, пластична зона, газодинамічна небезпека

Influence of heterogeneity of coal layer durability on change of press-deformed condition of the anisotropic coal massif occurring during conduction of mining works in zones of geological faults is considered. Research of influence of heterogeneity of a layer on the basis of the decision of a problem of the theory of elasticity is carried out. Estimation shows essential increase of gasdynamical danger when conducting mountain works in zones syngenetic faults is shown.

Keywords: *outburst hazard, coal massif, pressuredeformed condition, coal layer, stepwise change of properties, plastic zone, gas-dynamical danger*

Рекомендовано до публікації докт. техн. наук О.В. Солодянкіним. Дата надходження рукопису 08.11.10