Механохимический синтез добавок для катодного материала литий-ионных тяговых аккумуляторных батарей

Рейтинг:   / 1
ПлохоОтлично 

Authors:

Е. Ю. Светкина, Доктор технических наук, доцент, orcid.org/0000-0003-0857-8037, Государственное высшее учебное заведение „Национальный горный университет“, г. Днепр, Украина, е-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.; Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.; Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

В. В. Процив, Доктор технических наук, профессор, orcid.org/0000-0002-2269-4993, Государственное высшее учебное заведение „Национальный горный университет“, г. Днепр, Украина, е-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.; Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.; Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

А. А. Богданов, Кандидат технических наук, orcid.org/0000-0003-4790-2338, Государственное высшее учебное заведение „Национальный горный университет“, г. Днепр, Украина, е-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.; Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.; Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

K. M. Басс, Кандидат технических наук, доцент, orcid.org/0000-0003-2918-3501, Государственное высшее учебное заведение „Национальный горный университет“, г. Днепр, Украина, е-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.; Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.; Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра., Национальный транспортный университет, г. Киев, Украина, е‑mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Abstract:

Цель. Изучение влияния механоактивации на систему TiO2–SiO2–Al2O3 (в виде минералов) с целью применения их в качестве добавок катодного материала.

Методика. Механохимическую активацию (МА) материалов проводили в вертикальной вибрационной мельнице (МВВ). Средний размер измельченных частиц определяли по данным, полученным на лазерном анализаторе SK LAZER MICRON SIZER PRO-700 (Япония). Образование активированного состояния тесно связано с энергетическими характеристиками материала. В связи с этим был использован универсальный способ исследования энергетических характеристик материалов путем потенциометрических измерений в суспензиях с индеферентным электродом. Дифрактограммы „in situ“ получали на рентгеновском дифрактометре ДРОН-2 („Буревестник“, Россия). Фазовый анализ материалов определяли на рентгеновском дифрактометре ДРОН-3: излучение Fe Ka, высокое напряжение 35 эВ, анодный ток 20 мА. Физико-химические процессы, происходящие при полученииГГ (газовых гидратов) метана, изучали с помощью методов дифференциального термического анализа (ДТА) и рентгенофлуоресцентного анализа (РФА). Состав газообразных продуктов был исследован методом газо-адсорбционной хроматографии на хроматографе „ЛХМ-2000-ТМ“ („Электра“, Россия).

Результаты. Изучены физико-химические свойства систем на основе TiO2–SiO2–Al2O3–ПЭв виде минералов после механохимической активации. Установлено, что добавки после активации в МВВ повышают электронную проводимость, за счет образования в ходе активации твердых растворов, с одной стороны, а с другой – за счет изменения кристаллохимического состава. Показано, что активированные минералы повышают электронную проводимость до 10-2 Ом-1см-1.

Научная новизна. Заключается в том, что при виброударной активации происходит изменение электропроводности минералов (в частности, рутила и окисленных кварцитов), связанное с образованием твердых растворов или химических соединений в результате механохимической активации.

Практическая значимость. Разработан способ повышения активности добавок для катодных материалов литий-ионных аккумуляторов, при котором происходит повышение электронной проводимости.

References.

1. Glebov, V. V., Klimov, V. F. and Volosnikov, S. A., 2017. Assessment of the Possibility to Use Hybrid Electromechanical Transmission in Combat Tracked Platforms. Mechanics, Materials Science & Engineering, 8, pp. 99‒105.

2. Protsiv, V. V. and Monya, A. G., 2003. Experimental determination of characteristics of clutch of mine locomotive under the braking conditions. Metallurgicheskaya i Gornorudnaya Promyshlennost [online], 2, pp. 95‒97. Available at: <https://www.researchgate.net/publication/293546988_Experimental_determination_ocharacteristics_of_clutch_of_mine_locomotive_under_the_braking_conditions> [Accessed 20 January 2017].

3.  Ziborov, K.,  Bas, K., Kravets, V.,  Fedoriachenko, D.,  Krivda, V.,  Fedoriachenko, S.  and Kornilenko, K., 2016. Mathematical Models of Hybrid Vehicle Powertrain Performance. Mechanics, Materials Science & Engineering Journal, 7, pp. 153–164.

4. Franchuk, V. P., Ziborov, К. А., Fedoriachenko, S. A. and Krivda, V. V., 2017. On wheel rolling allong the rail regime with longitudinal load. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, pp. 75–80.

5. Sudakov, А. К., Khomenko, О. Ye., Isakova, M. L. and Sudakova, D. A., 2016. Concept of numerical experiment of isolation of absorptive horizons by thermoplastic materials. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5(155), pp. 12–16.

6. Ziborov, K. A., Protsiv, V. V., Blokhin, S. Ye. and Fedoriachenko, S. O., 2014. Applicability of computer simulation while designing mechanical systems of mining rolling stock. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, pp. 55‒59.

7. Kyrychenko, Y., Samusia, V., Kyrychenko, V. and Goman, O., 2012. Experimental investigation of aeroelastic and hydroelastic instability parameters of a marine pipeline. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining [online], pp. 163–167. Available at: <http://www.crcnetbase.com/doi/abs/10.1201/b13157-28> [Accessed 1 May 2017].

8. Taran, I. and Klymenko, I., 2017. Analysis of hydrostatic mechanical transmission efficiency in the process of wheeled vehicle braking. Transport Problems, 12 (Special Edition), pp. 45‒56. DOI: 10.20858/tp. 12. se. 4.

9. Blomgren, G., 2017. The Development and Future of Lithium Ion Batteries.J. Electrochem. Soc. [pdf],164, pp. A5019‒A5025. Available at: <http://jes.ecsdl.org/content/164/1/A5019.full.pdf> [Accessed 30 October 2017].

10. Safronov, D. V., Novikova, S. A., Skundin, A. M. and  Yaroslavtsev, A. B., 2012. Lithium intercalation and deintercalation processes in Li4Ti5O12 and LiFePO4Neorganicheskie Materialy, 48(1), pp. 63–68. DOI: 10.1134/S0020168512010141.

11. Fedotov, S., Khasanova, N. R., Samarin, A. Sh.,  Drozh­zhin, O. A., Batuk, D., Karakulina, O. M.,  Ha­der­mann, J., Abakumov, A. M. and Antipov, E. V., 2016. AVPO4F (A  Li, K): A 4 V Cathode Material for High-Power Rechargeable Batteries. Chem. Mater., 28(2), pp. 411–415. DOI: 10.1021/acs.chemmater.5b04065.

12. Berbenni, V., Milanese, C., Bruni, G., Marini, A. and Naturforsch, Z., 2010. Mechano-thermally Activated Solid-state Synthesis of Li4Ti5O12 Spinel from Li2CO3–TiO2 Mixtures. A Journal of Chemical Sciences, 65(1), pp. 23‒26. DOI: 10.1515/znb-2010-0105.

13. Kulova, T. L., 2013. New electrode materials for lithium-ion batteries (Review). Russian Journal of Electrochemistry, 49(1), pp. 1‒25. DOI: 10.7868/S0424857013010118.

14. Kosova, N. V., Rezepova, D., Petrov, S. and Slobodyuk, A., 2017. Electrochemical and chemical Na/Li ion exchange in Na-based cathode materials: Na1.and.22P2O7 and Na3V2(PO4)2F3. Journal of the Electrochemical Society, (164), pp. A6192‒A6200. DOI: 10.1149 /2.0301701jes.

15. Yan, L., Rui, X., Chen, G., Xu, W., Zou, G. and Luo, H., 2016. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage.  Nanoscale, 8(16), pp. 8443‒8465. DOI:10.1039/c6nr01340f.

16. Sloovere, D., Marchal, W., Ulu, F., Vranken, T., Verheijen, M., Van Bael, M. K. and Hardy, A., 2017. Combustion synthesis as a low temperature route to Li4Ti5O12 based powders for lithium ion battery anodes. RSC Adv., 7, pp. 18745–18754. DOI: 10.1039/C7RA02503C.

17. Yegorov, A., Putsylov, I., Smirnov, S. and Fateiev, S., 2016. Effect of mechanical activation on electrode characteristics on the basis of fluorated carbon nanotubes. Journal of Applied Chemistry, 89(3), pp. 400‒403.

18. Vaganova, E. S., Davydova, O. A., Buzaeva, M. V., Klimov, E. S., Frolov, I. V., Sergeev, V. A., Fomin, A. N. and Svetukhin, V. V., 2016. Hange of Surface of Polymeric Composites, Reinforced by Carbon Nanotubes. Bulletin of the South Ural State University. Ser. Chemistry, 8(3), pp. 35–41. DOI: 10.14529/chem160305.

19. Pikul, J. H., Zhang, H. G., Cho, J., Braun, P. V. and King,  W. P., 2013. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nature Communications, 4(1732), pp. 1–5. DOI: 10.1038/ncomms2747.

20. Mustyatsa, O. and Katerinko, I., 2012. Electric conductance and ratios of contributions in conductivity of sulfide and telurid of lithium in liquid and crystal conditions. Visnyk NTU (Natsionalnoho Transportnoho Universytetu) [pdf], 26, pp. 595‒600. Available at: <http://publications.ntu.edu.ua/visnyk/26_2_2013/595-600.pdf> [Accessed 11 September 2017].

21. Franchuk, V., Antsyferov, O. and Duganets, V., 2016. The drive force in the vertical vibratory mill. Heotekhnichna mekhanika, 131, pp. 100–107.

22. Svetkina, O., 2012. Monitoring of quality of mineral by method of conductivity. School of Underground Mining, pp. 141–147. DOI: 10.1201/b13157-35.

 повний текст / full article



Посетители

2701959
Сегодня
За месяц
Всего
159
353619
2701959

Гостевая книга

Если у вас есть вопросы, пожелания или предложения, вы можете написать их в нашей «Гостевой книге»

Регистрационные данные

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Журнал зарегистрирован в Министерстве юстиции Украины.
 Регистрационный номер КВ № 17742-6592ПР от 27.04.2011.

Контакты

49000, г. Днепропетровск,
пр. К. Маркса 19, корп. 3, к. 24а
Тел.: 47-45-24
e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Вы здесь: Главная Главная RusCat Архив журнала 2018 Содержание №6 2018 Электротехнические комплексы и системы Механохимический синтез добавок для катодного материала литий-ионных тяговых аккумуляторных батарей