Физические условия образования „легкого“ ядра и термоядерный источник тепла в недрах земли

Рейтинг:   / 0
ПлохоОтлично 

Authors:

В. В. Соболев, доктор технических наук, профессор, orcid.org/0000-0003-1351-6674, Государственное высшее учебное заведение „Национальный горный университет“, г. Днепр, Украина, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Н. В. Билан, кандидат геологических наук, доцент, orcid.org/0000-0002-4086-7827, Государственное высшее учебное заведение „Национальный горный университет“, г. Днепр, Украина, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Abstract:

Цель. Экспериментальные исследования физической модели образования ядра Земли в центре газопылевого спирального вихря и численные оценки физических условий для развития термоядерных реакций в ядре Земли.

Методика. Анализ сущности используемых концепций и основных достоинств и недостатков, определяющих их потенциальные возможности. Экспериментальные исследования с применением ударно-волновой обработки пористых материалов в цилиндрических контейнерах. Численные оценки физических условий в ядре Земли, инициирующих термоядерные реакции.

Результаты. Выбор модели формирования Земли с изначально „легким“ ядром является принципиально важным по нескольким причинам. Во-первых, дает физически обоснованный механизм образования термоядерного источника тепла, а, во-вторых, процесс перехода Земли к равновесному состоянию неизбежно создает условия для механической и физико-химической активности элементов в геосферах. Проведена численная оценка главных условий, необходимых для термоядерного нагрева центральных областей Земли, а именно, концентрации ядер дейтерия и необходимых температур.

Научная новизна. Предложена модель формирования изначально „легкого“ ядра Земли. Экспериментально исследованы некоторые физические особенности зарождения и развития спиральных вихрей. Установлены закономерности изменения параметров плазмы, температуры ядра и выделения термоядерной энергии в зависимости от изменения возраста Земли.

Практическая значимость. Полученные результаты могут быть полезны при изучении таких важнейших планетарных геологических явлений как дифференциация вещества и образование сфер внутри планеты, а также распределение тепловых потоков в ее недрах.

References.

1. Kuznetsov, V.V., 1997. The anisotropy of properties of the Earth’s inner core. Phys. Usp., 40:9, pp. 951–961. DOI: 10.3367/UFNr.0167.199709e.1001.

2. Shilo, N.A., 1982. On the mechanism of formation of the solar system. Tikhookean. Geology, 6. pp. 20–27.

3. Wohlers, A. and Wood, B.J., 2015. A Mercury-like component of early Earth yields uranium in the core and high mantle 142Nd. Nature, 520, pp. 337–340. DOI:10.1038/nature14350.

4. Anisichkin, V.F., Ershov, A.P., Bezborodov, A.A. and Suslov, I.R., 2003. The possible modes of chain nuclear reactions in the Earth’s core. In: Int. Conf. “VII Zababakhin’s Sientific Lectures”, Snezhinsk, Russia, 8–12 September [online], pp. 1–9. Available at: <http://www.vniitf.ru/rig/konfer/7zst/reports/s1/s-1.htm> [Accessed 19 August 2017].

5. Larin, V.N., 2005. Our Earth. Moscow: Agar [online]. Available at: <http://hydrogen-future.com/list-c-larin/14-earth.html> [Accessed 24 September 2017].

6. Gilat, A. and Vol, A., 2012. Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes. Geoscience Frontiers, 3(6), pp. 911–921. DOI:  10.1016/j.gsf.2012.03.009.

7. Shilo, N.A., 1988. Vortices – the cradle of the Solar system. In: Hypotheses: predictions: the future of science: an international yearbook. Moscow: Znanie, 21, pp. 89–111.

8. Litasov, K.D. and Shatskiy, A.F., 2016. Composition of the Earth’s core: A review. Russian Geology and Geophysics, 57(1), pp. 22–46. DOI: 10.15372/GiG20160103.

9. Kuznetsov, V.V., 2008. Introduction to the physics of hot Earth. Kamchatka, Paratunka: IKIR [pdf]. Available at: <http://www.geokniga.org/bookfiles/geokniga-vvedenie-v-fiziku-goryachey-zemli.pdf> [Accessed 11 September 2017].

10. Pushcharovsky, D.Yu. and Pushcharovsky, Yu.M., 1998. Composition and structure of the earth’s mantle. Soros Educational Journal [pdf], 11, pp. 111–119. Available at: <http://www.pereplet.ru/nauka/Soros/pdf/ 9811_111.pdf> [Accessed 5 June 2017].

11. Shumakova, T.A. and Berczik, P.P., 2005. Chemical radial gradient evolution in the disk of a massive galaxy due to its minor merger with a dwarf galaxy. Kinematics and physics of celestial bodies [online], 21(4), pp. 288–303. Available at: <http://dspace.nbuv.gov.ua/handle/123456789/79143> [Accessed 10 September 2017].

12. Sobolev, V. V., 1987. Shock-wave separation of che­mical compounds and mixtures of materials into components. Mineral Processing, 7, pp. 63–68.

13. Sobolev, V. V., 1984. Origin of spiral vortices in mixed cylindrical samples under shock compression. Technical Physics Letters, 10(8), pp. 459–463.

14. Sobolev, V. and Hove, I. H., 1997. Phenomenon of Spiral Vortex Formation Over the Shock Wave Front.Journal De Physique. IV. Colloque, 7(C.3), pp. 127–129. DOI: 10.1051/jp4:1997324.

15. Chernai, A. V., Sobolev, V. V., Ilyushin, M. A. and Zhitnik, N. E., 1994. Generating mechanical pulses by the laser blasting of explosive coatings. Combustion, Explosion, and Shock Waves, 30(239), рр. 239–242. DOI: 10.1007/BF00786134.

16. Didyk, R. P., Sobolev, V. V., Gryaznova, L. V. and Pikar S. N., 1977. On the possible nature of the flows of matter in cylindrical ampoules under shock compression. In: Synthesis and investigation of properties of superhard materials. Kiev: ISM, pp. 91–94.

17. Voitenko, A. Ye., 2007. Etude of thermonuclear heating of the central region of the Earth. In: Physics and Technology of high-energy material processing. Dnepropetrovsk: ART-PRESS. pp. 62–70.

18. Gurevich, L. E. and Chernin, A. D., 1978. Introduction to cosmogony. The origin of the large-scale structure of the universe. Moscow: Nauka.

19. Terez, E. I. and Terez, I. E., 2011. Thermonuclear processes in the core is the main source of energy of geodynamic evolution and degassing of the Earth. Bulletin of the Crimean Astrophysical Observatory, 107(1), pp. 152–164. DOI: 10.3103/S0190271711010153.

20. Fukuhara, М., 2016. Possible generation of heat from nuclear fusion in Earth’s inner core. Sci. Rep. 6, 37740. DOI: 10.1038 / srep37740.

21. Zharkov, V. N., 2013. Interior Structure of the Earth and Planets. Moscow: Nauka i obrazovanie [pdf]. Available at: <http://ocean.phys.msu.ru/courses/geo/lib/books/Жарков%20Внутреннее%20строение%20Земли%20и%20планет.pdf> [Accessed 27 October 2017].

22. Herndon, J. M., 1992. Nuclear fission reactors as energy sources for the giant outer planets. Naturwissenschaften, 79(1), pp. 7–14. DOI: 10.1007/BF01132272.

23. Terez, E. I. and Terez, I. E., 2015. Synthesis reactions – the main source of internal energy of the Earth. Herald of the Russian Academy of Sciences, 85(3), pp. 240–246. DOI: 10.7868/S0869587315030172.

24. Аnderson, Don L., 2007. New Theory of the Earth. Cambridge University Press, New York [online]. Available at: <http://resolver.caltech.edu/CaltechBOOK: 2007.001> [Accessed 5 June 2017].

25. Pollak, H. N., Hurter, S. J. and Johnson, J. R., 1993. Heat Flow from the Earth’s Interior: Analysis of the Global Data Set. Reviews of Geophysics, 3, pр. 267–280. DOI: 10.1029/93RG01249.

26. Lay, T., Hernlund, J. and Buffet, B. A., 2008. Core–mantle boundary heat flow. Nature Geoscience, 1, pp. 25–35. DOI:10.1038/ngeo.2007.44.

27. Zel’dovich, Ya. B. and Raizer, Yu. P., 2008. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Moscow: FIZMATLIT [pdf]. Available at: <http://master.basnet.by/bfo/zeld/2.pdf> [Accessed 1 November 2017].

28. Artsimovich, L. A., 1961. Controlled Thermonuclear Reactions. Moscow: Fizmatgis [online]. Available at: <https://www.twirpx.com/file/910411/> [Accessed 4 June 2017].

 повний текст / full article



Посетители

2165245
Сегодня
За месяц
Всего
431
10041
2165245

Гостевая книга

Если у вас есть вопросы, пожелания или предложения, вы можете написать их в нашей «Гостевой книге»

Регистрационные данные

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Журнал зарегистрирован в Министерстве юстиции Украины.
 Регистрационный номер КВ № 17742-6592ПР от 27.04.2011.

Контакты

49000, г. Днепропетровск,
пр. К. Маркса 19, корп. 3, к. 24а
Тел.: 47-45-24
e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Вы здесь: Главная Главная RusCat Архив журнала 2018 Содержание №5 2018 Геология Физические условия образования „легкого“ ядра и термоядерный источник тепла в недрах земли