Материалы

Математическое моделирование процессов тепломассобмена при разложении газовых гидратов в пористой среде

Рейтинг:   / 0
ПлохоОтлично 

Authors:

А. Ю. Дреус, orcid.org/0000-0003-0598-9287, Днепровский национальный университет имени Олеся Гончара, г. Днепр, Украина, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

В. И. Бондаренко, orcid.org/0000-0001-7552-0236, Национальный технический университет «Днепровская политехника», г. Днепр, Украина, e‑mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

В. С. Билецкий, orcid.org/0000-0003-2936-9680, Национальный технический университет «Харьковский политехнический институт», г. Харьков, Украина

Р. С. Лысенко, orcid.org/0000-0003-4651-5571, Национальный технический университет «Днепровская политехника», г. Днепр, Украина, e‑mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

 повний текст / full article



Abstract:

Цель. Разработка методики исследования и анализ процессов тепломассобмена в гидратосодержащем пористом слое при падении давления на его границе.

Методика. Математическое моделирование, вычислительный эксперимент.

Результаты. Представлена математическая модель теплофизических процессов при разложении газового гидрата в пористом слое горной породы. Исследован случай разложения газового гидрата в пористом слое горной породы, который находится в стабильном состоянии при относительно высоких начальных показателях температуры и давления. Выполнены численные исследования полей температуры и давления при разложении газового гидрата. Представлено нестационарное распределение температуры и давления вдоль пористого пласта при разложении газового гидрата вследствие падения давления на его границе. Определены скорость продвижения фронта разложения газового гидрата и изменение размеров области разложенного газового гидрата перехода во времени.

Научная новизна. Предложен алгоритм расчета полей давления и температуры в пористом слое в случае, когда температура стабильного газового гидрата выше значения температуры его диссоциации. Фактором, обеспечивающим процесс разложения газового гидрата, является падение давления на границе породного слоя. Показано влияние эндотермической реакции диссоциации газового гидрата на процессы теплообмена в пористом слое. Показано, что значения температуры и давления, определяющие точку разложения газового гидрата, изменяются по мере продвижения фронта фазового перехода.

Практическая значимость. Предложенные математическая модель и алгоритм расчета могут быть использованы для прогнозирования временных характеристик и размеров зон разложения газовых гидратов вокруг эксплуатационных скважин.

References.

1. Hanushevych, K., & Srivastava, V. (2017). Coalbed methane: places of origin, perspectives of extraction, alternative methods of transportation with the use of gas hydrate and nanotechnologies. Mining of Mineral Deposits11(3), 23-33. https://doi.org/10.15407/mining11.03.023.

2. Li, X.-S., Xu, C.-G., Zhang, Y., Ruan, X.-K., Li, G., & Wang, Y. (2016). Investigation into gas production from natural gas hydrate: A review. Applied Energy, (172), 286-322. https://doi.org/10.1016/j.apenergy.2016.03.101.

3. Sánchez, M., Santamarina, C., Teymouri, M., & Gai, X. (2018). Coupled numerical modeling of gas hydrate bearing sediments: from laboratory to field-scale analyses. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2018jb015966.

4. Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Research of Thermodynamic Conditions for Gas Hydrates Formation from Methane in the Coal Mines. Solid State Phenomena, (291), 155-172. https://doi.org/10.4028/www.scientific.net/SSP.291.155.

5. Sun, Y., Lü, X., & Guo, W. (2014). A review on simulation models for exploration and exploitation of natural gas hydrate. Arabian Journal of Geoscienes, (7), 2199-2214. https://doi.org/10.1007/s12517-014-1294-1.

6. Yin, Z., Khurana, M., Tan, H. K., & Linga, P. (2018). A review of gas hydrate growth kinetic models. Chemical Engineering Journal, (342), 9-29. https://doi.org/10.1016/j.cej.2018.01.120.

7. Vlasov, V. A. (2015). Diffusion model of gas hydrate formation from ice. Heat and Mass Transfer, 52(3), 531-537. https://doi.org/10.1007/s00231-015-1575-6.

8. Klymenko, V. (2019). Modeling of the kinetics of the gas hydrates formation on the basis of a stochastic approach. Solid State Phenomena, (291), 98-109. https://doi.org/10.4028/www.scientific.net/SSP.291.980.

9. Lorenzo, M. D., Aman, Z. M., Kozielski, K., Norris, B. W. E., Johns, M. L., & May, E. F. (2018). Modelling hydrate deposition and sloughing in gas-dominant pipelines. Journal of Chemical Thermodynamics, (117), 81-90. https://doi.org/10.1016/j.jct.2017.08.038.

10. Rao, Y., Ding, B., Wang, S., Wang, Z., & Zhou, S. (2019). Flow pattern and pressure drop of gas-liquid two-phase swirl flow in a horizontal pipe. Journal of Central South University26(9), 2528-2542. https://doi.org/10.1007/s11771-019-4192-6.

11. Bondarev, E., Rozhin, I., & Argunova, K. (2019). Problem of conjugate heat transfer between main gas pipeline and frozen ground. E3S Web of Conferences, (102), 01001. https://doi.org/10.1051/e3sconf/201910201001. 

12. Tsypkin, G. G. (2017). Formation of the impermeable layer in the process of methane hydrate dissociation in porous media. Fluid Dynamics, (52), 657-665. https://doi.org/10.1134/S0015462817050076.

13. Haiko, H., & Pyha, L. (2017). Shielded development of bottom gas hydrates. Mining of Mineral Deposits11(3), 117-123. https://doi.org/10.15407/mining11.03.117.

14. Lobkovskii, L. I., & Ramazanov, M. M. (2018). Front Regime of Heat and Mass Transfer in a Gas Hydrate Reservoir under the Negative Temperature Conditions. Fluid Dynamics53(4), 517-530. https://doi.org/10.1134/s0015462818040092.

15. Shagapov, V. S., Khasanov, M. K., Musakaev, N. G., & Duong, N. H. (2017). Theoretical research of the gas hydrate deposits development using the injection of carbon dioxide. International Journal of Heat and Mass Transfer, (107), 347-357. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.034.

16. Yu, L., Xu, Y., Gong, Z., Huang, F., Zhang, L., & Ren, S. (2018). Experimental study and numerical modeling of methane hydrate dissociation and gas invasion during drilling through hydrate bearing formations. Journal of Petroleum Science and Engineering, (168), 507-520. https://doi.org/10.1016/j.petrol.2018.05.046. 

17. Li, M., Fan, S., Su, Y., Ezekiel, J., Lu, M., & Zhang, L. (2015). Mathematical models of the heat-water dissociation of natural gas hydrates considering a moving Stefan boundary. Energy90, 202-207. https://doi.org/10.1016/j.energy.2015.05.064.

18. Bondarenko, V., Kovalevska, I., Astafiev, D., & Malova, O. (2018). Examination of Phase Transition of Mine Methane to Gas Hydrates and their Sudden Failure – Percy Bridgman’s Effect. Solid State Phenomena, 277, 137-146. https://doi.org/10.4028/www.scientific.net/ssp.277.137.

19. Bondarenko, V., Sai, K., Prokopenko, K., & Zhuravlov, D. (2018). Thermodynamic and geomechanical processes research in the development of gas hydrate deposits in the conditions of the Black Sea. Mining of Mineral Deposits12(2), 104-115. https://doi.org/10.15407/mining12.02.104.

20. Ahmadi, A. M., & Bahadori, A. (2017). Gas Hydrates. Fluid Phase Behavior for Conventional and Unconventional Oil and Gas Reservoirs, (pp. 405-444). Gulf Professional Publishing. https://doi.org/10.1016/B978-0-12-803437-8.00008-7.

21. Bulat, A., Blyuss, B., Dreus, A., Liu, B., & Dziuba, S. (2019). Modelling of deep wells thermal modes, Mining of Mineral Deposits13(1), 58-65. https://doi.org/10.33271/mining13.01.058.

22. Kozhevnikov, A. A., Sudakov, A. K., Dreus, A. Yu., & Lysenko, Ye. Ye. (2014). Study of heat transfer in cryogenic gravel filter during its transportation along a drillhole. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 49-54.

Следующие статьи из текущего раздела:

Посетители

3279211
Сегодня
За месяц
Всего
284
1463
3279211

Гостевая книга

Если у вас есть вопросы, пожелания или предложения, вы можете написать их в нашей «Гостевой книге»

Регистрационные данные

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Журнал зарегистрирован в Министерстве юстиции Украины.
 Регистрационный номер КВ № 17742-6592ПР от 27.04.2011.

Контакты

40005, г. Днепр, пр. Д. Яворницкого, 19, корп. 3, к. 24 а
Тел.: +38 (056) 746 32 79.
e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Вы здесь: Главная