Эффективность работы подземного газогенератора с учетом реверсного режима

Рейтинг:   / 0
ПлохоОтлично 

Authors:

П. Б. Саик, orcid.org/0000-0001-7758-1083, Национальный технический университет «Днепровская политехника», г. Днепр, Украина, e‑mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

В. С. Фальштынский, orcid.org/0000-0002-3104-1089, Национальный технический университет «Днепровская политехника», г. Днепр, Украина, e‑mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

В. Г. Лозинский, orcid.org/0000-0002-9657-0635, Национальный технический университет «Днепровская политехника», г. Днепр, Украина, e‑mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Э. К. Кабана, orcid.org/0000-0002-0066-1349, Университета Святого Августина, г. Арекипа, Перу, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

М. С. Демидов, orcid.org/0000-0002-8000-4639, Геологический консорциум «Геобит», г. Хжанув, Польша, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Р. Е. Дычковский, orcid.org/0000-0002-3143-8940, Национальный технический университет «Днепровская политехника», г. Днепр, Украина, e‑mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

 повний текст / full article



Abstract:

Цель. Активизация процессов скважинной подземной газификации угля с учетом реверсного режима подземного газогенератора на основе сбалансированности между окислительной и восстановительной зонами огневого забоя.

Методика. Эффективность работы подземного газогенератора оценивалась на основе аналитических и лабораторных исследований. Аналитическое обоснование внедрения реверсных работ в подземном газогенераторе базировалось на основе количественных параметров газификации угля в окислительной и восстановительной зонах газогенератора и скоростях их подвижки. Лабораторные исследования проводились на стендовой установке по моделированию процессов газификации угля.

Результаты. Обоснована эффективность работы подземного газогенератора реверсированием дутьевыми смесями, что позволяет сохранять баланс между его окислительной и восстановительной зонами. На основе усредненного значения концентрации горючих генераторных газов на выходе из смоделированного подземного газогенератора установлены временные промежутки ведения реверсных работ.

Научная новизна. Получены зависимости изменения перемещения активных зон подземного газогенератора при условии установления реверса подачи дутьевой смеси с учетом горно-геологических условий залегания угольного пласта с6 участка «Соленовский» Донецкого каменноугольного бассейна. Установлены параметры распространения температурного поля вокруг огневого забоя подземного газогенератора. Определен поправочный коэффициент (kv), что позволяет получать данные о скорости подвигания окислительной зоны подземного газогенератора, с использованием программного обеспечения «МТВ СПГУ».

Практическая значимость. Усовершенствована конструкция лабораторной стендовой установки по газификации угля, что упрощает управление технологическими процессами при исследовании режимов газификации. Обоснована эффективность работы подземного газогенератора с переходом в реверсный режим на основе энергетического баланса активных зон реакционного канала и состава генераторного газа.

References.

1. Sribna, Y., Trokhymets, O., Nosatov, I., & Kriukova, I. (2019). The globalization of the world coal market – contradictions and trends. E3S Web of Conferences, (123), 01044. https://doi.org/10.1051/e3sconf/201912301044.

2. Sekerin, V., Dudin, M., Gorokhova, A., Bank, S., & Bank, O. (2019). Mineral resources and national economic security: current features. Mining of Mineral Deposits13(1), 72-79. https://doi.org/10.33271/mining13.01.072.

3. Pivnyak, G. G., & Shashenko, O. M. (2015). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 118-121.

4. Piwniak, G. G. (2017). Limits to economic viability of extraction of thin coal seams in Ukraine. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining, 129-132. https://doi.org/10.1201/noe0415436700.ch16.

5. Khomenko, O., Tsendjav, L., Kononenko, M., & Janchiv, B. (2017). Nuclear-and-fuel power industry of Ukraine: production, science, education. Mining of Mineral Deposits11(4), 86-95. https://doi.org/10.15407/mining11.04.086.

6. Basu, R. (2017). Evaluation of some renewable energy technologies. Mining of Mineral Deposits11(4), 29-37. https://doi.org/10.15407/mining11.04.029.

7. Medianyk, V. (2020). Solutions multivariance about designing new levels of coal mines. Rudarsko Geolosko Naftni Zbornik35(2). Accepted paper. https://doi.org/10.17794/rgn.2020.2.3.

8. Kalybekov, T., Rysbekov, K. B., Toktarov, A. A., & Otarbaev, O. M. (2019). Underground mine planning with regard to preparedness of mineral reserves. Mining Informational and Analytical Bulletin, (5), 34-43.

9. Bondarenko, V., Tabachenko, M., & Wachowicz, J. (2015). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining, 113-119. https://doi.org/10.1201/b11329-19.

10. Adjiski, V., Despodov, Z., Mirakovski, D., & Serafimovski, D. (2019). System architecture to bring smart personal protective equipment wearables and sensors to transform safety at work in the underground mining industry. Rudarsko Geolosko Naftni Zbornik34(1), 37-44. https://doi.org/10.17794/rgn.2019.1.4.

11. Smoliński, A. (2018). Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification. Solid State Phenomena, (277), 1-16. https://doi.org/10.4028/www.scientific.net/ssp.277.1.

12. Smoliński, A. (2019). Characteristic of Possible Obtained Products during the well Underground Coal Gasification. Solid State Phenomena, (291), 52-62. https://doi.org/10.4028/www.scientific.net/ssp.291.52.

13. Hwang, S. C., Kim, S. K., Park, J. Y., Lee, D. K., Lee, S. H., & Rhee, Y. W. (2014). Kinetic study on Low-rank Coal Including K2CO3, Na2CO3, CaCO3 and Dolomite Gasification under CO2 Atmosphere. Clean Technology20(1), 64-71. https://doi.org/10.7464/ksct.2014.20.1.064.

14. Subbotin, A. N., Tarazanov, A. S., & Orlova, K. Y. (2016). Numerical analysis of the underground coal ga­sification syngas composition in dependence to supplied ­oxidizer properties. International Forum on Strategic ­Tech­nology (IFOST), 303-307. https://doi.org/10.1109/ifost.2016.7884253.

15. Falshtynskyi, V., Saik, P., Lozynskyi, V., Dychkovskyi, R., & Petlovanyi, M. (2018). Innovative aspects of underground coal gasification technology in mine conditions. Mining of Mineral Deposits12(2), 68-75. https://doi.org/10.15407/mining12.02.068.

16. Falshtynskyi, V. S., Dychkovskyi, R. O., Saik, P. B., Lozynskyi, V. H., & Cabana, E. C. (2017). Formation of thermal fields by the energy-chemical complex of coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 36-42.

17. Golovchenko, A. (2020). Some aspects of the control for the radial distribution of burden material and gas flow in the blast furnace. Energies, 13(4), 923-926. https://doi.org/10.3390/en13040923.

18. Dychkovskyi, R. O. (2015). Forming the bilayer artificially shell of georeactor in underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 37-42.

19. Tabachenko, M. (2016). Substantiating parameters of stratification cavities formation in the roof rocks during underground coal gasification. Mining of Mineral Deposits10(1), 16-24. http://dx.doi.org/10.15407/mining10.01.016.

20. Prusek, S., Lubosik, Z., Rajwa, S., Walentek, A., & Wrana, A. (2017). Geotechnical monitoring of rock mass and support behaviour around the UCG georeactor: Two case studies in Polish coal mining industry. International Conference on Ground Control in Mining, 321-328.

21. Sadovenko, I., Zagrytsenko, A., Podvigina, O., & Derevia­gina, N. (2016). Assessment of environmental and technical risks in the process of mining on the basis of numerical simulation of geofiltration. Mining of Mineral Deposits10(1), 37-43. http://dx.doi.org/10.15407/mining10.01.037.

22. Yun, Z., Jianfang, S., & Zhongchun, L. (2019). Study of numerical simulation method modelling gas injection into fractured reservoirs. Mining of Mineral Deposits13(2), 41-45. https://doi.org/10.33271/mining13.02.041.

23. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., Malanchuk, Z., & Malanchyk, Ye. (2018). Substantiation into mass and heat balance for underground coal gasification in faulting zones. Inzynieria Mineralna19(2), 289-300. http://doi.org/10.29227/IM-2018-02-36.

24. Wang, J., Wang, Z., Xin, L., Xu, Z., Gui, J., & Lu, X. (2017). Temperature field distribution and parametric study in underground coal gasification stope. International Journal of Thermal Sciences, (111), 66-77. https://doi.org/10.1016/j.ijthermalsci.2016.08.012.

25. Mallett, C., & Zhang, J. (2017). Gasifier face advance in underground coal gasification. Coal-Energy, Environment and Sustainable Development, PCC.

26. Lozynskyi, V., Dychkovskyi, R., Saik, P., & Falshtynskyi, V. (2018). Coal Seam Gasification in Faulting Zones (Heat and Mass Balance Study). Solid State Phenomena, (277), 66-79. https://doi.org/10.4028/www.scientific.net/SSP.277.66.

Следующие статьи из текущего раздела:

Посетители

3229078
Сегодня
За месяц
Всего
423
15681
3229078

Гостевая книга

Если у вас есть вопросы, пожелания или предложения, вы можете написать их в нашей «Гостевой книге»

Регистрационные данные

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Журнал зарегистрирован в Министерстве юстиции Украины.
 Регистрационный номер КВ № 17742-6592ПР от 27.04.2011.

Контакты

40005, г. Днепр, пр. Д. Яворницкого, 19, корп. 3, к. 24 а
Тел.: +38 (056) 746 32 79.
e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Вы здесь: Главная Архив журнала по выпускам 2020 Содержание №4 2020 Эффективность работы подземного газогенератора с учетом реверсного режима