Improvement of concrete and building mortar technology using secondary mineral resources
- Details
- Category: Content №2 2022
- Last Updated on 30 April 2022
- Published on 30 November -0001
- Hits: 4020
Authors:
O.M.Pshinko, orcid.org/0000-0002-1598-2970, Ukrainian State University of Science and Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
T.M.Pavlenko, orcid.org/0000-0003-4325-7562, Prydniprovska State Academy of Civil Engineering and Architecture, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.
T.M.Dekhta, orcid.org/0000-0001-5023-3070, Prydniprovska State Academy of Civil Engineering and Architecture, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.
O.V.Hromova, orcid.org/0000-0002-5149-4165, Ukrainian State University of Science and Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
O.V.Steinbrech, orcid.org/0000-0001-7742-2445, Prydniprovska State Academy of Civil Engineering and Architecture, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2022, (2): 091 - 095
https://doi.org/10.33271/nvngu/2022-2/091
Abstract:
Purpose. Improving the technology of concretes on the basis of secondary mineral resources (waste foundry sand of metallurgical and machine-building industry, ash-and-slag mixes of thermal power plants).
Methodology. Generally accepted standard methods in the study of the basic properties of raw materials, concrete mixes and concretes are used in the work. The samples were moulded using specially made laboratory vacuum equipment.
Findings. The study results on the main properties of concretes on the basis of secondary mineral resources confirmed the effectiveness of vibrovacuum technology. For example, the strength of ash-and-slag vacuum concrete is on average higher than the strength of vibrocompacted concrete from a mobile concrete mix by 610 MPa or by 60100% (depending on the cement consumption). Also, high-quality concretes with moderate cement consumption for various types of construction are obtained on the basis of waste foundry sand.
Originality. Scientific and technical bases of the technology of vibrovacuum concrete on the basis of waste foundry sand and ash-and-slag mixes were developed.
Practical value. Through the development of the technology of vibrovacuum products based on secondary mineral resources concrete, high-quality concretes (increased strength, frost resistance, etc.) were obtained for road and other types of construction. This technology allows applying the existing technological equipment without fundamental design changes, carrying out immediate dismantling of moulded products, which significantly reduces the metal consumption of the technology.
Keywords: secondary mineral resources, waste foundry sand (WFS), ash-and-slag mixes, vibrovacuumizing, moulding, concrete
References.
1. Holtzer, M., Dako, R., Kmita, A., Droyski, D., Kubecki, M., Skrzyski, M., & Roczniak, A. (2020). Environmental Impact of the Reclaimed Sand Addition to Molding Sand with Furan and Phenol-Formaldehyde Resin-A Comparison. Materials, 13(19), 4395. https://doi.org/10.3390/ma13194395.
2. Chung, S.-Ye., Sikora, P., Stephan, D., & Abd Elrahman, M. (2020). The Effect of Lightweight Concrete Cores on the Thermal Performance of Vacuum Insulation Panels. Materials, 13(11), 2632. https://doi.org/10.3390/ma13112632.
3. Xiaohui Zhu (2017). Properties of Alkali Activated Slag Concrete. Chemical Engineering TransactionsCET Journal, 62, 1009-1014. Retrieved from https://doaj.org/article/4d39fc854a7e44749abd 80068fa 052c2
4. Niyazbekova, R.K., Userbaev, M.T., Kokayeva, G.A., Shansharova, L.S., Konkanov, M.D., & Abdulina, S.A. (2018). Ash Deposits CHP as an Additional Source of Raw Material for Construction Production. Chemical Engineering TransactionsCET Journal, 70, 649-654. https://doi.org/10.3303/CET1870109.
5. Sridharan, M., & Madhavi, Ch. (2020). Investigating the influence of copper slag on the mechanical behaviour of concrete. Materialstoday: Proceedings, 46(6). https://doi.org/10.1016/j.matpr.2020.11.195.
6. Thuy Bich Thi Nguyen, Rachot Chatchawan, Warangkana Saengsoy, Somnuk Tangtermsirikul, & Takafumi Sugiyama (2019). Influences of different types of fly ash and confinement on performances of expansive mortars and concretes. Construction and Building Materials, 209, 176-186. https://doi.org/10.1016/j.conbuildmat.2019.03.032.
7. Savi, A., Vlahovi, M., Martinovi, S., orevi, N., Broeta, G., & Volkov-Husovi, T. (2020). Valorization of fly ash from a thermal power plant for producing high-performance self-compacting concrete. Science of Sintering, 52(3), 307-327. https://doi.org/10.2298/SOS2003307S.
8. Rafieizonooz, M., Salim, M.R., Hussin, M.H., Mirza, J., Yunus,S.M., & Khankhaje, E. (2017). Workability, Compressive Strength and Leachability of Coal Ash. Chemical Engineering Transactions, 56, 439-444. https://doi.org/10.3303/CET1756074.
9. Guo Yin-Le, Liu Xue-Ying, & Hu Yue-Ping (2021). Study on the influence of fly ash and silica fume with different dosage on concrete strength. Internatio Symposium on Architecture Research Frontiers and Ecological Environment, 237. https://doi.org/10.1051/e3sconf/202123703038.
10. Bavita Bhardwaj, & Pardeep Kumar (2017). Waste foundry sand in concrete: A review. Construction and Building Materials, 156, 661-674. https://doi.org/10.1016/j.conbuildmat.2017.09.010.
11. RafatSiddique, & GurpreetSingh (2011). Utilization of waste foundry sand (WFS) in concrete manufacturing. Resources, Conservation and Recycling, 55, 885-892. https://doi.org/10.1016/j.resconrec.2011.05.001.
12. Storozhuk, M.A., Pavlenko, T.M., & Abbasova, A.R. (2018). Undeservedly forgotten method of compacting of concrete mixes. Concrete Technology, (1-2), 27-31.
13. Gospodinov Petrov, P., Pavlova, P., Pelovski, Y., & Dombalov, I. (2011). Utilisation of ashes and slags from thermal power plants. Journal of Environmental Protection and Ecology, 12(3), 1032-1040.
14. Storozhuk, M.A., Pavlenko, T.M., & Abbasova, A.R. (2020). Regularities of forming the structural strength of vacuum concrete when compacting concrete mixes. Bulletin of Odesa State Academy of Civil Engineering and Architecture, (81), 139-148.
15. Storozhuk, N.A., Pavlenko, T.M., & Abbasova, A.R. (2018). Effective method of using ash of thermal power plants in concrete technology. Scientific notes of Tavriya National University named after VI Vernadsky. Series: Technical Sciences, 29(68(5)), 98-104.
16. Pshinko, O., Hromova, ., & Rudenko, D. (2019). Study of Rheological Properties of Modified Concrete Mixtures at Vibration. Materials Science Forum: Actual Problems of Engineering Mechanics, 968, 96-106. https://doi.org/10.4028/www.scientific.net/msf.968.96.
17. Netesa, A.M., Netesa, N.I., Radkevich, A.V., & Yakovlev, S.O. (2019). Rational Compounds of Low-Strength Concrete with Improved Coefficient of Efficiency of Cement Use. Materials Science Forum: Actual Problems of Engineering Mechanics, 968, 26-34. https://doi.org/10.4028/www.scientific.net/MSF.968.26.
Newer news items:
- Scientific and educational consortium as institutional projection of the innovative professional training - 30/04/2022 13:42
- Multi-criteria evaluation of professional qualities of railway dispatching personnel using computer simulations - 30/04/2022 13:42
- Management of structural changes in the system of economic formation of sustainable development - 30/04/2022 13:42
- Information and communication technologies as a tool and incentive for strategic decision making - 30/04/2022 13:42
- Mathematical 3D-modeling in the formation process of the overhauled surfaces in the repair industry - 30/04/2022 13:42
- Simulation of cargo delivery by road carrier: case study of the transportation company - 30/04/2022 13:42
- Non-relational approach to developing knowledge bases of expert system prototype - 30/04/2022 13:42
- State policy of Ukraine in the sphere of environmental protection in the context of European integration - 30/04/2022 13:42
- The impact of financial development on accelerating the environmental degradation in Bangladesh - 30/04/2022 13:42
- Research into the properties of poured asphalt from electric furnace slag aggregate - 30/04/2022 13:42
Older news items:
- Research on chemical composition of secondary copper anodes obtained from aqueous residues of refining process - 30/04/2022 13:41
- Geological and economic risk assessment for territories of hazardous geological and technogenic processes (exemplified by Solotvyno township) - 30/04/2022 13:41
- Information and analytical support for making well-informed administrative decisions in civil protection system - 30/04/2022 13:41
- Accounting the factor of randomity of social processes in prediction of demand for electric energy - 30/04/2022 13:41
- Electromechanical system of turbomechanism when using an alternative source of electric energy - 30/04/2022 13:41
- A new approach to improving the sensitivity of earthing relay and reducing the over-voltage in 6 kV grid of open-pit mines - 30/04/2022 13:41
- Thermodynamics of the developing contact heating of a process liquid - 30/04/2022 13:41
- Establishment of a suitable reference system for the geodetic horizontal control network in hydroelectric construction in Viet Nam - 30/04/2022 13:41
- Determination of the stability of a three-layer shell of a traveling wheel with light filler - 30/04/2022 13:41
- Spatial control over ultrasonic cleaning of mining equipment using a phased array technology - 30/04/2022 13:41