IHOOPMALINHI TEXHONOTII, CACTEMHUA AHANI3 TA KEPYBAHHA

Xiaohong Kong,
Ruihua Li,
Yanqun Zhang

Henan Institute of Science & Technology, Xinxiang, China

SCHEDULING TASKS TO MULTI-PROCESSOR PLATFORM
USING CONSTRAINT PROGRAMMING AND TABU SEARCH

Csaoxyn Kyn,
Kyiixya JIi,
SIubironb Yskan

XeHaHbCbKUM IHCTUTYT HayKu Ta TexHosoriii, CiHbCSH,
Kurait

INTAHYBAHHA 3AJTAY, IT1O CTOATD
ITEPEJX BATATOITPOIIECOPHOIO ITVTIAT®OPMOIO,
3 BUKOPUCTAHHAM ITPOI'PAMYBAHHA B OBMEXKEHHAX
I METO/LY ITOIIIYKY I3 3BABOPOHAMM

Purpose. Multiple processors can be integrated together into a multi-core platform and deal with large-scale
science problems because of its excess computation and extensive parallelization. This paper mainly aims at tasks
scheduling problem on this platform with shared memory and communication channel.

Methodology. Generally, intensive-computation job is portioned into coarse-grain sub-tasks so that tasks are
executed in parallel (simultaneously) to improve the computation performance. The proposed algorithm employs
constraint programming to find a feasible solution and uses local search to impove the solution and speed up the

process.

Findings. Sharing a variety of available resources, the multi-processors scheduling is a complex combinatory
optimization problem and resource-constrainted problem. We investigate how to obtain a rational solution or sub-
optimal solution in a short period. At the same time, tasks with different features are also investigated to find how
the performances of applications are influenced in specific target platform.

Originality. When tasks are assigned to different processors, various resource constraints, including data stor-
age, executing cost, tasks priority and communication cost among processors, must be considered. A hybrid algo-
rithm based on Tabu search is studied to optimize the completion time of applicaitons satisfying these contraints.

Practical value. The algorithm is implemented in IBM ILOG CPLEX Optimization Studio environment and
gives better results compared with other algorithms. The proposed algorithm is an effective strategy and the tech-
nique can improve search efficiency and solution performance for multiprocessor scheduling problem.

Keywords: multi-processors, task scheduling, constraint programming, tabu search

Introduction. Many applications require high-per-
formance hardware, such as multimedia embedded
systems, large-scale computing and medical imaging,
etc. The speed of a single processor system cannot sat-
isfy real-time requirements [1], so mixed hardware/
software design and multi-processor on-chip (multi-
core system) are a promising solution to this problem
[2, 3]. In a multi-processor system, multiply proces-
sors, memory, input and output interfaces and com-
munication bus are integrated together. Each processor
has independent computing power and local storage for
both instructions and data required by applications.
Multi processors can run tasks simultaneously and
achieve high throughput by parallelizing task execution
and sharing resources. Generally, the IBM Cell Broad-
band Engine (Cell BE) is a typical example due to its
super computation power and parallelization [3, 4].

In order to use the potential computation capacity,
an application can be decomposed into different sub-
tasks, and subtasks have precedence constraints and
data dependence. Different subtasks can be executed

© Xiaohong Kong, Ruihua Li, Yanqun Zhang, 2016

92

in multi processors concurrently and the system com-
pletes jobs in less time. Due to communication delay
between processors, double processors cannot halve
the processing time. The performance relies on how
correctly the application is allocated to processors and
scheduled and the reasonable distribution of workload
is important to speed up the processing. In determin-
ing when and how to distribute the workload and data,
the allocating and scheduling algorithms are the key to
be taken into account. The objective of the algorithms
is to minimize the parallel completion time or sched-
ule length by assigning the subtasks to the processors
and scheduling them so as to satisfy the precedence
constraints. However, the multi-processor platform is
a heterogeneous architecture and it is still a challenge
that an optimal solution can be obtained in polyno-
mial time for allocating and scheduling.

Generally, the multiprocessor scheduling problem
is NP-hard. A myriad of strategies have been investi-
gated [3, 4] in Cell Broadband Engine. Considering
resource limit, this problem is within typical resource-
constrained optimization problems and constraint
programming is an efficient strategy to solve such

ISSN 2071-2227, HaykoBun BicHuk HI'Y, 2016, N2 4



IHOOPMALIWHI TEXHONOTII, CUCTEMHUN AHANI3 TA KEPYBAHHSA

problems [5, 6]. Meanwhile, a lot of optimization soft-
ware is developed to solve these tough problems. ILOG
optimization components provide modelling frame-
work and solving strategy for the optimization prob-
lem. Its application kit can be used for all common
computer platforms and optimization algorithms can
be called at a variety of programming environment
through the API interface [7]. A hybrid algorithm for
multiprocessor scheduling is developed based on local
search and the results demonstrate efficiency to sched-
uling.

Problem model statements. When applications
run on the multi-core platform, the workload and data
are partitioned among the available processor ele-
ments and memory.

The platform model. The target system is com-
monly assumed to consist of processors connected by
an interconnection bus in which a message is transmit-
ted through high bandwidth links. Here the platform is
a heterogeneous system with dissimilar processors.
When the task is executed the executing time is not
equal in different processors. Every processor can run
itself individual programs and has local memory for
data. Additionally, there is a larger on-chip memory all
the processors share and the memory is huge enough
for all the data. The platform architecture enables fun-
damental improvement in processing performance
and much scalable computation power.

The task graph. An application is typically mod-
elled by a directed acyclic task graph (DAG) [8]. The
task graph represents the decomposition of the appli-
cation into different subtasks which are linked by com-
municated data. In a task graph, there are two kinds of
symbol: nodes and arcs. The nodes n; € N represent
subtasks and the arc a; ;= (n;, n;) € A defines the com-
munication between the connected tasks. Each task
has two related parameters, the computation data
comp(n;) and the execution time execu(n;). The com-
putation data takes a certain amount of storage space.
Iftwo nodes are connected by an arc, they have a com-
munication from the parent task which produces the
communication to the child task which consumes it.
The sets of immediate parents and children of #; are
described by parent(n;) and child(n;) respectively.
Each arc is associated with three relevant parameters,
the communication data comm(n;, n;) transferred
from n; to n;, the reading time rd(a;) from parent
nodes and the writing time wr(a;) to child nodes, and
the communication data also requires a certain mem-
ory space. The consumers of the communication ob-
tain data from the memory during the reading time
and the producer of the communication transfer the
data during the writing time. For each node, the num-
ber of the parent nodes is called its in-degree, and the
number of child nodes its out-degree. Each communi-
cation is directed and the direction imposes prece-
dence constraints between the tasks n; and #n;, and dic-
tates that task #; cannot be started until #; has been
completed. Subsequently, the terms “node” and
“task” are alternative and the same for “time” and
“cost”.

ISSN 2071-2227, HaykoBun BicHuk HI'Y, 2016, N2 4

Every task starts at reading communicating data
and must be executed consecutively. When computa-
tion data and communication data are assigned to dif-
ferent memory space, it affects the task execution time
and communication time. If the computation data is
assigned to remote memory or not the same processor
to perform the task, it delays the execution time by la-
tency multiplier. The situation is the same to commu-
nication data.

The application model. When tasks are to be
scheduled on multiprocessors platform, there are some
conventions. A processor can deal with one task and
the task can be executed by one processor at a time.
Each task occupies the processor and requires com-
munication channel and storage space at the same
time. All of the computation data and the communica-
tion data can be assigned to local storage of a proces-
sor, or the shared memory. Considering the multipro-
cessor architecture, each processor on the platform
can access shared memory and local memory. When
the data is read from or written to the shared memory,
the cost is greater than the time accessing local mem-
ory. This difference is reflected in the task graph by
setting the correct values for the communication over-
head on the relevant arcs. In order to measure the de-
lay due to different storage memory, the delay factor
Leomp» Leomm 18 defined so that the execution time of task
n;onp; (p;e P)(not the processor computation data is
assigned) is given by execu(n;) * 1,,,,,,. When two adja-
cent tasks #n; and n; are allocated to distinct processors
which communication a; data is assigned to, the cost
associated with the communication a;; is rd(a;) * 1.,
and wr(ay) * l,ypmm, Where the parameter /., is the
average delay multiplier incurred on the links of pro-
Cessofrs.

The execution of a task is divided into three phases
(durations), the communication reading time, execut-
ing time, and communication writing time and these
three stages cannot be interrupted. The ultimate opti-
mization goal is to minimize the completion time of
the entire application meeting constraints of hardware
resources and precedence of tasks. If considering the
cost of resources, balancing cost is another goal. The
completion time, makespan, is only discussed here.

Implement constraint in ilog solver. ILOG
Solver provides superior performance in constraint
programming and can be embedded in C++ environ-
ment [7]. It is selected as the modelling platform to
implement constraints and scheduling algorithm. The
problem data is produced according to some probabi-
listic distribution, and then decision variables are se-
lected to establish a constraint model of application.
Finally, the problem is solved by a hybrid algorithm
based on constraint programming and local search
technology.

Problem data. The task graph parameters are
stored in the data file and are represented as follows.

task _num and arc_num are the number of tasks
and arcs.

pe_num is the number of processors.

execu(n;) is the execution time of each task.

93




IHOOPMALINHI TEXHONOTII, CACTEMHUA AHANI3 TA KEPYBAHHA

comp(n;) is data size of each task.

arc(i, j) is the precedence of tasks, and task j is a
child node of task 7.

comm(n;, n;) is the size of communication data.

rd(ay) is reading time for communication.

wr(ay) is writing time for communication.

pe_capa(pe _num) is the local storage capacity of
processors.

leomp and 1, are the delay coefficients due to dif-
ferent storage space of data.

Decision variables and optimizing objective. In
order to make use of the ILOG Solver algorithm to
search the solution, a few decision variables are de-
fined for the model. The scheduling algorithms mainly
solve the resources distribution and determine the
start time and end time of each phase. So the decision
variables are selected as follows.

task_pe [task _num]: The processor tasks are exe-
cuted.

arc_mem |[arc_num]: The processor or share
DRAM arc data are assigned.

task_mem [task _num]:. The processor or share
DRAM task data are allocated.

makespan: The completion time of the application
and the optimization objective.

According to the application, each decision vari-
able is given a domain of possible values.

Modelling the application. In 1LOG Solver,
there are rich constraints expresses. If the constraints
are not depicted correctly, the best possible solution
cannot be guaranteed. Here, the problem model must
satisfy the resource constraints and precedence con-
straints. In resource allocating aspect, it includes data
allocation to the memory and task distribution to a
processor. Each communication or computation data
must occupy a processor or share memory space. For
reading communication data, if the communication
data is assigned to the same processor as the consumer
task, time is the shortest. For writing data, if the com-
munication data and producer task are on the same
processor, time is the shortest. Otherwise the reading
time and the writing time are extended by multiplier
Lomm- At the same time, the sum of data size of local
storage is less than or equal to the memory capacity of
the processor. It is assumed that share memory is suf-
ficient. To any processor j, the capacity constraint is
described as equation.

Zcomp(nl) *(task _mem[n,] = j)+
* zCOmm(nl,nj)*(arcimem larc(i, j)] = j) <= PE _capal j].

In scheduling aspect, all the tasks must satisfy the
precedence constraints. After a task starts, its three
phases cannot be interrupted. Before a task is execut-
ed, all the parent nodes data must be continuously
read. When all reading communication queues have
been obtained, a node can start to be executed imme-
diately. After the task is completed, all writing com-
munication of the children node must be written to the
corresponding memory. When the task is assigned to a
processor, the processor is taken during execution

94

time. If a task has several parent tasks, these communi-
cation data must be read one after another. The writing
communications have the same requirements. When a
task is completed, the processor is released and next
task starts. The three phases are defined by Class Ilo-
Activity and the time schedule is constrained by mem-
ber functions startsAtStart, endsAtEnd, startsAtEnd
and startsAfterEnd, etc. A task starts at the first read-
ing communication and ends at the last writing com-
munication.

Solving the problem based on Constraints pro-
gramming and Local search. The allocating and
scheduling are interdependent and cannot be isolated.
The irrational allocation will lead to poor scheduling
performance. Different strategies have been used to
find a feasible solution satisfying the constraints in the
past years. In this paper, constraints programming is
implemented to solve the complex combinatorial
problems in IBM® ILOG® Solver. When the prob-
lem model is established and the decision variables are
defined, the search tree is created in search space of
potential solution. Solver traverses the tree and finds a
value for each decision variable while simultaneously
satisfying the constraints and minimizing the objec-
tive. However, the order in which a variable is selected
and the order in which domain value is tried can affect
the quality of solution. So a hybrid algorithm is pro-
posed to solve the problem and to guide the constraints
programming using tabu search.

The search starts from the root node of the tree,
meanwhile constraint propagation and backtrack are
used to guide the search. The Ready task without par-
ent nodes or whose parent nodes have been completed
is collected in tasks queue and wait to be allocated.
Here, the variable order is tackled through establish-
ing the priority of tasks according to children number
and the task with more children nodes has much
chance to be picked out and is allocated to processor.
The task with more children nodes prevent more tasks
being executed, so these nodes will be allocated and
scheduled firstly. At the same time, the ready task
with least domain is also given priority when the solu-
tion space is explored. Then, the target processor is
selected with lighter workload and less executing time.
The computation data and communication data are
also distributed to different storage spaces as possible
as reducing the delay cost according to the pair of
task-processor. Finally, the time of three phases is de-
termined.

Solver finds a feasible solution by trying all possible
combinations of values in the search space. If the
search space is large, this approach is clearly time-
consuming and ineffective. For this scheduling prob-
lem, it is difficult and unrealistic to find optimal solu-
tion in a short period. Considering the efficiency and
complexity, heuristic information is introduced to
speed the search process. Tabu search is local search
and uses neighbour strategy to produce new solutions
and is extensively applied in a scheduling field [9].
Tasks assigned to different processors are exchanged
and the start time and the end time also are recom-

ISSN 2071-2227, HaykoBun BicHuk HI'Y, 2016, N2 4



IHOOPMALIWHI TEXHONOTII, CUCTEMHUN AHANI3 TA KEPYBAHHSA

puted. This new solution must be feasible for con-
straints and the objective cost is evaluated. If the cost
is better than that of the current solution and this new
solution is accepted as a current one, otherwise current
solution keeps unchanged. This algorithm continually
improves the current solution until some stopping cri-
terion is met. The criterion can be based on time,
number of fail etc.

Local search is a greedy technique and is easy to be
trapped in local minimum. In order to obtain a global
optimal solution, the search selector IloMinimi-
zeVar(env, cost, step) is used to guide the rest of the
search process. In this problem, the variable ‘cost’
means makespan and ‘step’ represents decrement of
current cost in the next loop. Here, the selector selects
the leaf of the search tree which will minimize comple-
tion time of the application and stores the current best
solution. The algorithm retrieves the original leaf and
backtracks up the search tree in the absence of a better
solution. When a better solution is found, the algo-
rithm adds a constraint that objective cost must be less
than or equal to the current cost minus ‘step’. In selec-
tor IloMinimizeVar(env, cost, step), the new con-
straint acts as an upper bound of completion time and
the algorithm employs reverse binding of the current
best solution. The upper bound takes the place of the
domain value of the last node and algorithm imple-
ments constraints propagation of tasks. If the con-
straints are met, it reactivates the value of task nodes
by a backtracking method and stores the new best so-
lution. The process is repeated until there is no better
solution.

Simulating results. Benchmark graphs with
different features. The proposed scheduling algo-
rithm is implemented on benchmark sets and each
benchmark instance represents a task graph. A task
graph must be able to reflect the general characteristics
of an application. Considering the diversity of applica-
tions, several common features are discussed. In these
instances, the number of tasks and communication
arcs are important factors and CCR is used to evaluate
the ratio of communication time to computation time
[8]. Meanwhile, data-intensity or computation-inten-
sity is also considered, which means data storage ca-
pacity or execution time has a greater proportion in the
scheduling process of applications. Sometimes task

executing time is descried as coarse or fine based on
task granularity. These several parameters interrelate
with each other from different aspects, for example,
both of granularity and CCR involve the ratio of com-
munication and computation. The computation and
communication latency are also considered and three
situations are discussed here. Three cases are: no la-
tency, only computation latency, both communication
latency and computation latency respectively. The
computing platform consists of several processors with
different storage memory and storage capacity is con-
sidered.

The searching process of the proposed algo-
rithm. This proposed algorithm uses a hybrid algo-
rithm, which involves the constraint programming
and tabu search (denoted as CP + TB). The algorithm
is simulated in the platform with six processors and
Fig. 1 displays the makespan change of a random task
graph with 20 tasks during the search progress. The
search is stopped by time limit and the process demon-
strates that the algorithm could gradually find a better
solution. More results need further work by comparing
with other algorithms and testing on the different types
of data.

Results with different CCR. In this example,
300 tasks with different CCR are discussed and no la-
tency is considered. The executing cost and communi-
cating cost are produced randomly and applications
are data-intensity. A pure CP algorithm is implement-
ed in the same platform to test the proposed algorithm
and this algorithm uses the constraint propagation
strategy and backtracking method [3]. The algorithm
restarts the search process until the time meets the re-
quirement. The pure CP tries all possible values for
constraint variable and finally finds the optimal solu-
tion. But it is less efficient to deal with large scale ap-
plications. The results are depicted in Fig. 2 and the
hybrid algorithm always demonstrates better perfor-
mance than the pure CP. Tabu search can speed the
convergence, but it is often trapped into the local opti-
mal solution. The proposed algorithm combines the
global search capacity of the pure CP and the speed
superiority of TB, so the algorithm can find better re-
sults in a limited time period. Because the cost is ran-
dom, scheduling length does not always increase with
the increase in the density.

13000

12500 \\\
12000

Makespan

11500 \’—‘\‘\’\0—0—0\

~

11000

10500

30 35 40 45 50 55

Search times

Fig. 1. The makespan change of a random task graph

ISSN 2071-2227, HaykoBun BicHuk HI'Y, 2016, N2 4

95




IHOOPMALINHI TEXHONOTII, CACTEMHUA AHANI3 TA KEPYBAHHA

9000

8000

7000

1
//

6000 %’i}\
5000

W
]
~N—

é 4000 \/

3000 —e—CP+TB

2000 —&— pure CP

1000

0 } } } } } } } } }

0,37 0,38

Fig. 2. The makespan of tasks with different CCR

Results with different time latency. When the
data is distributed in different memory, the time delay
has great influence on the makespan. The scheduling
results of two algorithms are given in Fig. 3, 4. Only
the communication delay is considered in Fig. 3 and
both computation and communication delay are taken
into account in Fig. 4. It is concluded that the pro-

posed algorithm explores more extensive solution
space and has lager probability to find a better solution
in the same time. The advantage is obvious with the
increase of the task scale.

Here, cost of tasks and communications are ac-
cording to position distribution of [1000, 5000]. With
the increase of tasks, applications have longer com-

25000

20000

15000

Makespan

10000

5000

300 350

Task size

400 450 500 550

Fig. 3. The makespan of tasks with communication latency

30000

25000

20000

15000

Makespan

—— (CP+TB

10000

5000

—&— pure CP

150 200 250 300

350 400 450 500 550 600

Task size

Fig. 4. The makespan of tasks with communication latency and computation latency

96

ISSN 2071-2227, HaykoBun BicHuk HI'Y, 2016, N2 4



IHOOPMALIWHI TEXHONOTII, CUCTEMHUN AHANI3 TA KEPYBAHHSA

0, 35
0,3 /
0,25 ¢— pure CP ‘/ A
2 0,2 —a— 1B /'/,.
% 015 —&— CP+TB /’/A‘/
0,1
0,05 =
0
10 20 30 40 50 60 70 80 90 100
Task size

Fig. 5. The time of finding optimum solution

pletion time and the hybrid algorithm reflects advan-
tage. Satisfying the constraints, the pure CP always
tries every optional variable value and relies heavily on
mathematical models. During the search process,
Tabu search uses the information of the original solu-
tion and always improves the current solution. When
task sizes are bigger, the proposed algorithm can find
a rational solution in a shorter period. So this algo-
rithm is suitable especially for the large-scale compli-
cated problems that traditional methods cannot solve
well.

Comparison of algorithm time. In the following
task instances, the optimal solution is evaluated based
on the length of the critical path through traversing the
graph structure. As shown in Fig. 5, three algorithms
are compared regarding the time to find an optimal so-
lution and the algorithms are pure CP, TB and the
proposed algorithm. When the task sizes are smaller,
the times are almost same. With the increment of
tasks, the hybrid algorithm manifests the superiority
and is much faster to search the optimal solution.

Conclusions. Sharing a variety of available re-
sources, the multiprocessors system is a promising ap-
proach to improve the computational capacity in the
parallel system. However, due to the complexity of the
scheduling problem, it is hard that different architec-
tural attributes, such as message routing strategy, com-
putation, and processor heterogeneity, are orchestrat-
ed to perform an application. Otherwise tasks can fail
to exploit the true potential of multiprocessor systems
and the gains from parallelism can be offset. This re-
search aims to propose a hybrid algorithm to solve the
resource-constrained scheduling based on constraints
programming and local search. At the same time, tasks
with different features are also investigated to find how
the performances of applications are influenced in a
specific target platform. The proposed algorithm for
the multiprocessor scheduling problem is an effective
strategy and the technique can improve search effi-
ciency and solution performance for practical prob-
lems.

Acknowledgements. This work was supported by
Research Fund for Scientific and Technological proj-
ect of Henan Province No.142102210112.

ISSN 2071-2227, HaykoBun BicHuk HI'Y, 2016, N2 4

References/Cnmcok Jiteparypu
1. Davis, R.1. and Burns, A., 2011. A survey of hard
real-time scheduling for multiprocessor systems. ACM
Computing Surveys, Vol. 43, No. 4, pp. 1-44.
2. IBM Corporation, 2010. Cell Broadband Engine
Programming Handbook, Aftp://www-01.ibm.com/
chips/techlib/techlib.nsf/techdocs 9F820A5FFA3E-
CESCS8725716A0062585F.
3. Benini, L., Lombardi, M., Milano, M. and Rug-
giero, M., 2008. Optimal resource allocation and
scheduling for the CELL BE platform. Annals of Op-
erations Research, Vol. 184, No. 1, pp. 51-77.
4. Leila, I. and Driss, G., 2011. Performance Evalua-
tion of Convolution on the Cell Broadband Engine
Processor. IEEFE Transactions on Parallel and Dis-
tributed Systems, Vol. 22, No. 2, pp. 337—351.
5. Edis, E.B. and Oguz, C., 2012. Parallel machine
scheduling with flexible resources. Computers & In-
dustrial Engineering, Vol. 63, No. 2, pp. 433—447.
6. Heinz, S., Ku, W.Y. and Beck, J. C., 2013. Recent
Improvements Using Constraint Integer Program-
ming for Resource Allocation and Scheduling. In: /n-
tegration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Pro-
blems. 10th International Conference, CPAIOR
2013, Yorktown Heights, NY, USA, May 18—22, 2013.
7. 1BM Corporation, 2011. /IBM ILOG CPLEX Op-
timization Studio CPLEX User’s Manual vi2.4.
8. Canon, L.C. and Jeannot, E., 2009. Precise Eval-
uation of the Efficiency and the Robustness of Sto-
chastic DAG Schedules. Research Report. Research
Report RR-6895, INRIA.
9. Thevenin, S., Zufferey, N. and Widmer, M., 2013.
Tabu search for a single machine scheduling problem
with discretely controllable release dates. In: Slove-
nian Society Informatika, /2th International Sym-
posium on Operational Research SOR’13 in Slove-
nia. Dolenjske Toplice, September 25—27, 2013. Slo-
venian Society Informatika — Section for Operational
Research, Ljubljana, Slovenia.

Merta. J/lekinbKa polecopiB MOXYTb OyTH 00’ €1~

HaHi pa3oM y OaratosinepHiii ruiatdopMi i MaTu
copaBy 3 6araToMaclITAOHUMU HAyKOBUMU TIpoobJie-

97




IHOOPMALINHI TEXHONOTII, CACTEMHUA AHANI3 TA KEPYBAHHA

MaMH i3-3a HaJUIUIIKY OOUYKMCIIEHb i OOLIUPHOTO PO3-
napaiemoBaHHs. LIst poboTa, B OCHOBHOMY, HallpaB-
JileHa Ha BUpilleHHs NpoOjemMu OaraTo3aaaqyHoro
TJIaHYBaHHS Ha Lii T1aTdopMmi 3i CHiIBHOIO ITaM’ IT-
TIO 11 KaHAJIOM 3B’SI3KY.

MeTtoauka. Sk npaBuino, iHTEeHCUBHE OOUYMCIICH-
Hsl 3aBIAHHS MOPILIOHYETHCS Y KPYITHI TTia3aaaydi Tak,
1110 3aBIaHHSI BUKOHYIOThCS MapajeibHO (ogHOoYacC-
HO) [s1 MiABUILEHHSI MPOAYKTUBHOCTI OOUMCIICHbD.
3anponoHOBaHUI aIrOPUTM BUKOPUCTOBYE Iporpa-
MYBaHHS$ B 0OMeKeHHSIX IJIs1 3HaXOMKEHHSI BiAOBiI-
HOTO DIllIEeHHS] Ta BUKOPUCTOBYE JIOKAJbHUIN MOIIYK
JUUTST TIOKpAaIlleHHsI BUSIBJIEHHSI pillleHHS ¥ MpUCKO-
pEHHS TIPOIIECy.

PesynbraTi. CIriibHe BUKOPUCTAHHS Pi3HUX Ha-
SIBHUX PECYPCiB, 0araTornpoLecopHe MIaHePYBaHHS €
CKJIaJJHUM KOMOIHATOPHUM 3aBHaHHSIM OIITHMMi3allii
Ta Tpo06IEeMOI0 0OMeEKEeHUX pecypciB. JlOCIiIKeHO,
K OTpUMATH pallioHaJibHe pillleHHs abo CyOorTu-
MaJibHe pillIeHHST B KOPOTKMI TIepiof yacy. Y Toi xe
yac, JOCJiIKeHi 3aBIaHHS 3 Pi3HUMU XapaKTePUCTU -
KaMM, abu 3HalTU, K XapaKTepUCTUKMU OONATKiB
BIUIMBAIOTh HA TIMTOMY METY I1aT(opMu.

HaykoBa HoBu3Ha. Konu 3aBnaHHsS MpU3HAYCHi
pPi3HUM TIpoliecopaM, MalpTh OYyTHU PO3IISIHYTI Pi3Hi
0OMEXEeHHS pecypciB, y TOMY YUCJIi 30epiraHHs TaHUX,
o0uMCIIIOBajibHA BapTICTh, MPIOPUTETHICTh 3aBOaHb i
BapTiCTh 3B’SI3KiB MiXX mporecopamu. PosmisimaeTbes
riOpuAHUNI aJIrOpUTM, 3aCHOBAaHUI Ha MOIIYKY i3 3a-
OopoHaMH, 3 METOI OINTHUMIi3allil Yacy 3aBeplleHHS
JIONATKiB, 3aI0BOJIbHSIIOUM BKa3aHUM OOMEXKESHHSIM.

IIpakTUyHa 3HAYMMICTB. AJITOPUTM peajlizoBa-
Huii y cepenosuili IBM ILOG CPLEX Optimization
Studio environment i ja€e Kpallli pe3yJabTaTu B IMOPiB-
HSIHHI 3 iHIIMMU ajJropuTMaMu. [IponoHoBaHuit ai-
TOPUTM € e(DEKTUBHOIO CTpATeri€lo, i s MeTONuKa
JIO3BOJISIE TABUILIUTU €(PEKTUBHICTb MOUIYKY i Mpo-
IYKTUBHICTb [T BUPilIEHHS MpooieMu 6aratonpo-
LECOPHOTO TTAHYBaHHSI.

KimouoBi cioBa: 6acamonpouecopricms, naa-
HYB8AHHSI 3060AHb, NPOSPAMYBAHHS 8 0OMEINCCHHSIX,
nowyk i3 3ab0poHamu

Ilenb. MHOXeECTBEHHBIE MPOLECCOPHI MOTYT
ObITh OOBbEIMHEHbI BMECTE B MHOTOSIIEPHOI TILIaT-
(dopMe 1 MMeTh AeJI0 ¢ MHOTOMAacCIITaOHBIMU Hay4-
HBEIMH TIpoOJIeMaM M3-3a W30BITKA BBIYMCIICHUN 1

98

OOIIIMPHOTO pacnapasiesuBaHus. Jta padboTa, B Oc-
HOBHOM, HaIlpaBJicHa Ha pelleHUe MPOoOIeMbl MHO-
ro3amgavyHoro IUTAaHWPOBAHUS Ha 3TOM ruiaTdopMe ¢
00IIIeit TaMsIThIO M KAHAJIOM CBSI3H.

Metoauka. Kak nmpaBujio, ”YHTEeHCUBHOE BBIYMC-
JICHWE 3aIaHMsI TIOPIUOHUPYETCS B KPYITHBIC TTO3a-
laul TaK, YTO 3aJa4M BBITIOJHSIIOTCS IMapasjieabHO
(OMHOBPEMEHHO) [JIsI TIOBBIIIEHUS MPOU3BOIUTEb-
HOCTHU BbluuciaeHuii. [TpeanoxkeHHbIN aaropuT™ Uc-
MOJIb3yeT NMPOrpaMMUPOBaHNE B OTpaHUYECHUSIX IS
HaXOXXICHMST TIOAXOMSIIETO PeIIeHUsT M MCITOJb3yeT
JIOKQJTbHBI TIOWUCK JUIST YIIYYIIeHUST OOHapyKeHUS
pelleHusT ¥ YCKOpEeHMUs TIpoliecca.

PesynbraThl. COBMECTHOE MCIIOIB30BaHUE pas-
JIMYHBIX MMEIOIINXCSI PEeCYypCOB, MHOTOIIPOILIECCOP-
HOe TUTAHMPOBAHUE SIBISETCS CIOXHOW KOMOMHA-
TOpPHOI 3ajauyeil oNTUMHU3ALUU U TIPOOJIEMOI orpa-
HUYEHHBIX pecypcoB. McciaenoBaHo, Kak ITOJYyYUTh
pallMOHAIbHOE pellleHre WIM CYyOONTUMAaIbHOE pe-
IIEHUE B KOPOTKUI Mepuo BpeMeHu. B To ke Bpems,
KCCIeNOBaHbI 3aa4i C Pa3IMYHbIMU XapaKTEPUCTH-
KaMu, YTOObI HAlTU, KaK XapaKTepPUCTUKU ITPUTOXKE-
HUI BIUSTIOT Ha YAEIbHYIO 1IeNTb TIaT(hOPMBI.

Hayuynas noBm3Ha. Korma 3agaum HazHaueHBI
Pa3HBIM IIPOIECCOpaM, TOKHBI OBITh PACCMOTPEHBI
pa3IMYHBIC OTPAaHUYCHUSI PECYpCOB, B TOM YHCIIC
XpaHCHWE MITaHHBIX, BBIYMCIUTEIbHAS CTOMMOCTD,
MIPUOPUTETHOCTD 3a1a4 U CTOMMOCTD CBSI3€U MEXKIY
npoueccopamu. PaccmaTtpuBaeTcsi rMOpUAHBIN ajiro-
PUTM, OCHOBaHHBII Ha MOUCKE C 3aIllpeTaMu, C Iie-
JIBIO ONTUMU3ALMY BPEMEHU 3aBEPILICHUS TTPUIIOKE-
HUI1, yIOBJIETBOPSISI YKa3aHHBIM OTPaHUYCHUSIM.

ITpakTHYecKas 3HAYMMOCTb. AJITOPUTM peasiu-
3oBaH B cpene IBM ILOG CPLEX Optimization Stu-
dio environment 1 JaeT Jy4diuue pe3yabTaThl 10 CpaB-
HEHUIO C IPYTMMH ajJroputMamu. I[lpemimaraeMbrii
aJITOPUTM SIBJISIETCST 3((DEKTUBHOI CTpaTerueit, u ata
METOIMKA TTO3BOJISICT MOBBICUTH 3 (MEKTUBHOCTH ITO-
KCKa W MIPOU3BOIUTEIILHOCTD IJISI PELICHMS TIpo0IIe-
MBI MHOTOITPOIIECCOPHOTO TUIAaHUPOBAHUSI.

KimoueBsble ClI0Ba: MHO2ONPOUECCOPHOCMD, NAA-
HUupoeauue 3adau, NPopammuposarue 8 oepaHuye-
HUsIX, NOUCK C 3anpemamil

Pexomenoosano 0o nybaikayii dokm. mexH.

Hayk B. B. Thamywenkom. Jlama HaOxo0xceHHs
pykonucy 28.07.15.

ISSN 2071-2227, HaykoBun BicHuk HI'Y, 2016, N2 4



