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Purpose. Accurate identification of modal parameters is an important prerequisite for structural health mon-
itoring and damage identification.

Methodology. Wavelet analysis is one of the most advantageous methods because it has the ability to repre-
sent the local features of the signal in time and frequency domain. The modal parameter identification effectively
achieved using principal component analysis (PCA), can be regarded as a type of system recognition.

Findings. Because PCA is sensitive to Gaussian measurement noise, the authors propose a novel method that
combines wavelet denoising with PCA. The technique was applied to modal parameter identification.

Originality. The signals are decomposed into wavelets with several layers, and the resulting wavelet coeffi-
cients are preprocessed according to a threshold. The signals are then reconstructed to reduce the effect of noise.
The research on this aspect has not been found at present.

Practical value. Simulation results for beams show that the proposed method is able to recognize the main
modal shapes and eigenfrequencies. Additionally, it can improve the precision of the identified modal parameters
and extract some previously lost modes.

Keywords: modal parameter identification, principal component analysis (PCA), wavelet denoising, sys-
tem recognition, wavelet analysis, Gaussian measurement noise

Introduction. Modal parameters are definitive
characteristics of dynamic analysis of a mechanical
structure, and modal parameter identification has been
developed as a vital approach for solving vibration
problems in engineering structures. The modal param-
eters of a system include eigenfrequencies, modal
damping ratios, and modal shapes, amongst others.
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Eigenfrequencies and modal shapes determine, re-
spectively, the resonant frequency of the dynamic sys-
tem and the mode of vibration of the structure in reso-
nance, and are thus regarded as two of the most valua-
ble modal parameters. Accurate identification of mod-
al parameters is most important in structural damage
recognition and health monitoring. Several methods
can be used to identify modal parameters. Traditional
time-domain identification methods use a linear fit or
calculate an eigenvalue. In the late 1980s, researchers
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began to study operational modal analysis. Modal pa-
rameters of a structure can also be determined using
the eigen parameters of the coefficient matrix of the
autoregressive exogenous excitation model [1]. Ba-
kir, P.G., Eksioglu, E. M. and Alkan, S., (2012) studied
reliability analysis of the complex mode indicator func-
tion and Hilbert transform techniques for operational
modal analysis [2], while Bai, J., Yan, G. and Wang, C.
(2013) proposed a method based on manifold learning.

Principal component analysis (PCA) is a multivari-
ate analysis method that has been extensively applied to
large multidimensional data sets. Principal components
are linear combinations of the original data, which can
be used to visualize similarities in an ensemble of sig-
nals. PCA or PCA-based methods are used to reduce
the number of variables in a multivariate data set, while
retaining as much variation as possible [3]. Ding, M.,
Tian, Z. and Xu, H. (2010) presented an adaptive kernel
PCA method to improve computational speed and ap-
proximation. Wang, J., Barreto, A., Wang, L., Chen, Y.,
Rishe, N., Andrian, J. and Adjouadi, M., (2010) pro-
posed a method based on PCA to determine the rela-
tionships between modal shapes and the principal com-
ponent linear compound matrix, and those between
modal responses and principal components.

Nevertheless, it is inevitable that samples contain
noise, and this interference introduces uncertainty into
the modal parameters. Traditional PCA is sensitive to
Gaussian measurement noise, which means that noise
in the samples may cause relatively large errors in the
results, and even the loss of some important parameters.
To distinguish real modes from computational, ficti-
tious, or noise-generated modes, noise is often removed
by preprocessing, allowing the extraction of useful data.
The wavelet analysis method has excellent properties at
different resolutions [4] and has been extensively applied
to signal processing, pattern recognition, image pro-
cessing, and many other fields. Akhtar et al. presented a
framework, based on ICA and wavelet denoising, to im-
prove the pre-processing of electroencephalographic
(EEG) signals. This paper proposes a novel method that
combines wavelet denoising with the PCA method. This
method is applied to the model identification of dynam-
ical systems, and the effectiveness of the technique using
beams with different system boundaries, load types, and
load positions is investigated.

Modal parameter identification of a dynamic
system using pca. Modal parameter identifica-
tion. In modal parameter identification, the modal
shapes, eigenfrequencies and damping factors of a
structure are identified. The modal shapes are a math-
ematical description of the deflection vibration pat-
terns when the system vibrates at one of the eigenfre-
quencies. An alternative interpretation is that the
modal shapes describe the participation of each inde-
pendent oscillation in the output response.

In traditional modal analysis, the differential equa-
tions of motion for a linear vibration system with z-de-
grees of freedom can be written as

MX @) +CX(t)+kX ()= F(?),
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where M, C, and K € R"*" are the mass, damping,
and stiffness matrices, respectively, F(7) € R”*" is the
exciting force, and X (¢), X(r), and X(¥) € R" are the
acceleration, velocity and displacement vectors, re-
spectively. The free decay oscillations for a propor-
tionally or lightly damped system are expressed as

X(0)=¥0(0)=3y,0,0).

where V¥ is the modal shape matrix comprising modal
shapes y;, and Q(?) is the vector matrix formed by the
modal response Q/(7) containing the modal coordinates.

According to vibration theory, if the eigenfrequen-
cies of the system are not equal, the regularization
modal shapes ; are normalized to be orthogonal to
each other. Based on this theoretical model, inde-
pendent modal parameter identification is a particular
case of PCA decomposition.

Mathematical description of PCA. Suppose that

there are m observed signals X =[x}, x,, ..., X,,,] T in R™,
and
X=PY, (1)
P'P=1,,,, (2)

where Y= [y, V5, ..., y,| | are n irrelevant unknown la-
tent variables in R”, and P € R”*" is a linear transfor-
mation matrix containing the principal components of
X. In addition, the linear transformation matrix (P)
and principal components ( Y) satisfying equations (1)
and (2) are principal component decompositions of X.
Cyy= E[XXT] € R"*™ is the autocorrelation ma-
trix of X. We assume that the rank of Cyy is # (Where
n < m), and that eigenvalues A;, i = 1, 2,..., m, satisfy
AM>hy>>A,>0and A, + 1=A,+2=--=A,,=0.

CXX: VA VT,
VAVT=1,,,

where A is a diagonal matrix formed by n nonzero ei-
genvalues \;#0,i=1,2,..., nin Cyy, V= [v,0y-V;V,]
is a transformation matrix composed of normalized
eigenvectors, and v;€ R” corresponds to eigenvalue A;.

Therefore, when the rank of Cyyis n (n < m), X can
be uniquely divided into

X=V(V'X).

Modal parameter identification using PCA.
In practice, signals observed by the devices always
contain noise. If the observed signals contain meas-
urement noise, the model in equation (1) becomes

X = PY + N,

where N is Gaussian measurement noise. According
to the information given in Modal Parameter Iden-
tification of a Dynamic System Using PCA Sec-
tion, the largest » eigenvalues of C, are selected to
form a diagonal matrix, and the transformational ma-
trix consists of the corresponding eigenvectors. So,
C,; canbe decomposed into
Cyp = VAP,

XX
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Meanwhile, the observed signal X o can also be

0
approximately decomposed into

X =V({'X).

Here, 1 is defined as the variance contribution ac-
cumulation of the first # principal components, which is
computed using the accumulated variance of the ob-
served signal Gﬁ( and principal component cf,. That s,

ﬂ=<5i/<5§=2.7»,- ;xl_. 3)

If we do not know the number of uncorrelated la-
tent variables (i.e., n is unknown), a threshold can be
set in (3) to truncate the process.

From (3), the key idea behind modal parameter
identification using PCA is the variance contribution
accumulation, n. Note that n is easily affected by the
observed signal. When the observed signal contains
measurement noise, the contribution of some modal
parameters to the variance is small, causing them not
to be recognized by PCA. This is an inherent weakness
of modal parameter identification using PCA when
the observed signals contain measurement noise.

Wavelet transform theory. Fundamentals of
the wavelet transform. In wavelet analysis, a variety
of different wavelet basis functions can be constructed
using translation and scaling. That is,

ha.b<t) = %h(%ja

where /4(7) is the mother wavelet, A, ,(7) is called the
wavelet basis function, a € R* is the scaling factor, and
b € R is the shift factor. If a is large, the primary func-
tion is a stretched pre-image wavelet, which is a low-
frequency function, whereas if a is small, it is a con-
tractible wavelet, which is a narrow, high-frequency
function. The wavelet transform is defined as

WT (a,b) = %fh [ﬂ)x(t)dt,
a”, a

where h*(f) is the complex conjugate of A(r), and the
WTJa,b) are known as wavelet transform coefficients.

The time-frequency resolution ratio of the wavelet
transform is variable. The time range of the wavelet
transform is shorter at higher frequencies, whereas the
frequency width is narrower at low frequencies.

The wavelet decomposition of a signal is shown in
Fig. 1. Because noise is typically in a high or low-fre-
quency signal, the wavelet coefficient must be pro-
cessed according to some threshold. We can then re-
construct the signal and reduce the noise.

In Fig. 1, the A processes return low-frequency co-
efficients while the D processes return high-frequency
coefficients. The resolution is

S=A4,+ D,+ ...+ D+ D,.

The low-frequency part of A4, can be further split
into low frequency A4,, . | and high frequency D,, , ;.
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Fig. 1. Wavelet decomposition of the signal

After calculating the discrete wavelet transform of
the sampled signal f(7) = s(?) + n(¢), the wavelet coef-
ficients W1{(a, b) are obtained. The wavelet transform
still consists of two parts: s(k), which corresponds to
the wavelet coefficient W(a,b), and n(k), which cor-
responds to the wavelet coefficients, W, (a,b).

The signal and noise have different characteristics
after the wavelet transformation. Therefore, the noise
can be significantly suppressed using a suitable thresh-
old, while preserving the main signal features. The
noise reduction method in the wavelet domain is called
wavelet shrinkage. The main step in wavelet denoising
is to select an appropriate threshold value and rule. In
hard-thresholding, important coefficients remain un-
changed, whereas, in soft-thresholding, important co-
efficients are reduced by the absolute threshold value.

Multivariate wavelet denoising. Multivariate
wavelet denoising is an improvement on the wavelet
denoising method that considers correlations among
signals from different channels. Multivariate wavelet
denoising regards multiple signals as a whole and
transforms signals into the wavelet domain for denoi-
sing. The orthogonal basis of the transform domain
can be determined from the estimated noise covari-
ance matrix of the multivariate signals.

The following process is used to remove noise from
signals. The process starts with a matrix X eA]R”X’"
containing m signals presenting the columns of x.

Step 1: Calculate the wavelet decomposition at level
Jofeach column of X. Generate J+ | matrices (D, ...,
D;) containing the detail coefficients at levels 1 to J for
the m signals, and approximate coefficients (A4,) of the
m signals. D; is (n/2j) x m in size and A is (n/2”) x m.

Step 2: Define an estimator of the noise covariance
matrix 2€, and Athen calculate the singular value de-
compositioAn of Ze to produce an orthogonal matrix V'
such that Se = VAV, where A =diag(h,,1<i<m).
After changing the basis V' (i.e., D;V, 1 <j < J), apply
the m univariate thresholding strategies to each detail,
using the threshold ¢ = for the i-th column of D,V

Step 3: Reconstruct a denoised matrix X from the
simplified detail and approximation matrices by
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changing the basis using V7 and inverting the wavelet
transform.

In the above process, the change in basis is first used
to remove the correlation of the m components of the
noise. Then, m-univariate wavelet denoising is applied to
the process. Thus, the proposed procedure can be re-
garded as a combination of multiple univariate denoising.

Estimating the noise covariance. The most com-
monly used wavelet denoising method is threshold de-
noising, with the hard- and soft-thresholding methods
currently the most widely used. In the one-dimen-
sional case, a convenient estimate of the noise vari-
ance is needed to fine-tune the threshold. Generally,
the finer detail coefficients are essentially Gaussian
noise, which may be contaminated by a few large coef-
ficients from the signal. A robust estimator based on
the median absolute deviation is applied.

Similarly, as a natural extension to the multivariate
case, a robust estimator of the covariance matrix must
be defined. As in the one-dimensional case, D; is the
matrix of details at level 1 and is essentially #m-dimen-
sional white noise from the covariance matrix X, cor-
rupted by various coefficients because of the robust
estimator applied to D,. Therefore, in this paper, we
use the minimum covariance determinant (MCD) es-
timator and apply it to D,.

Improved pca for modal parameter identifica-
tion using wavelet denoising preprocessing. Wave-
let denoising PCA framework. The proposed wave-
let denoising PCA (WDPCA) method, combining
PCA and wavelet denoising for modal parameter iden-
tification, is described in this section.

PCA is sensitive to noise, which means that noisy
samples may result in relatively large errors, and some
important parameters may be lost. This paper uses the
wavelet transform to improve the capacity of PCA with
regard to this issue. The wavelet transform has good
time-frequency characteristics and low-entropy, can
work at multiple resolutions, and can flexibly select the
mother wavelets. These properties mean that it is an ef-
fective method for signal denoising and compression.

Wavelet denoising is based on how wavelets repre-
sent smooth signals using a sparse set of coefficients.
Small coefficients can be suppressed to denoise the
signals. The effect of wavelet denoising is closely de-
termined by the mother wavelet and transformation
parameters, amongst others.

A multiscale version of PCA (MSPCA) was pro-
posed to fine-tune the limits in statistical process con-
trol. In this paper, MSPCA is applied to eliminate in-
significant principal components, so that the proposed
method reduces the dimension of the signal and re-
moves any remaining noise.

Implementation of WDPCA. The WDPCA
method comprises the following steps:

Step 1: Let there be m observed signals X € R™". Set
the decomposition level J, and the iteration termination
threshold value ¢. Initialize counter variable ¢ = 1, and
the variance contribution accumulation n = 0.

Step 2: Define the estimator of the noise covari-
ance matrixofthe observedsignalsas C. . = MCD(D,),
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where MCD is described in Multivariate Wavelet De-
noising Section. Then, compute VP such that
~A~AANT

C.; =VZV , where A= diag(?A»,-, 1<i<m). Apply the
m univariate thresholding strategies to each detail after
changing the base (i.e., D;V, 1 <j<J), using threshold

1, =+/2\iIn(n) for the i-th column of D, V.

Step 3: Matrix A, obtained in Step 2 (see Multi-
variate Wavelet Denoising Section) is computed by
PCA, with the eigenvalues sorted in descending order.

Step 4: Use equation (3) to compute 1, =2, 27»1. s
i=1
update the variance contribution accumulation such
thatn =n+n..

Step 5: If 1 > ¢, the first ¢ principal components
satisfy the condition and the algorithm is terminated.
Otherwise, let ¢ = ¢ + 1, and return to Step 4.

Step 6: Reconstruct a denoised matrix X, from the
simplified detail and approximation matrices, by
changing the basis using ¥’ and inverting the wavelet
transform.

Step 7: Through a final PCA, extract the first c ei-

genvectors from X and compute their latent variables
by eigenvalues.

To reduce the influence of system measurement
Gaussian distribution noise, a combined method is in-
troduced to obtain a reconstructed signal. Then, the
main modal parameters are identified from the recon-
structed signals.

Simulation results. To confirm whether the pro-
posed method can extract modal parameter informa-
tion from the response signals, this paper uses a multi-
ple-frequency sinusoidal superposition undamped sim-
ply supported beam under concentrated excitation. In
addition, a limited-bandwidth damping cantilever
beam subjected to a load with uniform Gaussian mea-
surement noise is also introduced in this section. The
basic parameters of the beams are as follows: length
equal to 1.0 m; cross section is square; width and height
both set to 0.005 m; the material is steel; modulus of
elasticity is 205 GPa; Poisson’s ratio of the material is
0.3; and density of material is 7850 kg/m?>. The beam
can be treated as a one-dimensional continuous system
lengthwise if the load is applied along the length.

LMS Virtual.lab is computer-aided engineering
software for dynamic simulations. Using the finite ele-
ment analysis (FEA) implemented by LMS Virtual.lab,
the undamped modal shapes and eigenfrequencies can
be obtained. The results are regarded as the real shapes
and eigenfrequencies. In addition to a comparison of
the modal shapes and eigenfrequencies, we investigated
the modal assurance criterion (MAC), which is an im-
portant standard when considering the effectiveness of
modal shape identification [3]. This is computed as

MAC, , =(9!9,)’/(©]9,)(0]0,),

where ¢ is the i-th identified shape, ¢, represents the real
i-th shape, and (9/9,) represents the inner product of
the two vectors. Note that 0 < MAC,, , <1, where a value
closer to one represents a more accurate estimated shape.
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Multiple-frequency sinusoidal superposition
undamped simply supported beam under concen-
trated excitation. Dividing the undamped, simply
supported 1-m beam into 1000 parts at regular inter-
vals generates 1001 measurement points. At frequen-
cies of 205, 91.3, 366, 572, 824, 1121, and 22, observed
signals can be generated from 0.2-m unit positions by
loading multiple-frequency sinusoidal excitation with
the corresponding power 60, 30, 30, 30, 30, 30, and 30
units, respectively. The sampling time and frequency
interval are 1 s, and 4096 Hz, respectively, with 1 %
Gauss measurement noise added.

In this experiment, response data of the undamped
simply supported beam were selected at the first, 400th
and 500th time steps, with 15 % additive Gaussian white
noise. The AER and RER respectively represent abso-

principal component, and the fast Fourier transform
results of the principal components identified by PCA
and WDPCA, for no and 1 % measurement noise.

In Table 2, we can see that the variance contribu-
tion accumulation does not change significantly if
there is noise in the response data. Because the modal
contribution of the fifth principal component is small,
no fifth modal shape is identified by PCA or WDPCA,
additionally, the eighth and ninth modal shapes recog-
nized by PCA are lost if the observed signals contain
noise, so PCA is sensitive to measurement noise. On
the contrary, WDPCA efficiently reduces the interfer-
ence of noise. The eighth modal shape is identified by
WDPCA with 1 % measurement noise.

lute error reconstruction and relative error reconstruc- Table 1
tion. The performance of the wavelet denoising method Error comparison of the reconstructed signals
is shown in Table 1. It is clear that the noise is reduced.
The first six principal components satisfy the con- PCA WDPCA
dition. The PCA, WDPCA, and FEA results are com- AER RER AER RER
pared in Table 2. Table 2 shows the Pareto charts for Sienal 1 0.243 | 5462 % 0.0229 9.16 %
the PCA and WDPCA decompositions, for no and 1 % %gna - ks : ki
measurement noise. There are no significant changes Signal 2 0.1155 | 82.62% | 0.0212 | 19.10%
in the accumulation contribution rate of the seventh Signal 3 0.1151 | 78.70% | 0.0256 | 14.85%
Table 2
Modal shape and fast Fourier transform for the PCA, WDPCA, and FEA methods applied to a simply
supported beam
FEA modalnumber 1 2 3 4 5 6 7 8 9
Eigenfrequencies identified
by FEA (Hz) 22.89 | 91.55 | 205.99 | 366.2 | 572.23 | 824 1121.6 | 1464.9 | 1854
Modal shape number
dentified by PCA ! 3 2 > - 4 6 7 8
MAC (%) 100 100 100 100 — 100 100 98.34 | 98.34
Eigenfrequencies identified
by PCA (Hz) 23 92 207 367 — 825 1123 1466 1855
. Relative percentage (%) 0.481 | 0.492 | 0.005 | 0.210 — 0.121 | 0.125 0.075 | 0.054
No noise Modal sh b
odal shap€ number
identified by WDPCA ! 3 2 > - 4 6 7 8
MAC (%) 100 100 100 100 — 100 100 98.34 | 98.34
Eigenfrequencies identified
by WDPCA (Hz) 23 92 207 367 — 825 1123 1466 1855
Relative percentage (%) 0.481 | 0.492 | 0.005 | 0.210 - 0.121 | 0.125 | 0.075 | 0.054
Modal shape number
dentified by PCA ! 3 2 > N 4 6 N N
MAC (%) 100 100 100 100 - 100 100 — —
Eigenfrequencies identified
by PCA (Hz) 23 92 207 367 — 825 1123 — —
1% addictive | Relative percentage (%) 0.481 | 0.492 | 0.005 [ 0210 | — | 0.21 | 0.125 | — —
Gaussian
measurement Mode}l shape number
noise identified 1 3 2 5 - 4 6 7 -
by WDPCA
MAC (%) 100 100 100 100 — 100 100 100 76.32
Eigenfrequencies identified
by WDPCA (Hz) 23 92 207 367 — 825 1123 1466 —
Relative percentage (%) 0.481 | 0.492 | 0.005 | 0.210 — 0.121 | 0.125 0.075 —
ISSN 2071-2227, HaykoBun BicHuk HIY, 2016, N2 3 105
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A number of simulation processing results for the
simply supported beam show that WDPCA is more ef-
fective than PCA, because the former method recog-
nizes more modal parameters than the latter when the
observed data contain noise. Additionally, because the
resolution ratio of the fast Fourier transform is not suf-
ficiently large, the frequencies identified by both PCA
and WDPCA contain errors.

The variance contribution accumulation does not
change significantly if there is noise in the response
data. Because the modal contribution of the fifth prin-
cipal component is small, no fifth modal shape is iden-
tified by PCA or WDPCA. The eighth and ninth modal
shapes recognized by PCA are lost if the observed sig-
nals contain noise, so PCA is sensitive to measurement
noise. On the contrary, WDP CA efficiently reduces the
interference of noise. The eighth modal shape is identi-

Cantilever beam with additive white noise. Di-
viding a 1-m cantilever beam into 1000 parts at regular
intervals generates 1001 measurement points with a
0.01 modal damping. This experiment applied the
same white noise to each point to obtain the observed
signals. The sampling time and frequency interval were
set to 1 s and 4096 Hz, respectively, and 10 % Gau-
ssian measurement noise was added.

In this experiment, the response data were selected
from the cantilever beam at the 20th, 1000th, and
4000th time intervals with 10 % additive Gaussian white
noise. The wavelet denoising results, shown in Table 3,
demonstrate that the proposed method is effective.

The PCA, WDPCA, and FEA results are shown in
Table 4. The variance contribution accumulation does
not significantly change if the observed signals contain

fied by WDPCA with 1 % measurement noise. Table 3
A number of simulation processing results for the E . .
rrors in reconstructed signals
simply supported beam show that WDPCA is more ef- &
fective than PCA, because the former method recog- PCA WDPCA
nizes more modal pgramgters thap the latter when the AER RER AER RER
observed data contain noise. Additionally, because the Sienal 1 00781 | 22.09% | 0.0135 342 %
resolution ratio of the fast Fourier transform is not suf- fgna . 09 7% : aids
ficiently large, the frequencies identified by both PCA Signal 2 0.0799 | 42.32% | 0.0139 | 613%
and WDPCA contain errors. Signal 3 0.0802 | 53.78 % | 0.0131 7.24 %
Table 4
Modal shapes and fast Fourier transforms for PCA, WDPCA, and FEA applied to the cantilever beam
FEA modal number 1 2 3 4 5 6 7 8 9
Eigenfrequencies identified | 801533 | 51.078 | 142.94 | 279.86 | 462.12 | 689.4 | 961.34 | 1277.5 | 1637.5
by FEA (Hz)
Modal shape number 1 2 3 4 5 6 7 8 9
dentified by PCA
MAC (%) 100 100 100 100 100 100 | 99.99 | 99.96 | 98.67
Eigenfrequencies identified 8.2 51 143.2 | 279.6 | 461.6 | 689.6 | 959.2 | 1280.2 | 1651.6
by PCA (Hz)
No Relative percentage (%) 0.57 0.15 0.18 0.09 0.03 0.22 | 0.21 0.86 0.03
noise Modal shape number 1 2 3 4 5 6 7 8 9
identified by WDPCA
MAC (%) 100 100 100 100 100 100 | 99.99 | 99.96 | 98.67
Eigenfrequencies identified | 8.2 51 143.2 | 279.6 | 461.6 | 689.6 | 959.2 | 1280.2 | 1651.6
by WDPCA (Hz)
Relative percentage (%) 0.57 0.15 0.18 0.09 0.03 0.22 0.21 0.86 0.03
Modal shape number 1 2 3 4 — — — — —
dentified by PCA
MAC (%) 100 100 100 99.64 — — — — —
Eigenfrequencies identified 8.2 51 143.2 280 - - - — -
10 % addictive |-2YPCA (H2)
Gaussian Relative percentage (%) 0.57 0.15 0.18 0.05 — — — — —
measurement | Modal shape number 1 2 3 4 5 — - - —
noise identified by WDPCA
MAC (%) 100 100 99.99 | 99.98 | 93.15 — — — —
Eigenfrequencies identified 8.2 51 143.2 280 462.2 — — — —
by WDPCA (Hz)
Relative percentage (%) 0.57 0.15 0.18 0.05 0.02 — — — —
106 ISSN 2071-2227, HaykoBui BicHuKk HIY, 2016, N2 3
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noise. Some modal shapes recognized by PCA are
missing when the observed data contain noise, for ex-
ample, the sixth and seventh modal shapes in Table 4.
Therefore, noise can create problems when using PCA
to identify modal parameters. WDPCA, however,
deals more effectively with noise. The fifth modal
shape was effectively extracted by WDPCA when the
observed signals contained 10 % Gaussian measure-
ment noise. Therefore, WDPCA is insensitive to
Gaussian measurement noise, and can identify more
modal parameters (such as modal shape and eigenfre-
quency) from the observed signals compared with
PCA. Table 4 shows that PCA is sensitive to Gaussian
measurement noise, but WDPCA reduces the interfer-
ence. Especially for the fifth modal shape, the identi-
fied shape is very different to that recognized by FEA.
Because there is a larger eigenfrequency error, the fifth
modal shape extracted by PCA is missing. The fifth
modal shape is identified by WDPCA, with a corre-
sponding MAC of 93.15 %. Additionally, most of the
eigenfrequencies of the modal shapes extracted by
these two methods are similar; thus, the performance
of WDPCA is better than that of PCA.

Numerical simulations of the simply supported and
cantilever beams demonstrated that noise introduces
uncertainties into the modal parameter calculations.
This leads to low accuracy when identifying modes.
The proposed method is insensitive to Gaussian mea-
surement noise and succeeded in extracting the main
contributory modal shapes and eigenfrequencies from
the response signals with a relatively high accuracy.

Conclusions. By comparing the results obtained
with and without noise, we have shown that the modal
parameter identification method based on PCA is sen-
sitive to measurement noise. This highlights the neces-
sity for denoising the observed signals.

The proposed WDPCA method is a signal process-
ing technique that can be applied to practical engineer-
ing problems. Wavelet transforms are used to determine
time-frequency information and remove noise. Then,
principal components and modal shapes can be ex-
tracted from the processed signal using PCA. The re-
sult of simulation experiments on beams demonstrates
that the response signals processed by wavelet denois-
ing result in more modal parameters being extracted.
Additionally, these experiments indicate that the pro-
posed method has some robustness to noise and is suit-
able for modal parameter identification.

However, modal identification based on WDPCA
needs further verification. A strict proof of the mathe-
matical theory of wavelet denoising is also required.
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Meta. TouHna ineHTudikaliss MomaJbHUX Mapa-
METPIiB € BaXKJIMBOIO IEPESAYMOBOIO IIJIsI MOHITOPUHTY
LJIICHOCTI KOHCTPYKIIi# i BUSIBJIEHHS TTOLIKOIXEHb.

Metomuka. BeliBieT-aHani3 € OOIHUM 3 HAOIbII
BUTITHUX METO/iB, OCKUIBKM BiH BOJIOII€ 3IATHICTIO
MPEACTABISATU JJOKAJIbHI 0COOJIMBOCTI CUTHAITY Y 4aco-
Bili i yacTOTHIlT o6aacTax. [meHTudikalio MoTaTbHUX
rnapamMeTpiB, 110 €(PEKTUBHO JOCATAETHCS 32 JOITOMO-
rol aHalizy rojoBHuUx KommoHeHT (PCA), moxHa
PO3IJISIIATH SIK TUIT CUCTEMHOTO pO3ITi3HaBaHHSI.

PesynsraTii. OCKiIbKA METON aHaJi3y TOJTOBHUX
KOMITOHEHT UYyTJIMBUIA 10 ['aycoBOro mrymy mpu BU-
Mipax, y poOOTi MPONMOHYETLCS HOBUI METOA KOMOi-
HyYBaHHS TIOABJICHHS IIIyMy Ha OCHOBi BEUBJICT-TIC-
PETBOPEHHSI 3 METOOOM aHaJli3y T'OJOBHHMX KOMIIO-
HEHT, 1 3aCTOCOBYEThLCS 11 TeXHiKa B imeHTUiKalii
MoOIaJbHUX TTapaMeTpiB.

Haykosa HoBu3Ha. CuUrHajay MiggaloTbCs PO3-
KJaJaHHIO Ha BEUWBJIETH 3 AeKiJibKoMa IapaMu, a
OTpUMaHi BelBeT-KoehilliEHTU 3a3nayieriib obpo-
OJISIIOTHCS Y BiATIOBIAHOCTI 1O TOPOTrOBOT0O 3HAYEHHSI.
IToriM BOHM pPEKOHCTPYIOIOTLCS 31 3MEHIUEHHSIM
BILIUBY 1Iymy. JlOCTiAXKEeHHS LIbOTO acIeKTy paHille
HE TIPOBOIWIINCS.

IIpakTuyna 3HaummicTb. PesynbraTé Mopento-
BaHHS Ha TIPUKJIai 6aJoK ITOKa3yIOTh, 10 3aIIPOITO-
HOBaHUI METOJ, 30aTHUI pO3Mi3HaBATU OCHOBHI MO-
nanbHi popmu Ta BinacHi yactotu. Kpim Toro, BiH 10-
3BOJISIE MTOKPAIIyBaT TOYHICTh BUSIBJICHUX MOIAJb-
HUX MapaMeTpiB i BUJydaTH AesKi paHillle yIylleHi
KOJIMBaHHSI.

KmouoBi caoBa: idenmughikauis modanrvHux
napamempia, ananiz eono08Hux kommnonenm (PCA),
Beiierem-wymonooasrenns, cucmemu po3nizna-
eéamnHsi, gelienem-ananis, laycie wym npu sumipax

Ilenb. TouHasa uaeHTUDUKALIMS MOJATbHBIX Ma-
paMeTpOoB SIBASETCS Ba>XKHOMW MPEATTOCHUIKOMN A1 MO-
HUTOPUHTA LIEJIOCTHOCTA KOHCTPYKLMU U BBISBIIC-
HUS TIOBPEXIECHUNA.

Metoauka. BeiiBieT-aHanu3 sIBisgeTcsI OTHUM U3
Haunbosee BhITOJHBIX METOIOB, MOCKOJIbKY OH 00J1a-
JaeT CIOCOOHOCTBIO MPEACTABISATh JIOKAJIbHBIE 0CO-
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IHOOPMALINHI TEXHONOTII, CACTEMHUA AHANI3 TA KEPYBAHHA

OEHHOCTU CHUTHaJla BO BpEMEHHOM 1 4acCTOTHOM 00-
Jgactax. MneHtudukaumo MoaadbHbIX MapaMeTpOB,
KoTopas 3pOEKTUBHO JOCTUTAETCS C TTOMOIIILIO aHa-
Jm3a aBHBIX KommoHeHT (PCA), MoxHO paccma-
TPUBATh KaK TUIT CUCTEMHOTO paclo3HaBaHMUSI.
Pe3yabraTtbl. [lockonbKy mMeTon aHanusa IaB-
HBIX KOMITOHEHT YyBCTBUTEJIEH K ['aycCOBY LIyMy npu
U3MEPEHUSIX, B paboTe MpeaiaraeTcss HOBbI METOJ,
KOMOMHUPOBAHUS MOAABJEHHUS IIyMa Ha OCHOBE
BeMBJIET-TIpeoOpa3oBaHus ¢ METOIOM aHaiu3a IJ1aB-
HBIX KOMIIOHEHT, U MpUMEHSIETCS 3Ta TEeXHMUKa B
UaeHTUUKALIUU MOJAIbHBIX TapaMeTPOB.
Hayuynas HoBusHa. CurHajbl NOAIAI0TCS pas3io-
JKEHMIO Ha BEMBJIETHI C HECKOJIBKUMU CJIOSIMU, a IO~
JIydeHHBIE BelBiIeT-KO3(OUIIMEHTHI IPeaBapUTETb-
HO 00pabaThIBAIOTCSI B COOTBETCTBUM C ITOPOTOBBIM
3HaYeHuEeM. 3aTeM OHM PEKOHCTPYUPYIOTCI C YMEHb-

Guoliang Sun

IIeHNeM BIMSHUS 1nyma. MWMccileqoBaHUsSI 3TOTO
acIieKTa paHee He TIPOBOIUIINCE.

IIpakTHyecKasi 3HAYUMOCTb. Pe3ybraTel Moze-
JIMPOBaHUS Ha IpuMepe OajloK I10Ka3bIBAIOT, 4TO
MPEeIIOKEHHBIA METOH CIIOCOOEH pacIio3HaBaTh OC-
HOBHbI€ MOAaJIbHbIEe (DOPMbI U COOCTBEHHBIE YaCTO-
Thl. KpoMe TOro, oH mo3BoJisieT YJIydllaTh TOYHOCTD
BBISIBJICHHBIX MOJAJIBHBIX IIapaMeTPOB U M3BJIEKaTh
HEKOTOpbIE paHee YITyLLEHHbIE KOJIeOaHUs.

KimoueBble cioBa: udenmughurxayus mMooansbHbIX
napamempoas, anaau3 enaéuvix komnonenm (PCA),
Betienem-wymonoodasnenue, cucmemst pacno3nasa-
Hust, eetienem-ananus, layccoe utym npu usmepeHusix
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WAVELET IMAGE DENOISING BASED ON FUSION
THRESHOLD FUNCTIONS

Konemx PoHryeHr XapOiHCHKOIrO yHiBEPCUTETY HayKu Ta
TexHoJiorii, Berixaii, Kurait

BEWBJIET-®LJIBTPAIIIS HIIYMY B 30BPAKEHHSX, II[O 3ACHOBAHA
HA 3JIUTTI HOPOTOBUX ®YHKIIHA

Iyonsu Cyn

Purpose. Specific to the existing discontinuity and constant deviation in denoising of wavelet threshold func-
tion, this paper analysed the integrated denoising function of traditional wavelet threshold function.

Methodology. Through analysis of the defects of wavelet soft threshold function and hard threshold function
and according to the characteristics of the traditional threshold function as well as the design idea and procedure,
the paper establishes an integrated threshold function on the basis of the traditional threshold function and offers
a simulation diagram extracted from the corresponding threshold function. Through the simulation diagram of
the threshold function, it analyses the advantages of integrated threshold function.

Findings. According to the result, the integrated threshold function established on the basis of the character-
istics and design idea of wavelet soft threshold function and hard threshold function integrates the advantages of
traditional threshold functions, effectively overcoming the discontinuity of the hard threshold function and con-
stant deviation of the soft threshold function.

Originality. Based on the structure and characteristics of the traditional wavelet threshold function, the article
puts forward an idea how to combine the traditional wavelet threshold function and the fusion function which is
not only used to transform the traditional threshold function, but also adds the fusion coefficient to modify it,
which makes the fusion function adaptive.

Practical value. The results of the paper can effectively improve the denoising ability of an image, which apart
from effective removal of image noise, reserves detailed information of images, laying solid foundation for in-
depth processing of a high-quality image.

Keywords: wavelet transformation, threshold function, fusion threshold function, image denoising

Introduction. With the development of informa-
tion technology, people are more and more dependent
on information transmitted by digital images. Howev-
er, images often have certain noise in the process of
transmission and acquisition [1]. Meanwhile, when
noise reaches a certain degree, it will blur the charac-
teristics of images and greatly affect the further analysis
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and application of images [2—3]. Therefore, to make
the subsequent image processing go on smoothly, peo-
ple keep developing all kinds of denoising methods to
preprocess images, to obtain better recovered images
and satisfy demands of various image applications.
Traditional image denoising methods include two
types: spatial domain and frequency domain [4-—5].
Typical spatial-domain filters include mean filters and
wiener filters. A mean filter signifies each pixel value in
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