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Purpose. Financial statement fraud detection (FSFD) based on machine learning is a very important problem
for avoiding financial risk and maintaining an orderly market. The purpose of this research was to develop a mul-
tiple instance learning model that is capable of detecting and predicting the risk of fraudulent financial reporting.

Methodology. Each pair was composed of a singe-instance learning algorithm and its corresponding multiple
instance learning algorithm, which were trained using a data set of 484 fraud companies as well as 902 normal com-
panies with forming 4158 instances from Item 8 of the U.S. Securities and Exchange Commission (SEC) Form 10-K.

Findings. Empirical study shows that MIBoost, miGraph and CKNN are superior compared to AdaBoostM 1,
SVM and KNN correspondingly in accuracy, F1 score and area under receiver operating characteristics curve
(AUC), which prove that multiple instance learning algorithms can fit FSFD better, especially under class-imbal-
ance and few training data.

Originality. When a detecting label which corresponds to temporally local Financial Statement is attached
collectively to groups of Financial Statements for one company without presenting the data to which Financial
Statement this label is assigned, it is a multiple instance problem. The research presents a multiple instance learn-
ing model for FSFD originally.

Practical value. We have also considered the fact that some auditors are dissatisfied with the single label
learning algorithms because there are many instances in one company without label. Our model is more reason-
able and accurate.

Keywords: financial statement, fraud detection, machine learning, multiple instance learning miboost-

ing, miGraph CKNN

Introduction. Increasing accounting fraud among
public companies in the past decade has focused pub-
lic attention on the corporate financial reporting pro-
cess. To maintain public confidence in the reliability
of financial reporting as a means to assess a company’s
future prospects, the SEC issued eleven financial re-
porting releases and ten staff accounting bulletins dur-
ing the same time period. Among them, Financial
Statements about U.S. public companies for the past
three years are published in Item 8 of SEC Form 10-K.
Though the SEC neither writes the 10-K nor vouches
for its accuracy, the SEC sets the disclosure require-
ments and the SEC staff reviews 10-K to monitor and
enhance companies’ compliance with the require-
ments. In addition, laws and regulations prohibit com-
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panies from making materially false or misleading
statements in 10-K. Likewise, companies are prohib-
ited from omitting material information that is needed
to make the disclosure not misleading. Obviously, the
10-K is so normal and authoritative that it can be used
in detecting accounting fraud.

However, there is a significant challenge. That is, for
each company, the single label with fraud or non-fraud
gained by 10-k is attached to groups of Financial State-
ments in several years without making clear to which
Financial Statement this label is assigned. It means that
though the accounting fraud behaviour is temporally
related and presents financial statements of a company
within a certain period time, the identity and precise
time of the label is remaining a mystery. Distinctly, the
label is assigned to a group of financial statements, but
this does not mean that the label applies to every finan-
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cial statement in the group. The problem is that we only
know whether a company is fraud or not while not
knowing which financial statement responses to the
category label, which is similar to a drug activity predic-
tion. The main difficulty of that problem is that each
molecule may have many alternative low-energy shapes.
However, biochemists only know whether a molecule is
qualified to make a drug or not, without knowing which
of its alternative low-energy shapes responses to the
qualification. Distinctly, if FSFD is a multiple instance
problem, yet using a single instance learning method,
the prediction performance may be poor.

Therefore, a good solution to this problem inherent
in the FSFD task may select the computational intel-
ligent method in the frame work of multiple instance
learning like what has been done in drug activity pre-
diction. This study makes comparisons regarding the
performance of three pairs of machine learning algo-
rithms in detecting accounting fraud, which is com-
posed of a singe instance learning algorithm and its
corresponding multiple instance learning algorithm. It
discloses that the underlying nature of the FSFD prob-
lem matches well with multiple instance learning
(MIL). Among them, the performance of MIBoost is
superior to the state-of-the-art FSFD methods. The
rest of the paper is organized as follows. Section 2
briefly reviews some related works. Section 3 provides
an insight into the research methodology used. Section
4 reports on experimental results. Section 5 concludes.

Recent research. The accounting audit is an im-
portant monitoring mechanism which can help reduce
information asymmetry and protect the interests of the
principals by providing reasonable assurance that finan-
cial statements are free from material misstatements. But
FSFD is a difficult task when using a common audit
procedure since there is a shortage of knowledge con-
cerning the characteristics of fraud. Therefore, prior re-
search on accounting fraud has generally focused on
gaining field knowledge as “red flags” and combining
these indicators with quantitative models for assessing
the potential for accounting fraud. Compared with the
model-driven quantitative method, the data-driven ma-
chine learning method is a powerful data analysis tool for
FSFD [1, 2], because it can adapt well to a new situation
regarding variance of fraud motivations and methods.

Johan Perols compared the performance of six ma-
chine learning and popular statistical method in FSFD
under different ratios of fraud companies to non-fraud
companies and assumptions of misclassification costs.
The results showed that support vector machines
(SVM) performed well relative to ANN, stacking, C4.5
and bagging [3]. Salama and Omar proved that the
proposed back propagation based artificial neural net-
works model can be used in the discovery of manipula-
tion and fraud prediction in the account balances by
comparing the predicted values and the actual val-
ues [4]. Lin, C.C. et al. examined all aspects of fraud
triangle using the data mining techniques which in-
clude Logistic Regression, Decision Trees (CART),
and Artificial Neural Networks (ANNs) and employ
the available and public information on proxy vari-
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ables to evaluate such attributes as pressure/incentive,
opportunity, and attitude/rationalization. Empirical-
ly, the ANNs were not only of the highest accuracy,
but also of the lowest type II error among them [5].

Though the conclusions concerning the perfor-
mance of machine learning methods used in FSFD
disagree with the above-mentioned, there is common
ground that they are all constructed as accounting
fraud detectors under the conventional supervised
learning framework, in which one instance is associat-
ed with one label without considering the input ambi-
guity of accounting fraud data like 10-k. But in multiple
instance learning, the training data is a set of labeled
bags, and each bag contains several instances. A bag is
labeled negative if all the instances in it are negative.
On the other hand, if a bag contains at least one posi-
tive instance, it will be labeled positive. Clearly, this
formulation of multiple instance learning is helpful to
handle input ambiguity of data. There are many multi-
ple instance learning algorithms which have been pro-
posed, such as diverse density [6], CitationkNN [7],
miSVM [8], miGraph [9] and MIBoosting [10] and
they have been applied to a wide spectrum of applica-
tions ranging from content-based image retrieval and
web index page recommendation to robot control and
event prediction. Therefore, this study tries to intro-
duce three dominant multiple instance learning, which
are MIBoost, miGraph and CKNN into accounting
fraud field to cope with input ambiguity and enhance
detecting performance for property of data.

Research methodology. Data. The government
can delegate enforcement powers concerning manage-
ment fraud to the SEC, which provides a measure of
consistency to eliminate difficulties in dealing with
different procedures and rules defining accounting
fraud. Therefore, companies involved in accounting
fraud may be examined as samples in this study ac-
cording to the SEC’s Accounting Series Releases
(ASR’s), Litigation Releases (Lit) and the Accounting
& Auditing Series Releases (AAER’s).

There are some principles which are as follows. On
the one hand, companies are selected as fraud compa-
nies by meeting three conditions at the same time,
which are violating section 10(b) and 10b-5 of securi-
ties act of 1934, violating the anti-fraud provisions and
falsifying the accounting records. On the other hand,
companies are excluded due to financial industry, lack
of data, no mentioning of a fiscal year, only concern-
ing violations of quarterly reporting, and a shortage of
matching companies. In addition, each fraud compa-
ny is matched with a non-fraud company of a similar
size on the basis of the industry and time period to
control for external factors, since companies in the
same industry are subject to accounting and reporting
requirement in the similar business environment.

After defining the principles, the SEC dockets are
searched to gain the fraud companies from 1999 to
2009, including Litigation releases from LR-16014 to
LR-21357 and AAER’s from AAER-1190 to AAER-
3093. Non-fraud companies are randomly drawn from
COMPUSTAT companies that are in the same indus-
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try (same four-digit SIC code) as a fraud company.
And then, the DNUM classification in COMPUSTAT
with the companies’ individual 10-Ks and Moody’s in-
dustry summaries to detect any noticeable discrepan-
cies are checked. All summaries agree with the DNUM
classification. At last, the dataset in this study includes
484 fraud companies as well as 902 normal companies
to form 4158 instances. Since one bag is constructed for
one company with three instances, which is an annual
report of the company, 1386 bags are generated.

Variables. This study identifies 26 financial state-
ment ratios/variables commonly used in prior studies,
which seem to measure the following five aspects of a
company:

1. Financial Condition. Poor financial condition
may be a motivation for improving the appearance of the
company’s financial position, gaining as many resources
as possible before termination, or reducing the threat of
loss of employment. Hence, Altman’s Z (Z-SCORE) is
utilized as a measurement of a company’s financial con-
dition and calculated based on information from the year
prior to the year of fraud occurrence.

2. Financial Performance. The expectation to main-
tain or improve past levels of profitability, regardless of
what those levels were like, may be a motivation for ac-
counting fraud, especially if not met by actual perfor-
mance. Hence, financial performance is measured us-
ing return on assets (ROA), which is calculated as net
income before extraordinary items in the year prior to
the occurrence of the fraud divided by total assets at the
end of that year. The return on equity (ROE), return on
sale (ROS) and retained earnings/total assets (RETA)
are measured regarding the financial performance, too.

3. Debt Structure. A high debt structure may be a
motivation for manipulating the financial statements to
shift the risk from equity owners and managers to debt
owners. It means that a high debt ratio may increase
the probability of accounting fraud. Hence, the loga-
rithm of Total Debt (LOGDEBT), the Debt to Equity
(DEBTEQ) ratio and the Total Debt to Total Assets
(TDTA) ratio are used to measure the levels of debt
corresponding to the probability of accounting fraud.

4. Receivable/Inventory. Subjective judgment in-
volved in estimating uncollectible accounts and obso-
lete inventory may be a motivation for accounting
fraud. Hence, the ratio Account Receivable/Sales
(RECSAL), the ratio Accounts Receivable/Accounts
Receivable for two successive years (RETREND), the
ratios Inventory/Sales (INVSAL) and Inventory to
Total Assets (INVTA) are used to detect these tactics.

5. Consistent Growth. Growth slowdown or reverses
may be a motivation for accounting fraud so as to main-
tain the appearance of consistent growth. Especially,
sustained growth occurs in combination with changes in
the company structure and such changes may lead to
uncertainty in roles and responsibilities. As a growth
measure, the Sales Growth (SALGRTH) ratio is used.

In this study, some additional financial indexes are
examined in FSFD. These variables are: net profitabil-
ity/sale (NPSAL), the ratio of plant property&equip-
ment (net fixed assets) to total assets (NFATA), sales to
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total assets (SALTA), Current Assets/Current Liabili-
ties (CACL), Net Income/Fixed Assets (NIFA), Cash/
Total Assets (CASHTA), Quick Assets/Current Liabil-
ities (QACL), Earnings Before Interest and Taxes
(EBIT) and Long Term Debt/Total Assets (LTDTA),
the ratio Sales minus Gross Margin (COSAL), the ra-
tio Gross Profit/Total Assets (GPTA), Logarithm of
Total Assets (LTA) and Working Capital (WCAP).

In total, we compiled 26 financial variables. And
then two methods were used to analyse how much
each variable influences the induction. The former
tests whether the differences between the two classes
were significant for each variable. If the difference was
significant with low p-value, the variable was consid-
ered informative. The latter is ReliefF method. The
larger the value of the average ReliefF score was, the
more important influence of the variable in the induc-
tion was. Table 1 depicts the means, standard devia-
tions, 7-values, p-values and average ReliefF score for
each variable. As can be seen in Table 1, ten variables
presented low p-values (p <0.05). These variables were
chosen to participate in the input vector, while the re-
maining variables were discarded. As for the latter, av-
erage ReliefF scores were ranked descendingly and the
ten first variables were only chosen. All the selected
variables for two methods were underlined in Table 1.

Methods. FSFD can be regarded as a typical clas-
sification problem. Hence, considering the classifica-
tion and multiple instance problems, three pairs of
methods are employed in this research study for their
powerful capabilities. These methods are MIBoost vs.
AdaBoostM 1, miGraph vs. SVM, and KNN vs. CKNN.

Multiple instance boost. The standard way to ap-
proach the multiple instance learning problem is to as-
sume that there exists one or several “key” instances in
a bag that trigger the bag labels. However, the assump-
tion of MIBoosting algorithm is very simple and intui-
tive, which is to assume that all instances contribute
equally and independently to a bag label. Naturally,
the process of predicting the label of a bag is generated
in two stages. The first stage determines class probabil-
ities in a bag for each individual instance, and the sec-
ond stage combines these estimates to assign a class
label to the bag. Boosting is an approach to machine
learning based on the idea of creating a highly accurate
predictor by combining many weak learners — that is,
have accuracy only slightly better than random guess.
In other words, boosting constructs an ensemble of
weak classifiers. Actually, boosting is a family of algo-
rithms, among which the AdaBoost is the most influ-
ential ensemble one. And MIBoosting is a multiple
instance algorithm by upgrading AdaBoost.M1 algo-
rithm to MI problems, while the weak learner is a
standard single-instance learner (e.g. C4.5 decision
tree algorithm) in the following. The pseudo code for
MIBoosting algorithm is shown as Algorithm 1.

Here, N is the number of bags, and there are »; in-
stances in the i (i= 1, 2, ..., N) bag. x;; denotes that it
isthe /# (j=1, 2,..., n;) instance in the i bag. We as-
sume that the label of a bag is either 1 or —1, rather than
1 or 0. Let us explain the details. Two important prob-
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Table 1
Statistic, P-values and Average ReliefF score of input variables
Variables Mean Fraud | SD Fraud | mean non-Fraud SD non-Fraud T-test P-value Relief Score

Z-SCORE —63.8142 860.074 —57.6281 1045.5786 14.0318 0 —-0.00493
LOGDEBT 0.7153 3.215 0.0091 4.1641 0.2047 0.8378 -0.00671
DEBTEQ —4.1068 178.2105 —-5.6258 272.3411 6.072 0 0.00016
TDTA -39.3106 642.8996 —-51.5364 717.5676 0.2164 0.8287 —-0.00054
SALGRTH 102.5099 1972.4517 201.7082 1426.5064 0.561 0.5748 0.00323
RECSAL —-0.0391 1.0332 -0.004 0.3 1.6934 0.0905 0.00112
RETREND —4.1594 3249175 0.1074 158.38 1.2649 0.2061 0.00539
INVSAL 0.2215 2.1085 0.1654 1.9961 0.4713 0.6375 -0.00037
INVTA —41.19 641.7244 -51.6175 717.5617 0.8335 0.4047 1.00E-05
COSAL 1518.6704 | 9589.5252 2960.0956 10375.7884 0.479 0.632 0.00459
GPTA —41.7293 641.9525 -51.4851 717.58 4.4888 0 1.00E-05
RETA —-79.5145 834.0883 -94.8305 983.3087 0.448 0.6541 -0.00627
ROS —4.3863 43.9764 —-1.2118 15.002 0.5296 0.5964 -0.00026
ROE 0.7065 26.4354 —7.5759 271.8895 2.6686 0.0077 —1.00E-05
ROA —45.949 644.0105 -54.1109 720.8862 1.5708 0.1163 0.00094
LTA 2.1372 1.4052 2.2921 1.5114 0.3734 0.7088 0.00377
WCAP —63.3326 | 2042.5007 94.7911 1603.1453 3.2995 0.001 0.00286
NFATA —41.0031 641.7365 —51.4243 717.5756 2.5574 0.0106 0
SALTA —-40.0551 641.8028 -50.4366 717.6699 0.4787 0.6322 1.00E-05
CACL 1.7409 2.6975 4.4555 52.5429 0.4768 0.6335 3.00E-05
NIFA -15.7146 153.7119 13.086 617.2975 2.6809 0.0074 —-0.0003
CASHTA —41.1955 641.724 -51.579 717.5645 2.2979 0.0216 0
QACL 1.0538 4.6552 3.935 52.5533 0.477 0.6334 6.00E-05
EBIT 37.3668 548.6384 295.9068 1207.9415 2.8313 0.0047 0.00766
LTDTA 2.0122 36.8017 0.2015 0.2569 9.4625 0 —-0.00621
ACCRUALA | -40.8455 641.8392 -51.7562 717.5601 1.8749 0.061 7.00E-05

lems of the standard AdaBoost are how to determine
the proper weights of ¢,,’s and how to generate the in-
stance-level model 4,,’s. Likewise, the key problems of
MIBoosting algorithm are similar. We regard the sign
E as the sample average instead of the population ex-
pectation. We are looking for a classifier F(b) that
minimizes the exponential loss EzEy z[e?"?]. In
each iteration of MIBoosting algorithm, we search for
the best f(b) to add to the bag-level combined classi-
fier F(b). Due to the assumption in the beginning of
MIBoosting algorithm, we expand f(b) into f(b) =
= Zh(xj/n) , where A; € {1, 1} is the prediction re-
sultof the weak learner A(.) for the j” instance in b. We
want to generate a weak learner 4(.) that maximizes

E, [yh(x,)/n] =2i[

=1 j=1| 1

i

iwcyih(x,,.>}. (1)

It is obvious that when A(x;) = y; this function can
get the maximum. Actually, we can use any weak sin-
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gle-instance learner to generate the model /(.) by as-
signing the bag-level label and the initial weight W;/n,.
Thus, we have got f(b), now we consider the proper
weights of ¢,,’s. To do this, we can only optimize the
loss after the combination

- —YF(b)re(=3/ (5)] =
loss,,, = E E, sle 1=

h(x,
= ZI/V: eXp[c’” [_MJ] = ()

=Y W, expl(2e, - 1)c,, 1.

Where €=1, . ., > Which is computed in
7

Step 4. Note that this function has no global optimum
when all ;< 0.5. So if it happens, MIBoosting algorithm
will go directly to the end (Step 10). By using numeric
optimization, we can get the optimal ¢,,’s in Step 6. Fi-
nally, MIBoosting algorithm updates the bag-level
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Algorithm 1. MIBoosting Algorithm

1: Initialize weight of each bag to W;=1/N,i=1,
2,..., N.

2:form=1to Mdo

3: Set W; <~ W,/n;, assign the bag’s class label to
each of its instances, and build an instance-level
model

4: h,(x;) € {~1, 1}. Within the i bag (with n; in-
stances), compute the error » rate by counting the
number of misclassified instances e; € [0, 1] within

that bag, i.e. €, = zl(hm(x,-,,y.»/”f-
- ;

S:ife; < 0.5 fori’s, go to Step 10.
6: Compute ¢, = argminZIfV, exp[(2e,—1)c,,] us-
ing numeric optimization.

7:if (¢,, £ 0), go to Step 10.
8: Set W, « W;exp[(2e;- 1)c,,] and renormalize so

that Y W, =1.

9: end for
10: return sign(}. Y ¢,4,(x,)).
Jj m

weight. The more misclassified instances occur in a bag,
the greater weight the bag will have in the next iteration.
It is analogous to the updating weight process of the
standard AdaBoost algorithm at the instance-level.

Multiple instance graph. Almost all multiple in-
stance learning algorithms treat instances in the bags
as independently and identically distributed. The in-
stances in a bag, however, are rarely independent in
real tasks. There are two simple yet effective methods,
i.e. miGraph and M1Graph, to solve the problem of
multiple instance learning by treating instances as
non-i.i.d.samples. Their basic idea is to regard each
bag as an entity to be processed as a whole, and regard
instances as inter-correlated components of the enti-
ty. miGraph is one of the two methods we mentioned
above, which implicitly constructs graphs by deriving
affinity matrices and defines an efficient graph kernel
considering the clique information. The bag here is
denoted by X;. We can calculate the distances between
pairwise instances by using Gaussian distance and
derive an affinity matrix W, by comparing the dis-
tances with a threshold & which is given by the average
distance in the bag. The key of miGraph, the kernel
k,, is defined by two given bags X; and X; which con-
tain n; and n; instances respectively as follows

izjl/l/iau/jbk(xia ’ij)
ko (X, X ;) === E
le;a bz_}l/l/jb

n; ;

i — J

where W, [ Y w!,, W, = 1/ yowi,
u=1 v=1

and k(x,,,x,,) = eXP(—Y|

B

3)

2
s
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If the distance between the instances x;, and x;, is
smaller, then W/;’s element at the a-th row and u-th col-
umn is set to 1, and 0 otherwise. Thus, we can measure
the similarity between the two bags by calculating the
kernel k,. Due to the lower computational complexity
of miGraph’s kernel compared to MIGraph’s kernel,
miGraph algorithm will be a better choice for FSFD.

Citation KNN. There are two variants of the
K-nearest neighbour algorithm, Bayesian-kNN and
Citation-kNN, solving the multiple instance learning
problems. Here, we just review Citation-kNN algorithm
which has better performance than Bayesian-kNN al-
gorithm. In order to use the key idea of K-nearest neigh-
bour algorithm, it must transform the distance between
pairwise instances to the distance between pairwise
bags. The minimum Hausdorff distance was used as the
bag-level distance metric in Citation-kNN algorithm.
The distance between pairwise bags is defined like this

F1 —score =2 - precision - recall/(precision + recall);

Dist(A, B) = 3,7 (Dist(a,,b,)) = minmin||a —

acA beB

s (4)

1<ism
1<j<n

where A and B are two different bags, a; (1 <i<m) and
b; (1<j<n) are the instances from each bag. Therefore,
the problem of measuring the distance between bags is,
in fact, the problem of measuring the distance between
the different feature vector sets. Note that when it pre-
dicts the label of a new bag, the Citation-kNN algo-
rithm considers not only the bags as the nearest neigh-
bors of the new bag, but also the bags that count the
new bag as their neighbours which is analogous to the
conception of “citation” in scientific literature. Al-
though the Citation-kNN algorithm has better perfor-
mance while predicting the labels of bags, it is unable to
predict the labels of instances unlike the Diverse Den-
sity algorithm. However, the Citaion-kNN algorithm
must save the whole training data set in memory in or-
der to measure the distances during the test. Obviously,
it will cost almost no training time, but its storage over-
head and testing time overhead are very large.

Evaluation metrics. FSFD is a binary classifica-
tion problem, in which the outcomes are labeled either
as positive (P) or negative (V) corresponding to fraud
or non-fraud. There are four possible outcomes from a
binary classifier. If the outcome from a prediction is P
and the actual value is also P, then it is called a true
positive (7°P); however, if the actual value is /V then it
is said to be a false positive (F£P). Conversely, a true
negative (7'N) has occurred when both the prediction
outcome and the actual value are NV, and false negative
(FN) is when the prediction outcome is /N while the
actual value is P. And then, the accuracy, F1 score and
the area under the ROC (receiver operating character-
istics) curve (AUC) can be defined as follows based on
the above definitions

Acurracy=(TP+ TN)/(P+ N), ®))

where precision = TP/(TP + FP) and recall =
= TP/(TP + FN). Accuracy is selected for its being a
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basic metric of classification. Considering there may
be classification imbalance problem in data, the F1
score is selected for its being a harmonic means of the
precision and recall, too.

In the signal detection theory, a ROC is a graphical
plot which illustrates the performance of a binary clas-
sifier system as its discrimination threshold is varied. It
is created by plotting the fraction of true positives out
of the positives (TPR = TP/(TP + FN)) vs. the frac-
tion of false positives out of the negatives (FPR =
= FP/(FP + TN)), at various threshold settings. TPR
is also known as recall, and FPR is one minus the
specificity or true negative rate. When using normal-
ized units, AUC is equal to the probability that a clas-
sifier will rank a randomly chosen positive instance
higher than a randomly chosen negative one. Consid-
ering that fraud instance is more important than non-
fraud instance, the AUC is selected.

The analysis of experiments and results. In this
section, we prove that FSFD is a multiple instance
learning problem. Data set I and data set Il are con-
structed by feature selection for the original data set
(Section 3.1) according to P-values and ReliefF scores
respectively (Section 3.2). For data set I, we randomly
sample i/10 bags to create the training set while the re-
maining (1 — i/10) bags are used for testing, where / is
from 9 to 1. Like this, we can yield 9 partitions denoted
by {I-1,..., I-9} and {II-1, ..., I11-9} for data set 11, too.

To make a fair comparison of multiple instance
learning algorithms (Section 3.3) with evaluation met-
rics (Section 3.4), we suppose that the label of each in-
stance in bag is the same as the label of the bag in single
instance learning. All algorithms are set to the best pa-
rameters by 5-fold cross validation on training sets. Spe-
cifically, for AdaBoostM 1, the base classifier is set to
Decision Stump, the percentage of weight mass to base
training and the number of iterations are fixed to 100
and 50; For MIBoost, the base classifier is set to Naive

Bayes, the maximum number of boost iterations is set to
50; For LibSVM, the parameter ¢ and y are set to 120
and 0.8; For migraph, the parameter ¢ and y are set to 80
and 1.1, the threshold is set to 0.2; For KNN, the num-
ber of neighbours is set to 4; For CKNN, the number of
references and citers are set to 5 and 1, respectively.

The training/test partition is randomly generated 20
times, and the average performance is recorded. Table 2
shows the accuracy (with standard deviations) of the
various methods. The best performance (paired 7-tests
at 95 % significance level) and its comparable results are
bolded. It can be seen that multiple instance learning
method is significantly better than single instance learn-
ing method correspondingly on partitions I-1. That
multiple instance learning method is used to replace the
single instance learning method in FSFD correspond-
ingly, such as MIboost vs. AdaboostM 1, migraph vs.
svm and CKNN vs. KNN, which lead to the perfor-
mance enhanced by 5 %, 2 % and 3 % respectively.

To study the influence of the amount of training data,
we conduct experiments using the same setting as I-1
from I1-2 to I-9. The average accuracy of partitions in Ta-
ble 2 and Fig. 1, a—c both show that as the variation of
the amount of training data, multiple instance learning
methods are consistently better than single instance
learning methods. The MIboost and migraph, two mul-
tiple instance learning methods, achieve highly competi-
tive performance. In particular, MIboost has great ad-
vantage over other methods, is more obvious and is less
sensitive to the variation of the amount of training data. It
means that it can work well even though there are few
training data, which is a universal phenomenon in FSFD.

For Fig. 1, a—c, X-axis is the subset of dataset I
from I-1 to I-9,Y-axis is the value of Evaluation Metrics
such as Accurancy, F1 score and AUC of Multiple in-
stance learning and single instance learning algorithms.
For Fig. 1, d—f, X-axis is the subset of dataset II from
II-1 to I1-9,Y-axis is the value of Evaluation Metrics
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Fig. 1. Influence of amount of training data on metrics
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such as Accurancy, F1 score and AUC of Multiple in-
stance learning and single instance learning algorithms
To further investigate the classification results, we
conduct paired #-tests at 95 % significance level and
summarize the win/tie/loss counts of MIBoost versus
other methods in Table 2. Paired 7-tests at 95 % sig-
nificance level denote that it achieves 9 wins, 0 tie and
0 Ioss when compared to three single instance learning
methods (AdaboostM 1, SVM and KNN) and a mul-
tiple instance learning method (CKNN), and 5 wins,
4 ties and 0 loss when compared to a comparable mul-
tiple instance learning method (miGraph).
Considering that the number of fraud samples is
less than the number of non-fraud samples in data set

and the fraud samples are more important than non-
fraud samples since it is the goal of detection, we select
F1 score and AUC to evaluate the performance of al-
gorithms after accuracy. Table 3 and Table 4 indicate
that in either F1 score or AUC, the multiple instance
learning method is significantly better than the single
instance learning method correspondingly on all par-
titions. At the same time, MIboost obtains the best
performance all along as well.

As mentioned in section 3.2, there are two main
feature selection methods in FSFD. We want to know
whether the experiment conclusions about data set |
constructed by P-values will change when using Re-
liefF scores, another feature selection method.

Table 2

Accuracy on data set I (mean =+ std.). The best performance (paired #-tests at 95 % significance level)
and its comparable results are bolded. The last line shows the win/tie/loss counts of MIBoost
versus other methods (the bigger the value is, the better the performance is)

I-Accuracy AdaBoostM 1 MIBoost LibSVM miGraph KNN CKNN
I-1 0.68 +0.03 0.73+£0.04 0.71£0.03 0.73+0.03 0.66 +0.02 0.69 +£0.03
1-2 0.69 +0.02 0.73+£0.02 0.69 +0.02 0.72 £0.02 0.67 £0.02 0.67 £0.02
I-3 0.69 +0.02 0.73 £ 0.02 0.69 +£0.02 0.71 £ 0.02 0.66 +0.01 0.68 £ 0.02
1-4 0.68 +0.02 0.73 £ 0.02 0.69 +0.01 0.71+£0.02 0.67 £0.01 0.67 £0.02
I-5 0.68 +0.02 0.74 £ 0.02 0.68 +0.01 0.71 £ 0.01 0.67 £0.01 0.68 +0.01
1-6 0.68 +0.02 0.74+0.01 0.68 +0.01 0.71 £ 0.02 0.68 +0.02 0.68 +0.01
1-7 0.67 £0.02 0.74 +0.01 0.67 £0.02 0.71 £ 0.01 0.67 £0.01 0.68 +0.01
I-8 0.67 £ 0.02 0.73+£0.01 0.65+0.01 0.70 £0.01 0.67 £ 0.01 0.69+£0.02
1-9 0.66 £ 0.02 0.72 £0.01 0.64 £0.02 0.67 £0.01 0.67 £0.02 0.69 £ 0.01
Average 0.68 0.73 0.68 0.71 0.67 0.68
wTB;’fS“ 9/0/0 9/0/0 5/4/0 9/0/0 9/0/0

Table 3

Flscore on data set I (mean * std.). The best performance (paired 7-tests at 95 % significance level)
and its comparable results are bolded. The last line shows the win/tie/loss counts of MIBoost
versus other methods (the bigger the value is, the better the performance is)

I-Flscore AdaBoostM 1 MIBoost LibSVM miGraph KNN CKNN

I-1 0.50 £0.05 0.59£0.05 0.46 +0.06 0.48 +0.06 0.44+0.08 0.46 +0.08
1-2 0.50 £0.04 0.59+£0.04 0.43+£0.05 0.52£0.05 0.42+£0.04 0.49 £0.05
1-3 0.51 £0.04 0.60 +0.03 0.45+0.03 0.52+£0.04 0.43+£0.03 0.45+0.05
1-4 0.51 +£0.05 0.60 +0.02 0.43+£0.04 0.51+0.03 0.42+0.03 0.43+0.03
I-5 0.51+£0.03 0.61 £0.02 0.45+0.02 0.51+0.03 0.42+0.03 0.41+0.03
I-6 0.50 £0.02 0.61 +£0.02 0.43+0.03 0.51£0.03 0.42+0.03 0.44+0.03
1-7 0.51 £0.04 0.61 £0.02 0.44 +£0.02 0.52+£0.02 0.42£0.02 0.41 £0.04
1-8 0.49 £0.04 0.59 £0.02 0.43+0.03 0.50£0.03 0.43£0.03 0.45+0.06
1-9 0.47 £ 0.04 0.57+£0.03 0.42+£0.04 0.49£0.03 0.43£0.03 0.42£0.01
Average 0.50 0.60 0.44 0.51 0.43 0.44

wTB;’ESt: 9/0/0 9/0/0 9/0/0 9/0/0 9/0/0
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Therefore, extra experiments for data set II are con-
ducted with similar setting. The same conclusion can
be drawn according to Fig.1, d—f, Table 5, Table 6 and
Table 7, that the multiple instance learning method is
notably better than the single instance learning method
correspondingly on all partitions. MIboost is still the
best methods in all metrics and on all partitions.

Conclusions. In this paper, we disclose that the es-
sence of the FSFD when every company has several time
sequential Financial Statements to analysis is a typical
multiple instance learning problem. Compared with tra-
ditional single instance learning methods which have
advanced classification and prediction capabilities to fa-
cilitate auditors in accomplishing the task of manage-

ment fraud detection, multiple instance learning meth-
ods have better performance and properties. It is proven
by the experiment results that multiple instance learning
has consistent superiority not only in class-imbalance,
but also with a small number of training data. In addi-
tion, this significant superiority has been kept under two
main feature selection methods. It is clear that a good
solution to the problem inherent in the FSFD may also
illustrate a promising remedy for other financial prob-
lems with similar underlying difficulties. The use of the
proposed methodological framework which is the main
contribute in this study, could be of assistance to audi-
tors, both internal and external, to taxation and other
state authorities, individual and institutional investors,

Table 4
AUC on data set I (mean + std.). The best performance (paired #-tests at 95 % significance level)
and its comparable results are bolded. The last line shows the win/tie/loss counts of MIBoost
versus other methods (the bigger the value is, the better the performance is)
I-AUC AdaBoostM 1 MIBoost LibSVM miGraph KNN CKNN
I-1 0.71 £ 0.06 0.77£0.04 0.62+0.03 0.72+0.04 0.61 +0.04 0.65+0.05
1-2 0.70£0.03 0.78 £0.03 0.61 £0.03 0.74+£0.03 0.62+0.03 0.66 +0.04
I-3 0.70 £ 0.02 0.78 £0.02 0.61 £0.02 0.73+£0.02 0.62+0.03 0.67 £0.02
1-4 0.70 £ 0.02 0.78 £0.02 0.61 £0.02 0.72+£0.02 0.63 +£0.02 0.65+0.03
I-5 0.70 £ 0.02 0.79 £0.02 0.61 £0.01 0.72+£0.02 0.63+£0.02 0.66 +0.02
1-6 0.69 +0.02 0.79£0.01 0.60 +0.01 0.71 £ 0.02 0.64 +£0.02 0.65+0.03
1-7 0.69 +0.02 0.78 £0.01 0.60 +0.01 0.71 £0.02 0.63+0.02 0.65+0.02
I-8 0.68 £0.02 0.78 £ 0.01 0.59+0.01 0.69+£0.02 0.63+0.02 0.65+0.02
1-9 0.66 £0.03 0.76 £0.02 0.58 £0.02 0.67 £0.02 0.61£0.03 0.63+£0.02
Average 0.69 0.78 0.60 0.71 0.62 0.65
wTB;’fS“ 9/0/0 9/0/0 9/0/0 9/0/0 9/0/0
Table 5

Accuracy on data set 11 (mean * std.). The best performance (paired 7-tests at 95 % significance level)
and its comparable results are bolded. The last line shows the win/tie/loss counts of MIBoost
versus other methods (the bigger the value is, the better the performance is)

II-Accuracy AdaBoostM 1 MIBoost LibSVM miGraph KNN CKNN
II-1 0.67 +0.04 0.73+0.03 0.69 +0.02 0.71£0.03 0.68 +0.03 0.69+0.03
11-2 0.67 £0.03 0.73+0.03 0.68 +0.02 0.71 £ 0.02 0.68 +0.02 0.69+0.03
11-3 0.67 £0.02 0.72 £0.02 0.69 +0.01 0.71 £ 0.01 0.68 +0.02 0.69 +0.02
11-4 0.67 £0.02 0.72 £0.02 0.68 +0.01 0.7 +0.01 0.68 +0.01 0.68 +0.02
I1-5 0.67 £0.02 0.73 £ 0.02 0.68 +0.01 0.71 £ 0.01 0.67 £0.01 0.69 +0.02
11-6 0.67 £0.01 0.73+£0.02 0.67 £ 0.01 0.70 £0.01 0.69 £ 0.01 0.69+£0.03
11-7 0.67 £0.01 0.73 £ 0.01 0.67 £0.02 0.70 £0.01 0.68 £0.01 0.68 £0.05
11-8 0.67 £0.01 0.72£0.02 0.66 £ 0.01 0.70 £0.02 0.68 £0.02 0.72+£0.03
11-9 0.67 £0.02 0.71 £ 0.02 0.65+0.02 0.68 +0.02 0.66 £0.02 0.69£0.03
Average 0.67 0.72 0.67 0.70 0.68 0.69
wTB;’ESt: 9/0/0 9/0/0 3/6/0 9/0/0 9/0/0

ISSN 2071-2227, HaykoBun BicHuk HIY, 2016, N2 3 153




EKOHOMIKA TA YNPABJIIHHA

Table 6

Flscore on data set II (mean + std.). The best performance (paired 7-tests at 95 % significance level)
and its comparable results are bolded. The last line shows the win/tie/loss counts of MIBoost
versus other methods (the bigger the value is, the better the performance is).

II-Flscore AdaBoostM 1 MIBoost LibSVM miGraph KNN CKNN
I1-1 0.50 £ 0.06 0.60 £ 0.06 0.31£0.07 0.41 £0.07 0.47 £0.05 0.49 +0.07
11-2 0.50 +0.05 0.59+0.04 0.31+0.06 0.43+0.05 0.46 £0.05 0.50£0.06
11-3 0.51£0.03 0.58 +0.03 0.33+0.03 0.43+0.03 0.46 £0.03 0.52+0.05
11-4 0.51£0.03 0.58 +0.03 0.29 +0.04 0.40+0.03 0.47 £0.03 0.51 £0.05
I1-5 0.50+0.03 0.60 £0.02 0.31 £0.04 0.41 £0.03 0.47 £0.03 0.50+0.05
11-6 0.50 +0.02 0.59 +0.02 0.30+0.03 0.40+0.03 0.49+0.03 0.50 +0.07
11-7 0.50+0.04 0.60 £0.02 0.28 +£0.07 0.40 +0.04 0.47 £0.03 0.47 £0.05
11-8 0.50+0.03 0.59+0.03 0.29+£0.06 0.38 +0.05 0.46 £0.04 0.48 +0.11
11-9 0.47 £0.08 0.56 +£0.03 0.29+£0.06 0.35+£0.06 0.44+£0.04 0.24 £ 0.16
Average 0.50 0.59 0.30 0.40 0.47 0.47
V“g/ITB;’ESt 9/0/0 9/0/0 9/0/0 9/0/0 9/0/0

Table 7

AUC on data set I I (mean = std.). The best performance (paired 7-tests at 95 % significance level)
and its comparable results are bolded. The last line shows the win/tie/loss counts of MIBoost
versus other methods (the bigger the value is, the better the performance is)

I1I-AUC AdaBoostM 1 MIBoost LibSVM miGraph KNN CKNN

I1-1 0.70 +0.04 0.77 +0.04 0.57 +£0.02 0.74 £ 0.05 0.66 +0.04 0.69 +0.05
11-2 0.69 +0.04 0.77 £0.02 0.57 £0.02 0.74+£0.03 0.68 +0.03 0.70 £0.03
11-3 0.70 £ 0.02 0.76 +0.02 0.58 +0.01 0.75+0.02 0.68 +0.02 0.71 £ 0.03
11-4 0.70 +0.02 0.77 £ 0.02 0.56 £ 0.01 0.74 £ 0.02 0.68 +0.02 0.68 £0.03
11-5 0.70 £ 0.02 0.77 £0.02 0.57+£0.01 0.74 £ 0.01 0.68 +0.02 0.69 +£0.03
11-6 0.69 +0.02 0.77 £0.01 0.56 +0.01 0.74 £ 0.01 0.69 +0.02 0.69 +0.04
11-7 0.70 £ 0.02 0.77 £0.01 0.55+0.02 0.74 £ 0.02 0.68 +0.02 0.67 £0.05
I1-8 0.69 +0.02 0.76 +0.02 0.55+£0.02 0.73+£0.02 0.67 £0.03 0.70 £0.05
11-9 0.67 +0.04 0.74 £ 0.02 0.54 £0.02 0.71 £0.03 0.65+0.03 0.70 £0.05
Average 0.69 0.76 0.56 0.74 0.67 0.69
MIBoost:

W/T/L 9/0/0 9/0/0 8/1/0 9/0/0 9/0/0

stock exchanges, law firms, economic analysts, credit
scoring agencies and to the banking system.

Bag generators as the preprocessing step of multi-
ple instance learning problems are more important
than the selection of multiple instance learning algo-
rithms in some sense. Therefore, future research will
replicate this study by using quarterly financial state-
ments. Using quarterly data may increase the amount
of instances in bags, which is beneficial for analyzing
data structure deeply to construct complex bags. It
hopes to develop a more powerful analytical tool for
FSFD by multiple instance learning.
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Meta. BussineHHs BunankisB ganbcudikaliii ¢i-
HaHcoBoi 3BiTHOCTI (FSFD) Ha oCcHOBi MalIMHHOTO
HaBUYaHHS € y>Ke BaXKJIMBOIO MPOOJIEMOIO JJIsI 3HU-
KeHH$ (piHAaHCOBOTO PU3UKY Ta MiATPUMKU BIIOPSII-
KOBaHOTO PUHKY. MeTa JaHOTO MOCTiIKEHHST TToJIsITa-
Jla B po3po0ili Mojeni baraToBapiaHTHOIO HaBYaHHSI,
IO 3JaTHA BUSIBJISATH U ITepeadadaT pu3rK (arbCh-
¢ikariii mpu ckJ1agaHHi (hiHAHCOBOI 3BITHOCTI.

Metomuka. KoxkHa mapa cKiiaganacs 3 alTOPUTMY
OIHOBApPiaHTHOI'O HABYAHHSI TA BiIMIOBIITHOTO aJITOPUT-
My bGararoBapiaHTHOTO HaBYaHHSI, 1110 Oy MiArOTOB-
JIEHi 3 BUKOPUCTAHHSIM Habopy maHux 484 maxpaii-
CbKMX KOMIIaHiii, a Takox 902 HopMaIbHUX KOMIIaHil
3 (popmyBaHHsIM 4158 BapiaHTiB 3 myHKTY 8 ®opm 10-K
Kowmicii 3 ninaux nanepis i 6ipxx CIIA (SEC).

PesynbraTu. EMmipuyHi JOCTiIXEHHS MOKa3y-
10Tb, 1110 MIBoost, miGraph i CKNN nepeBepiyoTs,
anroputmu AdaBoostM 1, SVM i KNN, BinnosinHo, y
TO4HOCTI, oiHLi F1 i rutoii mig KpruBooo podoumnx xa-
pakTepuctuk npuiimada (AUC), 1o noBOAWUTb TOU
dakT, 110 aNropuT™M OaraToBapiaHTHOIO HAaBYaHHS
moxke Bignosigatn FSFD kparie, oco6imBo mipu nuc-
OasiaHci KJ1aciB i HEUMCIEHHUX MOBYAIbHUX JAHUX.

HaykoBa HoBu3na. Kojau MmiTka, 1110 BUSIBIISIE,
BIZMOBiIHA 3a YacoM JIOKaJIbHill (DiHAHCOBIN 3BiT-
HOCTi, JOJAETHCSI KOJEKTUBHO OO0 rpyn (iHaHCOBOI
3BITHOCTI OOHi€l KOMIAaHii, He BPaXOBYIOUM, IO LS
MiTKa HaJa€eThCs SIKili-HeOyab oKpeMili (piHaHCOBUIA
3BITHOCTi, lle OaraToBapiaHTHa TmpobOiema. oci-

ISSN 2071-2227, HaykoBui BicHuK HI'Y, 2016, N 3

JIDKEHHS TIpeICTaBIIsIE COO0I0 pO3POOKY OpUTiHATBHOL
monesni 6aratoBapiaHTHoro HaByaHHst FSFD.

IIpakTuyHa 3HAYMMICTb. Y poOOTi BpaxyBaHU
TOM (haKT, IO esIKi ayATUTOPU HEBIOBOJIEHI aJITOPUT-
MaMM HaBYaHHS Ha OCHOBI OMMHOYHUX MITOK, TOMY
1110 iCHY€E OaraTo BapiaHTiB B OIHIiA KOMIIaHii 60e3 Mi-
TOK. 3alIpOIIOHOBAHA MOJIENIb € OiJIbII OOIPYHTOBA-
HOIO Ta TOYHOIO.

KirouoBi cnoBa: ¢gpinancosa 36imuicme, eusé-
NeHHs 8UNadKie waxpaicmea, MauuHHe HaG4UaHHSL,
b6aeamosapianmue HasuauHs miboosting, miGraph
CKNN

ITens. Bersienne ciydaeB danbeudurkanmm hu-
HaHcoBoil otyeTHOCTH (FSFD) Ha ocHOBe MammH-
HOro o0y4YeHUsI SIBJISIETCSI OUeHb BaxKHOM TIpo0JieMOoit
ISl CHYDKEHUST (DMHAHCOBOTO PUCKA U MOIACPXKAHUS
yIopsimoYeHHOro pbiHKa. Lleap maHHOro mccnenoBa-
HUS 3aKjI04ajgach B pa3paboTKe MOAEIM MHOTOBapu-
AHTHOTO OOYy4YeHUsI, KOTOpasi ClocoOHa OOHapyXu-
BaTh WM TIPEICKAa3bIBaTh PUCK (haTbCUPUKAIINN TTIPU
cocTaBJIcHUH (DMHAHCOBOM OTYECTHOCTH.

Metoauka. Kaxnas napa cocrosiia U3 ajJroput-
Ma OTHOBAapPUAHTHOTO OOYICHUS 1 COOTBETCTBYIOIIIEC-
r0 aJITOPUTMA MHOTOBAapUAHTHOTO OOYYEHUS, KOTO-
pBIe OBLIM IOATOTOBJICHBI C MCIIOIb30BaHEM Habopa
MaHHBIX 484 MOIIIEHHWYECKUX KOMITAaHW, a TakKXe
902 HOpPMaJIIbHBIX KOMIIAHUM C (OopMUpPOBAHUEM
4158 BapuanToB u3 nmyHkTa 8 ®opmer 10-K Komuc-
cuu 110 LeHHbIM OyMmaram u oupxam CIIA (SEC).

Pe3yabraThl. DMIUpUYECKUE UCCISIOBaHUS 1O~
KasbiBaloT, uTo MIBoost, miGraph u CKNN mpe-
BocxondaT anroputmbl AdaBoostM1, SVM u KNN,
COOTBETCTBEHHO, B TOYHOCTH, ollecHKe F1 m ruromanu
MO KPWBOI pabodMX XapaKTECPUCTUK ITPHEMHMKA
(AUC), uyto pokasbiBaeT TOT (pakT, YTO aJTOPUTM
MHOTOBapMaHTHOTO OOYYEeHUSI MOXKET COOTBETCTBO-
Bath FSFD myuire, ocobeHHO TIpu nucbanaaHce Kiac-
COB M HEMHOTOYMCIICHHBIX 00YJaIOIINX TaHHBIX.

Hayunas noBu3na. Korna oOHapyxuBaroiast MeT-
Ka, COOTBETCTBYIOIIIAS ITO BPEMEHM JIOKATbHOM (b1HAH-
COBOI OTYETHOCTH, TIPUJIaraeTcs KOJUICKTUBHO K IPYII-
naM (pMHAHCOBOI OTYETHOCTH ONHONM KOMIMAHUU, HE
YUUTBIBAS, UTO 9Ta MeTKa MPUCBaUBAETCsI KAaKOH-TO OT-
IIeTbHOM (DMHAHCOBOM OTYETHOCTH, 3TO MHOTOBApH-
aHTHas1 mpobsieMa. MccnenoBaHue MpeACcTaBIsieT Co-
0oli pa3paboOTKy OpPUTMHAILHOW MOMAEIN MHOIoOBapu-
a"TtHoro ooyuyeHus FSFD.

IIpakTuyeckass 3HaYuMocTb. B paGore yuteH
TOT (DaKT, YTO HEKOTOPHIC ayTUTOPHI HEAOBOJIHHBI ajl-
roOpuTMaMM OOYJIeHMSI Ha OCHOBE OMMHOYHBIX METOK,
IIOTOMY YTO CYIIECTBYeT MHOTO BapMaHTOB B OMHO
KoMMaHuu 6e3 MeTok. [IpenioxeHHass MOAEIb SIBISI-
eTcst 6osiee 000CHOBAaHHOM U TOYHOM.

KimoueBbie ciioBa: ¢punancoéas omuemHocms,
8blsGACHUEe CAYHAe8 MOUIeHHUYEeCMEd, MAUlUHHOe
obyueHue, MHO208aApUAHMHOE 0bOyueHue miboos-
ting, miGraph CKNN

Pexomendosano do nybaikayii dokm. mexH.
Hayk B. B. [Tnamywenkom. /lama Hadxo0xceHHst py-
konucy 18.06.15.
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