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Purpose. Financial statement fraud detection (FSFD) based on machine learning is a very important problem 
for avoiding financial risk and maintaining an orderly market. The purpose of this research was to develop a mul­
tiple instance learning model that is capable of detecting and predicting the risk of fraudulent financial reporting.

Methodology. Each pair was composed of a singe-instance learning algorithm and its corresponding multiple 
instance learning algorithm, which were trained using a data set of 484 fraud companies as well as 902 normal com­
panies with forming 4158 instances from Item 8 of the U.S. Securities and Exchange Commission (SEC) Form 10-K.

Findings. Empirical study shows that MIBoost, miGraph and CKNN are superior compared to AdaBoostM1, 
SVM and KNN correspondingly in accuracy, F1 score and area under receiver operating characteristics curve 
(AUC), which prove that multiple instance learning algorithms can fit FSFD better, especially under class-imbal­
ance and few training data.

Originality. When a detecting label which corresponds to temporally local Financial Statement is attached 
collectively to groups of Financial Statements for one company without presenting the data to which Financial 
Statement this label is assigned, it is a multiple instance problem. The research presents a multiple instance learn­
ing model for FSFD originally.

Practical value. We have also considered the fact that some auditors are dissatisfied with the single label 
learning algorithms because there are many instances in one company without label. Our model is more reason­
able and accurate.

Keywords: financial statement, fraud detection, machine learning, multiple instance learning miboost-
ing, miGraph CKNN

Introduction. Increasing accounting fraud among 
public companies in the past decade has focused pub­
lic attention on the corporate financial reporting pro­
cess. To maintain public confidence in the reliability 
of financial reporting as a means to assess a company’s 
future prospects, the SEC issued eleven financial re­
porting releases and ten staff accounting bulletins dur­
ing the same time period. Among them, Financial 
Statements about U.S. public companies for the past 
three years are published in Item 8 of SEC Form 10-K. 
Though the SEC neither writes the 10-K nor vouches 
for its accuracy, the SEC sets the disclosure require­
ments and the SEC staff reviews 10-K to monitor and 
enhance companies’ compliance with the require­
ments. In addition, laws and regulations prohibit com­

panies from making materially false or misleading 
statements in 10-K. Likewise, companies are prohib­
ited from omitting material information that is needed 
to make the disclosure not misleading. Obviously, the 
10-K is so normal and authoritative that it can be used 
in detecting accounting fraud.

However, there is a significant challenge. That is, for 
each company, the single label with fraud or non-fraud 
gained by 10-k is attached to groups of Financial State­
ments in several years without making clear to which 
Financial Statement this label is assigned. It means that 
though the accounting fraud behaviour is temporally 
related and presents financial statements of a company 
within a certain period time, the identity and precise 
time of the label is remaining a mystery. Distinctly, the 
label is assigned to a group of financial statements, but 
this does not mean that the label applies to every finan­© Lingbing Tang, Pin Peng, Changqing Luo, 2016
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cial statement in the group. The problem is that we only 
know whether a company is fraud or not while not 
knowing which financial statement responses to the 
category label, which is similar to a drug activity predic­
tion. The main difficulty of that problem is that each 
molecule may have many alternative low-energy shapes. 
However, biochemists only know whether a molecule is 
qualified to make a drug or not, without knowing which 
of its alternative low-energy shapes responses to the 
qualification. Distinctly, if FSFD is a multiple instance 
problem, yet using a single instance learning method, 
the prediction performance may be poor.

Therefore, a good solution to this problem inherent 
in the FSFD task may select the computational intel­
ligent method in the frame work of multiple instance 
learning like what has been done in drug activity pre­
diction. This study makes comparisons regarding the 
performance of three pairs of machine learning algo­
rithms in detecting accounting fraud, which is com­
posed of a singe instance learning algorithm and its 
corresponding multiple instance learning algorithm. It 
discloses that the underlying nature of the FSFD prob­
lem matches well with multiple instance learning 
(MIL). Among them, the performance of MIBoost is 
superior to the state-of-the-art FSFD methods. The 
rest of the paper is organized as follows. Section 2 
briefly reviews some related works. Section 3 provides 
an insight into the research methodology used. Section 
4 reports on experimental results. Section 5 concludes.

Recent research. The accounting audit is an im­
portant monitoring mechanism which can help reduce 
information asymmetry and protect the interests of the 
principals by providing reasonable assurance that finan­
cial statements are free from material misstatements. But 
FSFD is a difficult task when using a common audit 
procedure since there is a shortage of knowledge con­
cerning the characteristics of fraud. Therefore, prior re­
search on accounting fraud has generally focused on 
gaining field knowledge as “red flags” and combining 
these indicators with quantitative models for assessing 
the potential for accounting fraud. Compared with the 
model-driven quantitative method, the data-driven ma­
chine learning method is a powerful data analysis tool for 
FSFD [1, 2], because it can adapt well to a new situation 
regarding variance of fraud motivations and methods.

Johan Perols compared the performance of six ma­
chine learning and popular statistical method in FSFD 
under different ratios of fraud companies to non-fraud 
companies and assumptions of misclassification costs. 
The results showed that support vector machines 
(SVM) performed well relative to ANN, stacking, C4.5 
and bagging [3]. Salama and Omar proved that the 
proposed back propagation based artificial neural net­
works model can be used in the discovery of manipula­
tion and fraud prediction in the account balances by 
comparing the predicted values and the actual val­
ues [4]. Lin, C. C. et al. examined all aspects of fraud 
triangle using the data mining techniques which in­
clude Logistic Regression, Decision Trees (CART), 
and Artificial Neural Networks (ANNs) and employ 
the available and public information on proxy vari­

ables to evaluate such attributes as pressure/incentive, 
opportunity, and attitude/rationalization. Empirical­
ly, the ANNs were not only of the highest accuracy, 
but also of the lowest type II error among them [5].

Though the conclusions concerning the perfor­
mance of machine learning methods used in FSFD 
disagree with the above-mentioned, there is common 
ground that they are all constructed as accounting 
fraud detectors under the conventional supervised 
learning framework, in which one instance is associat­
ed with one label without considering the input ambi­
guity of accounting fraud data like 10-k. But in multiple 
instance learning, the training data is a set of labeled 
bags, and each bag contains several instances. A bag is 
labeled negative if all the instances in it are negative. 
On the other hand, if a bag contains at least one posi­
tive instance, it will be labeled positive. Clearly, this 
formulation of multiple instance learning is helpful to 
handle input ambiguity of data. There are many multi­
ple instance learning algorithms which have been pro­
posed, such as diverse density [6], CitationkNN [7], 
miSVM [8], miGraph [9] and MIBoosting [10] and 
they have been applied to a wide spectrum of applica­
tions ranging from content-based image retrieval and 
web index page recommendation to robot control and 
event prediction. Therefore, this study tries to intro­
duce three dominant multiple instance learning, which 
are MIBoost, miGraph and CKNN into accounting 
fraud field to cope with input ambiguity and enhance 
detecting performance for property of data.

Research methodology. Data. The government 
can delegate enforcement powers concerning manage­
ment fraud to the SEC, which provides a measure of 
consistency to eliminate difficulties in dealing with 
different procedures and rules defining accounting 
fraud. Therefore, companies involved in accounting 
fraud may be examined as samples in this study ac­
cording to the SEC’s Accounting Series Releases 
(ASR’s), Litigation Releases (Lit) and the Accounting 
& Auditing Series Releases (AAER’s).

There are some principles which are as follows. On 
the one hand, companies are selected as fraud compa­
nies by meeting three conditions at the same time, 
which are violating section 10(b) and 10b-5 of securi­
ties act of 1934, violating the anti-fraud provisions and 
falsifying the accounting records. On the other hand, 
companies are excluded due to financial industry, lack 
of data, no mentioning of a fiscal year, only concern­
ing violations of quarterly reporting, and a shortage of 
matching companies. In addition, each fraud compa­
ny is matched with a non-fraud company of a similar 
size on the basis of the industry and time period to 
control for external factors, since companies in the 
same industry are subject to accounting and reporting 
requirement in the similar business environment.

After defining the principles, the SEC dockets are 
searched to gain the fraud companies from 1999 to 
2009, including Litigation releases from LR-16014 to 
LR-21357 and AAER’s from AAER-1190 to AAER-
3093. Non-fraud companies are randomly drawn from 
COMPUSTAT companies that are in the same indus­
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try (same four-digit SIC code) as a fraud company. 
And then, the DNUM classification in COMPUSTAT 
with the companies’ individual 10-Ks and Moody’s in­
dustry summaries to detect any noticeable discrepan­
cies are checked. All summaries agree with the DNUM 
classification. At last, the dataset in this study includes 
484 fraud companies as well as 902 normal companies 
to form 4158 instances. Since one bag is constructed for 
one company with three instances, which is an annual 
report of the company, 1386 bags are generated.

Variables. This study identifies 26 financial state­
ment ratios/variables commonly used in prior studies, 
which seem to measure the following five aspects of a 
company:

1. Financial Condition. Poor financial condition 
may be a motivation for improving the appearance of the 
company’s financial position, gaining as many resources 
as possible before termination, or reducing the threat of 
loss of employment. Hence, Altman’s Z (Z‑SCORE) is 
utilized as a measurement of a company’s financial con­
dition and calculated based on information from the year 
prior to the year of fraud occurrence.

2. Financial Performance. The expectation to main­
tain or improve past levels of profitability, regardless of 
what those levels were like, may be a motivation for ac­
counting fraud, especially if not met by actual perfor­
mance. Hence, financial performance is measured us­
ing return on assets (ROA), which is calculated as net 
income before extraordinary items in the year prior to 
the occurrence of the fraud divided by total assets at the 
end of that year. The return on equity (ROE), return on 
sale (ROS) and retained earnings/total assets (RETA) 
are measured regarding the financial performance, too.

3. Debt Structure. A high debt structure may be a 
motivation for manipulating the financial statements to 
shift the risk from equity owners and managers to debt 
owners. It means that a high debt ratio may increase 
the probability of accounting fraud. Hence, the loga­
rithm of Total Debt (LOGDEBT), the Debt to Equity 
(DEBTEQ) ratio and the Total Debt to Total Assets 
(TDTA) ratio are used to measure the levels of debt 
corresponding to the probability of accounting fraud.

4. Receivable/Inventory. Subjective judgment in­
volved in estimating uncollectible accounts and obso­
lete inventory may be a motivation for accounting 
fraud. Hence, the ratio Account Receivable/Sales 
(RECSAL), the ratio Accounts Receivable/Accounts 
Receivable for two successive years (RETREND), the 
ratios Inventory/Sales (INVSAL) and Inventory to 
Total Assets (INVTA) are used to detect these tactics.

5. Consistent Growth. Growth slowdown or reverses 
may be a motivation for accounting fraud so as to main­
tain the appearance of consistent growth. Especially, 
sustained growth occurs in combination with changes in 
the company structure and such changes may lead to 
uncertainty in roles and responsibilities. As a growth 
measure, the Sales Growth (SALGRTH) ratio is used.

In this study, some additional financial indexes are 
examined in FSFD. These variables are: net profitabil­
ity/sale (NPSAL), the ratio of plant property&equip­
ment (net fixed assets) to total assets (NFATA), sales to 

total assets (SALTA), Current Assets/Current Liabili­
ties (CACL), Net Income/Fixed Assets (NIFA), Cash/
Total Assets (CASHTA), Quick Assets/Current Liabil­
ities (QACL), Earnings Before Interest and Taxes 
(EBIT) and Long Term Debt/Total Assets (LTDTA), 
the ratio Sales minus Gross Margin (COSAL), the ra­
tio Gross Profit/Total Assets (GPTA), Logarithm of 
Total Assets (LTA) and Working Capital (WCAP).

In total, we compiled 26 financial variables. And 
then two methods were used to analyse how much 
each variable influences the induction. The former 
tests whether the differences between the two classes 
were significant for each variable. If the difference was 
significant with low p-value, the variable was consid­
ered informative. The latter is ReliefF method. The 
larger the value of the average ReliefF score was, the 
more important influence of the variable in the induc­
tion was. Table 1 depicts the means, standard devia­
tions, t-values, p-values and average ReliefF score for 
each variable. As can be seen in Table 1, ten variables 
presented low p-values ( p  0.05). These variables were 
chosen to participate in the input vector, while the re­
maining variables were discarded. As for the latter, av­
erage ReliefF scores were ranked descendingly and the 
ten first variables were only chosen. All the selected 
variables for two methods were underlined in Table 1.

Methods. FSFD can be regarded as a typical clas­
sification problem. Hence, considering the classifica­
tion and multiple instance problems, three pairs of 
methods are employed in this research study for their 
powerful capabilities. These methods are MIBoost vs. 
AdaBoostM1, miGraph vs. SVM, and KNN vs. CKNN.

Multiple instance boost. The standard way to ap­
proach the multiple instance learning problem is to as­
sume that there exists one or several “key” instances in 
a bag that trigger the bag labels. However, the assump­
tion of MIBoosting algorithm is very simple and intui­
tive, which is to assume that all instances contribute 
equally and independently to a bag label. Naturally, 
the process of predicting the label of a bag is generated 
in two stages. The first stage determines class probabil­
ities in a bag for each individual instance, and the sec­
ond stage combines these estimates to assign a class 
label to the bag. Boosting is an approach to machine 
learning based on the idea of creating a highly accurate 
predictor by combining many weak learners – that is, 
have accuracy only slightly better than random guess. 
In other words, boosting constructs an ensemble of 
weak classifiers. Actually, boosting is a family of algo­
rithms, among which the AdaBoost is the most influ­
ential ensemble one. And MIBoosting is a multiple 
instance algorithm by upgrading AdaBoost.M1 algo­
rithm to MI problems, while the weak learner is a 
standard single-instance learner (e. g. C4.5 decision 
tree algorithm) in the following. The pseudo code for 
MIBoosting algorithm is shown as Algorithm 1.

Here, N is the number of bags, and there are ni in­
stances in the ith (i = 1, 2, …, N) bag. xij denotes that it 
is the jth (  j = 1, 2, …, ni) instance in the ith bag. We as­
sume that the label of a bag is either 1 or −1, rather than 
1 or 0. Let us explain the details. Two important prob­
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lems of the standard AdaBoost are how to determine 
the proper weights of cm’s and how to generate the in­
stance-level model hm’s. Likewise, the key problems of 
MIBoosting algorithm are similar. We regard the sign 
E as the sample average instead of the population ex­
pectation. We are looking for a classifier F (b) that 
minimizes the exponential loss EBEY | B [e

-yF(b)]. In 
each iteration of MIBoosting algorithm, we search for 
the best f (b) to add to the bag-level combined classi­
fier F (b). Due to the assumption in the beginning of 
MIBoosting algorithm, we expand f (b) into f (b)  =

( )j
n

h x n=  , where hj  {-1, 1} is the prediction re­
sult of the weak learner h(.) for the j th instance in b. We 
want to generate a weak learner h(.) that maximizes

	
1 1

1
[ ( ) ] ( ) .

inN

w b i i ij
i j i

E yh x n W y h x
n= =

 =  
 

 	 (1)

It is obvious that when h(xij) = yi this function can 
get the maximum. Actually, we can use any weak sin­

Table 1

Statistic, P-values and Average ReliefF score of input variables

Variables Mean Fraud SD Fraud mean non-Fraud SD non-Fraud T-test P-value Relief Score

Z-SCORE -63.8142 860.074 -57.6281 1045.5786 14.0318 0 -0.00493

LOGDEBT 0.7153 3.215 0.0091 4.1641 0.2047 0.8378 -0.00671

DEBTEQ -4.1068 178.2105 -5.6258 272.3411 6.072 0 0.00016

TDTA -39.3106 642.8996 -51.5364 717.5676 0.2164 0.8287 -0.00054

SALGRTH 102.5099 1972.4517 201.7082 1426.5064 0.561 0.5748 0.00323

RECSAL -0.0391 1.0332 -0.004 0.3 1.6934 0.0905 0.00112

RETREND -4.1594 324.9175 0.1074 158.38 1.2649 0.2061 0.00539

INVSAL 0.2215 2.1085 0.1654 1.9961 0.4713 0.6375 -0.00037

INVTA -41.19 641.7244 -51.6175 717.5617 0.8335 0.4047 1.00E-05

COSAL 1518.6704 9589.5252 2960.0956 10375.7884 0.479 0.632 0.00459

GPTA -41.7293 641.9525 -51.4851 717.58 4.4888 0 1.00E-05

RETA -79.5145 834.0883 -94.8305 983.3087 0.448 0.6541 -0.00627

ROS -4.3863 43.9764 -1.2118 15.002 0.5296 0.5964 -0.00026

ROE 0.7065 26.4354 -7.5759 271.8895 2.6686 0.0077 -1.00E-05

ROA -45.949 644.0105 -54.1109 720.8862 1.5708 0.1163 0.00094

LTA 2.1372 1.4052 2.2921 1.5114 0.3734 0.7088 0.00377

WCAP -63.3326 2042.5007 94.7911 1603.1453 3.2995 0.001 0.00286

NFATA -41.0031 641.7365 -51.4243 717.5756 2.5574 0.0106 0

SALTA -40.0551 641.8028 -50.4366 717.6699 0.4787 0.6322 1.00E-05

CACL 1.7409 2.6975 4.4555 52.5429 0.4768 0.6335 3.00E-05

NIFA -15.7146 153.7119 13.086 617.2975 2.6809 0.0074 -0.0003

CASHTA -41.1955 641.724 -51.579 717.5645 2.2979 0.0216 0

QACL 1.0538 4.6552 3.935 52.5533 0.477 0.6334 6.00E-05

EBIT 37.3668 548.6384 295.9068 1207.9415 2.8313 0.0047 0.00766

LTDTA 2.0122 36.8017 0.2015 0.2569 9.4625 0 -0.00621

ACCRUALA -40.8455 641.8392 -51.7562 717.5601 1.8749 0.061 7.00E-05

gle-instance learner to generate the model h(.) by as­
signing the bag-level label and the initial weight Wi/ni. 
Thus, we have got f (b), now we consider the proper 
weights of cm’s. To do this, we can only optimize the 
loss after the combination

	

( ) ( ( ))
exp |loss [ ]
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= 
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

	 (2)

Where ( )1 ,
m ij i ii h x y n

j
e ≠= ∑  which is computed in 

Step 4. Note that this function has no global optimum 
when all ei < 0.5. So if it happens, MIBoosting algorithm 
will go directly to the end (Step 10). By using numeric 
optimization, we can get the optimal cm’s in Step 6. Fi­
nally, MIBoosting algorithm updates the bag-level 
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weight. The more misclassified instances occur in a bag, 
the greater weight the bag will have in the next iteration. 
It is analogous to the updating weight process of the 
standard AdaBoost algorithm at the instance-level.

Multiple instance graph. Almost all multiple in­
stance learning algorithms treat instances in the bags 
as independently and identically distributed. The in­
stances in a bag, however, are rarely independent in 
real tasks. There are two simple yet effective methods, 
i. e. miGraph and MIGraph, to solve the problem of 
multiple instance learning by treating instances as 
non-i.i.d.samples. Their basic idea is to regard each 
bag as an entity to be processed as a whole, and regard 
instances as inter-correlated components of the enti­
ty. miGraph is one of the two methods we mentioned 
above, which implicitly constructs graphs by deriving 
affinity matrices and defines an efficient graph kernel 
considering the clique information. The bag here is 
denoted by Xi. We can calculate the distances between 
pairwise instances by using Gaussian distance and 
derive an affinity matrix  Wi by comparing the dis­
tances with a threshold d which is given by the average 
distance in the bag. The key of miGraph, the kernel 
kg, is defined by two given bags Xi and Xj which con­
tain ni and nj instances respectively as follows

	

 

1 1

1 1

1
1 1

2

( , )
( , ) ,

where	 , 1 	

and	 ( , ) exp , .

ji

ji

ji

nn

ia jb ia jb
a b

g i j nn

ia jb
a b

nn
i j

ia au jb bv
u v

ia jb ia jb

W W k x x
k X X

W W

W w W w

k x x x x

= =

= =

=
= =

=

=
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

 

   

	 (3)

If the distance between the instances xia and xiu is 
smaller, then Wi’s element at the a-th row and u-th col­
umn is set to 1, and 0 otherwise. Thus, we can measure 
the similarity between the two bags by calculating the 
kernel kg. Due to the lower computational complexity 
of miGraph’s kernel compared to MIGraph’s kernel, 
miGraph algorithm will be a better choice for FSFD.

Citation KNN. There are two variants of the 
K‑nearest neighbour algorithm, Bayesian-kNN and 
Citation-kNN, solving the multiple instance learning 
problems. Here, we just review Citation-kNN algorithm 
which has better performance than Bayesian-kNN al­
gorithm. In order to use the key idea of K‑nearest neigh­
bour algorithm, it must transform the distance between 
pairwise instances to the distance between pairwise 
bags. The minimum Hausdorff distance was used as the 
bag-level distance metric in Citation-kNN algorithm. 
The distance between pairwise bags is defined like this

F1 - score = 2  precision  recall/(precision + recall);

	
1
1

Dist( , ) (Dist( , )) minmin ,i j a A b B
i m
j n

MINA B a b a b
  

 

= =  	 (4)

where A and B are two different bags, ai (1  i  m) and 
bj (1  j  n) are the instances from each bag. Therefore, 
the problem of measuring the distance between bags is, 
in fact, the problem of measuring the distance between 
the different feature vector sets. Note that when it pre­
dicts the label of a new bag, the Citation-kNN algo­
rithm considers not only the bags as the nearest neigh­
bors of the new bag, but also the bags that count the 
new bag as their neighbours which is analogous to the 
conception of “citation” in scientific literature. Al­
though the Citation-kNN algorithm has better perfor­
mance while predicting the labels of bags, it is unable to 
predict the labels of instances unlike the Diverse Den­
sity algorithm. However, the Citaion-kNN algorithm 
must save the whole training data set in memory in or­
der to measure the distances during the test. Obviously, 
it will cost almost no training time, but its storage over­
head and testing time overhead are very large.

Evaluation metrics. FSFD is a binary classifica­
tion problem, in which the outcomes are labeled either 
as positive (P) or negative (N ) corresponding to fraud 
or non-fraud. There are four possible outcomes from a 
binary classifier. If the outcome from a prediction is P 
and the actual value is also P, then it is called a true 
positive (TP ); however, if the actual value is N then it 
is said to be a false positive (FP ). Conversely, a true 
negative (TN ) has occurred when both the prediction 
outcome and the actual value are N, and false negative 
(FN ) is when the prediction outcome is N while the 
actual value is P. And then, the accuracy, F1 score and 
the area under the ROC (receiver operating character­
istics) curve (AUC) can be defined as follows based on 
the above definitions

	 Acurracy = (TP + TN )/(P + N ),	 (5)

where precision = TP/(TP + FP ) and recall =	
= TP/(TP + FN ). Accuracy is selected for its being a 

Algorithm 1. MIBoosting Algorithm
1: Initialize weight of each bag to Wi = 1/N, i = 1, 

2, …, N.
2: for m = 1 to M do
3: Set Wij  Wi/ni，assign the bag’s class label to 

each of its instances, and build an instance-level 
model

4: hm(xij)  {-1, 1}. Within the ith bag (with ni in­
stances), compute the error r rate by counting the 
number of misclassified instances ei  [0, 1] within 

that bag, i. e. ( ( ))1 .
m ij yi

i h x i
j

e n


= 
5: if ei < 0.5 for i’s, go to Step 10.

6: Compute argmin exp[(2 1) ]m i i m
i

c W e c=   us­

ing numeric optimization.
7: if (cm  0), go to Step 10.
8: Set Wi  Wi exp [(2ei - 1)cm] and renormalize so 

that 1.i
i

W =
9: end for

10: return sign( ( )).m m j
j m

c h x



ISSN 2071-2227, Науковий вісник НГУ, 2016, № 3	 151

Е К О Н О М І К А  Т А  У П Р А В Л І Н Н Я

basic metric of classification. Considering there may 
be classification imbalance problem in data, the F1 
score is selected for its being a harmonic means of the 
precision and recall, too.

In the signal detection theory, a ROC is a graphical 
plot which illustrates the performance of a binary clas­
sifier system as its discrimination threshold is varied. It 
is created by plotting the fraction of true positives out 
of the positives (TPR = TP/(TP + FN )) vs. the frac­
tion of false positives out of the negatives (FPR =	
= FP/(FP + TN )), at various threshold settings. TPR 
is also known as recall, and FPR is one minus the 
specificity or true negative rate. When using normal­
ized units, AUC is equal to the probability that a clas­
sifier will rank a randomly chosen positive instance 
higher than a randomly chosen negative one. Consid­
ering that fraud instance is more important than non-
fraud instance, the AUC is selected.

The analysis of experiments and results. In this 
section, we prove that FSFD is a multiple instance 
learning problem. Data set I and data set II are con­
structed by feature selection for the original data set 
(Section 3.1) according to P-values and ReliefF scores 
respectively (Section 3.2). For data set I, we randomly 
sample i/10 bags to create the training set while the re­
maining (1 - i/10) bags are used for testing, where i is 
from 9 to 1. Like this, we can yield 9 partitions denoted 
by {I-1, …, I-9} and {II-1, …, II-9} for data set II, too.

To make a fair comparison of multiple instance 
learning algorithms (Section 3.3) with evaluation met­
rics (Section 3.4), we suppose that the label of each in­
stance in bag is the same as the label of the bag in single 
instance learning. All algorithms are set to the best pa­
rameters by 5-fold cross validation on training sets. Spe­
cifically, for AdaBoostM1, the base classifier is set to 
Decision Stump, the percentage of weight mass to base 
training and the number of iterations are fixed to 100 
and 50; For MIBoost, the base classifier is set to Naive 

Bayes, the maximum number of boost iterations is set to 
50; For LibSVM, the parameter c and  g are set to 120 
and 0.8; For migraph, the parameter c and g are set to 80 
and 1.1, the threshold is set to 0.2; For KNN, the num­
ber of neighbours is set to 4; For CKNN, the number of 
references and citers are set to 5 and 1, respectively.

The training/test partition is randomly generated 20 
times, and the average performance is recorded. Table 2 
shows the accuracy (with standard deviations) of the 
various methods. The best performance (paired t-tests 
at 95 % significance level) and its comparable results are 
bolded. It can be seen that multiple instance learning 
method is significantly better than single instance learn­
ing method correspondingly on partitions I-1. That 
multiple instance learning method is used to replace the 
single instance learning method in FSFD correspond­
ingly, such as MIboost vs. AdaboostM1, migraph vs. 
svm and CKNN vs. KNN, which lead to the perfor­
mance enhanced by 5 %, 2 % and 3 % respectively.

To study the influence of the amount of training data, 
we conduct experiments using the same setting as I-1 
from I-2 to I-9. The average accuracy of partitions in Ta­
ble 2 and Fig. 1, a–c both show that as the variation of 
the amount of training data, multiple instance learning 
methods are consistently better than single instance 
learning methods. The MIboost and migraph, two mul­
tiple instance learning methods, achieve highly competi­
tive performance. In particular, MIboost has great ad­
vantage over other methods, is more obvious and is less 
sensitive to the variation of the amount of training data. It 
means that it can work well even though there are few 
training data, which is a universal phenomenon in FSFD.

For Fig.  1, a–c, X-axis is the subset of dataset I 
from I-1 to I-9,Y-axis is the value of Evaluation Metrics 
such as Accurancy, F1 score and AUC of Multiple in­
stance learning and single instance learning algorithms. 
For Fig. 1, d–f, X-axis is the subset of dataset II from 
II-1 to II-9,Y-axis is the value of Evaluation Metrics 

Fig. 1. Influence of amount of training data on metrics
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Table 2

Accuracy on data set I (mean ± std.). The best performance (paired t-tests at 95 % significance level)	
and its comparable results are bolded. The last line shows the win/tie/loss counts of MIBoost	

versus other methods (the bigger the value is, the better the performance is)

I-Accuracy AdaBoostM1 MIBoost LibSVM miGraph KNN CKNN

I-1 0.68 ± 0.03 0.73 ± 0.04 0.71 ± 0.03 0.73 ± 0.03 0.66 ± 0.02 0.69 ± 0.03

I-2 0.69 ± 0.02 0.73 ± 0.02 0.69 ± 0.02 0.72 ± 0.02 0.67 ± 0.02 0.67 ± 0.02

I-3 0.69 ± 0.02 0.73 ± 0.02 0.69 ± 0.02 0.71 ± 0.02 0.66 ± 0.01 0.68 ± 0.02

I-4 0.68 ± 0.02 0.73 ± 0.02 0.69 ± 0.01 0.71 ± 0.02 0.67 ± 0.01 0.67 ± 0.02

I-5 0.68 ± 0.02 0.74 ± 0.02 0.68 ± 0.01 0.71 ± 0.01 0.67 ± 0.01 0.68 ± 0.01

I-6 0.68 ± 0.02 0.74 ± 0.01 0.68 ± 0.01 0.71 ± 0.02 0.68 ± 0.02 0.68 ± 0.01

I-7 0.67 ± 0.02 0.74 ± 0.01 0.67 ± 0.02 0.71 ± 0.01 0.67 ± 0.01 0.68 ± 0.01

I-8 0.67 ± 0.02 0.73 ± 0.01 0.65 ± 0.01 0.70 ± 0.01 0.67 ± 0.01 0.69 ± 0.02

I-9 0.66 ± 0.02 0.72 ± 0.01 0.64 ± 0.02 0.67 ± 0.01 0.67 ± 0.02 0.69 ± 0.01

Average 0.68 0.73 0.68 0.71 0.67 0.68

MIBoost: 
W/T/L

9/0/0 9/0/0 5/4/0 9/0/0 9/0/0

Table 3

F1score on data set I (mean ± std.). The best performance (paired t-tests at 95 % significance level)	
and its comparable results are bolded. The last line shows the win/tie/loss counts of MIBoost	

versus other methods (the bigger the value is, the better the performance is)

I-F1score AdaBoostM1 MIBoost LibSVM miGraph KNN CKNN

I-1 0.50 ± 0.05 0.59 ± 0.05 0.46 ± 0.06 0.48 ± 0.06 0.44 ± 0.08 0.46 ± 0.08

I-2 0.50 ± 0.04 0.59 ± 0.04 0.43 ± 0.05 0.52 ± 0.05 0.42 ± 0.04 0.49 ± 0.05

I-3 0.51 ± 0.04 0.60 ± 0.03 0.45 ± 0.03 0.52 ± 0.04 0.43 ± 0.03 0.45 ± 0.05

I-4 0.51 ± 0.05 0.60 ± 0.02 0.43 ± 0.04 0.51 ± 0.03 0.42 ± 0.03 0.43 ± 0.03

I-5 0.51 ± 0.03 0.61 ± 0.02 0.45 ± 0.02 0.51 ± 0.03 0.42 ± 0.03 0.41 ± 0.03

I-6 0.50 ± 0.02 0.61 ± 0.02 0.43 ± 0.03 0.51 ± 0.03 0.42 ± 0.03 0.44 ± 0.03

I-7 0.51 ± 0.04 0.61 ± 0.02 0.44 ± 0.02 0.52 ± 0.02 0.42 ± 0.02 0.41 ± 0.04

I-8 0.49 ± 0.04 0.59 ± 0.02 0.43 ± 0.03 0.50 ± 0.03 0.43 ± 0.03 0.45 ± 0.06

I-9 0.47 ± 0.04 0.57 ± 0.03 0.42 ± 0.04 0.49 ± 0.03 0.43 ± 0.03 0.42 ± 0.01

Average 0.50 0.60 0.44 0.51 0.43 0.44

MIBoost:
W/T/L

9/0/0 9/0/0 9/0/0 9/0/0 9/0/0

such as Accurancy, F1 score and AUC of Multiple in­
stance learning and single instance learning algorithms

To further investigate the classification results, we 
conduct paired t-tests at 95 % significance level and 
summarize the win/tie/loss counts of MIBoost versus 
other methods in Table 2. Paired t-tests at 95 % sig­
nificance level denote that it achieves 9 wins, 0 tie and 
0 loss when compared to three single instance learning 
methods (AdaboostM1, SVM and KNN) and a mul­
tiple instance learning method (CKNN), and 5 wins, 
4 ties and 0 loss when compared to a comparable mul­
tiple instance learning method (miGraph).

Considering that the number of fraud samples is 
less than the number of non-fraud samples in data set 

and the fraud samples are more important than non-
fraud samples since it is the goal of detection, we select 
F1 score and AUC to evaluate the performance of al­
gorithms after accuracy. Table 3 and Table 4 indicate 
that in either F1 score or AUC, the multiple instance 
learning method is significantly better than the single 
instance learning method correspondingly on all par­
titions. At the same time, MIboost obtains the best 
performance all along as well.

As mentioned in section 3.2, there are two main 
feature selection methods in FSFD. We want to know 
whether the experiment conclusions about data set I 
constructed by P-values will change when using Re­
liefF scores, another feature selection method.
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Therefore, extra experiments for data set II are con­
ducted with similar setting. The same conclusion can 
be drawn according to Fig.1, d–f, Table 5, Table 6 and 
Table 7, that the multiple instance learning method is 
notably better than the single instance learning method 
correspondingly on all partitions. MIboost is still the 
best methods in all metrics and on all partitions.

Conclusions. In this paper, we disclose that the es­
sence of the FSFD when every company has several time 
sequential Financial Statements to analysis is a typical 
multiple instance learning problem. Compared with tra­
ditional single instance learning methods which have 
advanced classification and prediction capabilities to fa­
cilitate auditors in accomplishing the task of manage­

ment fraud detection, multiple instance learning meth­
ods have better performance and properties. It is proven 
by the experiment results that multiple instance learning 
has consistent superiority not only in class-imbalance, 
but also with a small number of training data. In addi­
tion, this significant superiority has been kept under two 
main feature selection methods. It is clear that a good 
solution to the problem inherent in the FSFD may also 
illustrate a promising remedy for other financial prob­
lems with similar underlying difficulties. The use of the 
proposed methodological framework which is the main 
contribute in this study, could be of assistance to audi­
tors, both internal and external, to taxation and other 
state authorities, individual and institutional investors, 

Table 4

AUC on data set I (mean ± std.). The best performance (paired t-tests at 95 % significance level)	
and its comparable results are bolded. The last line shows the win/tie/loss counts of MIBoost	

versus other methods (the bigger the value is, the better the performance is)

I-AUC AdaBoostM1 MIBoost LibSVM miGraph KNN CKNN

I-1 0.71 ± 0.06 0.77 ± 0.04 0.62 ± 0.03 0.72 ± 0.04 0.61 ± 0.04 0.65 ± 0.05

I-2 0.70 ± 0.03 0.78 ± 0.03 0.61 ± 0.03 0.74 ± 0.03 0.62 ± 0.03 0.66 ± 0.04

I-3 0.70 ± 0.02 0.78 ± 0.02 0.61 ± 0.02 0.73 ± 0.02 0.62 ± 0.03 0.67 ± 0.02

I-4 0.70 ± 0.02 0.78 ± 0.02 0.61 ± 0.02 0.72 ± 0.02 0.63 ± 0.02 0.65 ± 0.03

I-5 0.70 ± 0.02 0.79 ± 0.02 0.61 ± 0.01 0.72 ± 0.02 0.63 ± 0.02 0.66 ± 0.02

I-6 0.69 ± 0.02 0.79 ± 0.01 0.60 ± 0.01 0.71 ± 0.02 0.64 ± 0.02 0.65 ± 0.03

I-7 0.69 ± 0.02 0.78 ± 0.01 0.60 ± 0.01 0.71 ± 0.02 0.63 ± 0.02 0.65 ± 0.02

I-8 0.68 ± 0.02 0.78 ± 0.01 0.59 ± 0.01 0.69 ± 0.02 0.63 ± 0.02 0.65 ± 0.02

I-9 0.66 ± 0.03 0.76 ± 0.02 0.58 ± 0.02 0.67 ± 0.02 0.61 ± 0.03 0.63 ± 0.02

Average 0.69 0.78 0.60 0.71 0.62 0.65

MIBoost:
W/T/L

9/0/0 9/0/0 9/0/0 9/0/0 9/0/0

Table 5

Accuracy on data set II (mean ± std.). The best performance (paired t-tests at 95 % significance level)	
and its comparable results are bolded. The last line shows the win/tie/loss counts of MIBoost	

versus other methods (the bigger the value is, the better the performance is)

II-Accuracy AdaBoostM1 MIBoost LibSVM miGraph KNN CKNN

II-1 0.67 ± 0.04 0.73 ± 0.03 0.69 ± 0.02 0.71 ± 0.03 0.68 ± 0.03 0.69 ± 0.03

II-2 0.67 ± 0.03 0.73 ± 0.03 0.68 ± 0.02 0.71 ± 0.02 0.68 ± 0.02 0.69 ± 0.03

II-3 0.67 ± 0.02 0.72 ± 0.02 0.69 ± 0.01 0.71 ± 0.01 0.68 ± 0.02 0.69 ± 0.02

II-4 0.67 ± 0.02 0.72 ± 0.02 0.68 ± 0.01 0.7 ± 0.01 0.68 ± 0.01 0.68 ± 0.02

II-5 0.67 ± 0.02 0.73 ± 0.02 0.68 ± 0.01 0.71 ± 0.01 0.67 ± 0.01 0.69 ± 0.02

II-6 0.67 ± 0.01 0.73 ± 0.02 0.67 ± 0.01 0.70 ± 0.01 0.69 ± 0.01 0.69 ± 0.03

II-7 0.67 ± 0.01 0.73 ± 0.01 0.67 ± 0.02 0.70 ± 0.01 0.68 ± 0.01 0.68 ± 0.05

II-8 0.67 ± 0.01 0.72 ± 0.02 0.66 ± 0.01 0.70 ± 0.02 0.68 ± 0.02 0.72 ± 0.03

II-9 0.67 ± 0.02 0.71 ± 0.02 0.65 ± 0.02 0.68 ± 0.02 0.66 ± 0.02 0.69 ± 0.03

Average 0.67 0.72 0.67 0.70 0.68 0.69

MIBoost:
W/T/L

9/0/0 9/0/0 3/6/0 9/0/0 9/0/0
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stock exchanges, law firms, economic analysts, credit 
scoring agencies and to the banking system.

Bag generators as the preprocessing step of multi­
ple instance learning problems are more important 
than the selection of multiple instance learning algo­
rithms in some sense. Therefore, future research will 
replicate this study by using quarterly financial state­
ments. Using quarterly data may increase the amount 
of instances in bags, which is beneficial for analyzing 
data structure deeply to construct complex bags. It 
hopes to develop a more powerful analytical tool for 
FSFD by multiple instance learning.
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Мета. Виявлення випадків фальсифікації фі­
нансової звітності (FSFD) на основі машинного 
навчання є дуже важливою проблемою для зни­
ження фінансового ризику та підтримки впоряд­
кованого ринку. Мета даного дослідження поляга­
ла в розробці моделі багатоваріантного навчання, 
що здатна виявляти й передбачати ризик фальси­
фікації при складанні фінансової звітності.

Методика. Кожна пара складалася з алгоритму 
одноваріантного навчання та відповідного алгорит­
му багатоваріантного навчання, що були підготов­
лені з використанням набору даних 484 шахрай­
ських компаній, а також 902 нормальних компаній 
з формуванням 4158 варіантів з пункту 8 Форм 10-K 
Комісії з цінних паперів і бірж США (SEC).

Результати. Емпіричні дослідження показу­
ють, що MIBoost, miGraph і CKNN перевершують, 
алгоритми AdaBoostM1, SVM і KNN, відповідно, у 
точності, оцінці F1 і площі під кривою робочих ха­
рактеристик приймача (AUC), що доводить той 
факт, що алгоритм багатоваріантного навчання 
може відповідати FSFD краще, особливо при дис­
балансі класів і нечисленних повчальних даних.

Наукова новизна. Коли мітка, що виявляє, 
відповідна за часом локальній фінансовій звіт­
ності, додається колективно до груп фінансової 
звітності однієї компанії, не враховуючи, що ця 
мітка надається якій-небудь окремій фінансовий 
звітності, це багатоваріантна проблема. Дослі­

дження представляє собою розробку оригінальної 
моделі багатоваріантного навчання FSFD.

Практична значимість. У роботі врахуваний 
той факт, що деякі аудитори невдоволені алгорит­
мами навчання на основі одиночних міток, тому 
що існує багато варіантів в одній компанії без мі­
ток. Запропонована модель є більш обґрунтова­
ною та точною.

Ключові слова: фінансова звітність, вияв-
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Цель. Выявление случаев фальсификации фи­
нансовой отчетности (FSFD) на основе машин­
ного обучения является очень важной проблемой 
для снижения финансового риска и поддержания 
упорядоченного рынка. Цель данного исследова­
ния заключалась в разработке модели многовари­
антного обучения, которая способна обнаружи­
вать и предсказывать риск фальсификации при 
составлении финансовой отчетности.

Методика. Каждая пара состояла из алгорит­
ма одновариантного обучения и соответствующе­
го алгоритма многовариантного обучения, кото­
рые были подготовлены с использованием набора 
данных 484 мошеннических компаний, а также 
902  нормальных компаний с формированием 
4158 вариантов из пункта 8 Формы 10-K Комис­
сии по ценным бумагам и биржам США (SEC).

Результаты. Эмпирические исследования по­
казывают, что MIBoost, miGraph и CKNN пре­
восходят алгоритмы AdaBoostM1, SVM и KNN, 
соответственно, в точности, оценке F1 и площади 
под кривой рабочих характеристик приемника 
(AUC), что доказывает тот факт, что алгоритм 
многовариантного обучения может соответство­
вать FSFD лучше, особенно при дисбалансе клас­
сов и немногочисленных обучающих данных.

Научная новизна. Когда обнаруживающая мет­
ка, соответствующая по времени локальной финан­
совой отчетности, прилагается коллективно к груп­
пам финансовой отчетности одной компании, не 
учитывая, что эта метка присваивается какой-то от­
дельной финансовой отчетности, это многовари­
антная проблема. Исследование представляет со­
бой разработку оригинальной модели многовари­
антного обучения FSFD.

Практическая значимость. В работе учтен 
тот факт, что некоторые аудиторы недовольны ал­
горитмами обучения на основе одиночных меток, 
потому что существует много вариантов в одной 
компании без меток. Предложенная модель явля­
ется более обоснованной и точной.

Ключевые слова: финансовая отчетность, 
выявление случаев мошенничества, машинное 
обучение, многовариантное обучение miboos
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