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nedopmanuii mpy nocieaoBaTeIbHOM U3MEHEHUHU pa3Me-
POB MOJIETUPYEMOH MOIOCTH. 30HBI pa3pyIlIeHHs Onpee-
JIIIOTCSL IO KPUTEpHI0 MpodyHOCTH Xoeka-bpayna. Yuc-
JIEHHOE MOJIEJINPOBAHKE BBIOIHEHO AJIs pa3IMYHbIX TOp-
HO-TEOJIOTHYECKHUX YCIOBUH U pa3MepoB BeIpaOOTKH. Jlist
MOCTPOCHNUST 000OIIAIONINX 3aBUCUMOCTEH NCTIONb3YeTCs
METOJ, HSTMHECHHOTO OIICHMBAHMS, COUCTAIOIINI MHOMKE-
CTBEHHYIO PETPECCHIO U JUCIEPCHOHHBIN aHAIIN3.

PesyabTarbl. BbllIOHEHB MHOTOBApUAHTHBIE pacue-
THI HANpPsDKEHHO-1e(hOPMHPOBAHHOTO COCTOSTHHMSA 00Ja-
CTH, COZIEpIKaIllell CTPYTOBYIO JIaBy U JAEMOHTAXHYIO Ka-
MepY, U1l pa3iIU4HbIX 3HAYEHUH IPOYHOCTYU IIOPOJ, MOLL-
HOCTH YTOJIBHOTO TIIacTa, yOUHBI pa3paboTKu U pazme-
POB JI€MOHTa)KHOTO IuTpeka. IlomydeHHBIE pe3ylabTaThl
0000IICHBI ISl PA3JIMYHBIX TOPHO-TEOJIOTHYECKUX YCIIO-
BHI B BUJI€ 3aBUCHUMOCTEN BBICOTBI 30H pa3pyIllICHUs U Iie-
peMelieHnH KOHTypa JJEeMOHTa)KHOIM KaMephl OT Iepednc-
JICHHBIX BBIIIE (h)aKTOPOB.

Hay4ynasi HoBu3HA. BriepBble yCTaHOBJIEHBI 3aKOHO-
MEPHOCTH Pa3BUTHA AedopMariii u GOpMHPOBAHUS 30H
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BOU naBbl. [loydeHsl pacueTHbie POPMYIIBI IS OTpe/Ie-
JICHUSI OCHOBHBIX T€OMEXaHMYECKUX XaPAKTEPUCTHK, HE-
00XOIMMBIX [UTS BBIOOpA crrocoba KPeTuIeHUs! IEMOHTaX-
HOM KaMephl B Pas3MYHBIX TOPHO-TEONIOTHIECKUX YCIIO-
BUSIX.
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Purpose. As for the reliability analysis of complex engineer problems, the nonlinearity and implicitness of the limit
state functions always stand in the way. On one hand, the nonlinearity influences the convergence computation of some
reliability problems when using most methods of reliability analysis. On the other hand, the implicitness means that in-
formation of the partial derivatives of the limit state function is impossible to obtain, which is necessary for most of the
reliability methods. In order to overcome these difficulties, the paper presents a new general most probable point based
(MPP-based) approach for computing the reliability.

Methodology. Within the framework of the proposed iterative algorithm, we presented new strategies for searching
three types of the approximate MPPs by merely using the input and output information of the limit state function. In ad-
dition, the found MPPs can be used for updating the constructed response surface of the limit state function, which in its
turn helps to find a more accurate MPP.

Findings. As illustrated by the examples, the proposed method provides excellent precision and convergence for the
calculation results.

Originality. Three types of the approximate MPPs are firstly presented for updating the constructed response surface
of the limit state function, whose input and output information is sufficient.

Practical value. The proposed method does not necessitate any requirements for the detailed format and complexity
of the limit state functions, which is an advantage. Hence, it is especially applicable to the implicit case of complex engi-
neer problems.
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Introduction. As for design engineers, the reliability
analysis necessitates the design procedure due to uncer-
tainties of control and prediction on influential factors in
engineering design. During the last twenty years, the the-
ory and methods of mechanical reliability have been deve-
loped significantly. Generally, the two types of methods
are available for reliability analysis [1]. The first type con-
tains the ‘analytical’ methods that are based on the con-
cept of an MPP of failure. A case in point is the Rackwitz-
Fiessler [2] algorithm (or called the JC method), which is
suggested by Joint Committee on Structural Safety (JCSS)
as the standard method for engineering application. How-
ever, such methods are not applicable to the case of the
implicit limit state functions, which should be solved by
numerical simulation. Furthermore, the convergence of
computation cannot be guaranteed for tackling some prac-
tical nonlinear reliability problems. With regard to these
difficulties, Monte Carlo sampling methods, as the second
type, are widely used. Although a very powerful method,
Direct Monte Carlo Simulation (DMCS), is computatio-
nally too demanding for assessing the probability of failu-
re. Because of the inefficiency of DMCS, several varian-
ce-reduction methods such as importance sampling [3],
subset simulation [4], line sampling [5] and so on have
been developed in the past in order to improve the compu-
tation precision and efficiency [6]. The Monte Carlo simu-
lation and the improved methods mentioned above are
universally valid to most reliability problems. However,
as compared to the ‘analytical’ methods, their computa-
tion are still to some degree large-scale.

Instead of using Monte Carlo sampling methods, this pa-
per presents another general MPP-based approach, which
does not necessitate any requirements for the detailed format
and complexity of the limit state functions. In fact, the pro-
posed method can find more accurate MPP based on initial
properly chosen failure points on the failure surface accor-
ding to certain strategies. Hence, it is especially applicable to
the implicit case. Besides, compared with the prevailing
standard JC method, the new method excels in computation
convergence as proved by the examples in this paper.

Reliability theory. The reliability computation inclu-
des the evaluation of integrals over arbitrary non-dimensi-
onal continuous joint Probability Density Function (PDF),
shown as follows

pr= [ Ll X x, ) dxy.dx,, (1)

G(x)=<0

where p, is the probability of failure; x = (x, x,,..., x,)
denotes n arbitrary independent random variables; f.(x;,
X5, ..., X,) represents the joint PDF of x,, x,, ..., x,; G(X) is
the limit state function (or performance function). It is de-
fined so that it is negative for the states whose probability
is being calculated.

Generally, the mechanical models (such as mechanical
structure, mechanism and so on) are too complex, and
there exits the inaccessible explicit analytical expression
for the performance function. Meanwhile, f.(x|, x5, ..., X,,)
dx, - dx,...dx, in (1) usually involves high multi-dimensi-
onal integration. Hence, direct computation of (1) is diffi-
cult. From the perspective of convenience, equation (2) is
easier for reliability computation than(1).
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where the uncorrelated normalized variable u = T(x). T is
a generally nonlinear transformation that depends on the
types of random distribution of X. For more details, please
see Rosenblatt’s transformation [7], respectively. The reli-
ability index B can be defined as the distance from the ori-
gin to the MPP u”*, which is the closest point on the bound-
ary of the performance function g(u) = 0 in the standard
normal space, as shown by Fig. 1.

Sw)

reliability index /£ } o
A 8 Important direction a

Fig. 1. The reliability index [ represented by the mini-
mum distance from the origin to the boundary of the
performance function g(u) = 0

Once the MPP u” and the reliability index 3 are found,
probability of failure p,can be computed as follows.
pr=P(=p). 3)
The FORM method is developed based on (2) and its
iterative algorithm can be expressed as

gt = 80~ (Vog(u')u’

4

I Vug@)l @

ak — Vug(uk) ; (5)
IV.g@)l

uk+ 1 _ —Bkd.k, (6)

where u” is the k-t4 iterative point of the MPP u*; ¥ is the
k-th iterative index of the reliability index B; ot¥ is the k-th
iterative vector of the important vector o and its direction
is set as the minus gradient of the limit state function g(u)
at u*. The direction of u**! is the same as a*. The above
iterative process of (4-06) is expressed in Fig. 2.

u? r 3

]k

ﬁk }k+l

0 > ul

Fig. 2. The iterative process of the reliability index [3
and the MPP " in the standard normal space
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¥+ 1is chosen as that

lk+1

In Fig. 2, the direction of the line
of at¥. And u** ! is the intersection between the line
and the limit state function g(u) = 0. If the nonlinearity of
the limit state function g(u) = 0 is strong, the above itera-
tive process may diverge. For example, the limit state
function g(u) = 0 in Fig. 3 is quite nonlinear. And the di-
rection of the line /** 2 is the same as &' *!. Apparently,
there exists no intersections between the line /¥ and the
limit state function g(u) = 0. Hence, the FORM method
fails in this situation. The fact of the matter is that its abil-
ity of searching the MPP u” is not competent for the non-
linear reliability problem. In the following paper, a new
method is proposed for finding the MPP u* based on three
strategies. The numerical examples in the following paper
verify that the three strategies together have a more prefer-
able ability to search the MPP u”.

w2t .
!k._ {k

;k+l

g(u)=0
0 » ul

Fig. 3.The divergent iterative process of the reliability
index Pand the MPP u* in the standard normal space

The proposed methodology. For the sake of conve-
nience, arbitrary random variables x in reliability prob-
lems can be transformed to the standard normal u by
means of the nonlinear transformation T. Let us find the
MPP u” in standard normal space. Firstly, at the step

k = Oth, find the initial points {ufjo)( j= 1...m)} on the bo-
undary of the limit state function. Secondly, at the step
k > Oth, find the MPP u” derived from the information pro-
vided by initial points {u&o) (= 1...m)} according to cer-
tain strategies.

Initial points obtained on the boundary of the limit
state function. For the initial step k& = 0th, choosing initial

random points {ug.o) (j= lm)} in standard normal space

based on certain strategies could properly accelerate the
convergence for computing the MPP to some degree. Es-
pecially, if the random points fall into the neighborhood of
the MPP, it would be easier to find the MPP with the infor-
mation provided by these random points. The direction &
from the origin of coordinate to the MPP in the failure
domain is the important direction as shown in Fig. 1. The
vector ot points to the direction, which has greatest impact
on the limit state function in the standard normal space,
and its expression is as follows

T
aza_g_{a_ga_g 3_g}

ou' | o, Ou,” du,

. 7)
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Shan, S. and Wang, G.G. [8] replaced the important

s

u u
way, the inner loop for searching the MPP is avoided.

Hence, the trivial nested optimization for reliability beco-
mes the more efficient single loop optimization. Inspired
by this, the paper finds the MPP towards this important
direction. First, the finite difference method in (8) is used

to approximate the gradient %
u

direction aa_g by g—‘g , where u is the mean value. In this

og — - - = —
—= = _[g(ul,...,Ui—l,ui,qu,...,un)_

o, ®)
—g(ur, ..., Uiz, u; +Au[,u[+1,...un)J/Au,- (i=1~n).

If the limit state function should be solved by the nume-
rical simulation, then n + 1 times simulations are required.

After that, the paper builds a line /; through the origin
with the above rough approximation as the direction.

oM U
O R e )
ou, Jdu, Ju,

At this time, there is an intersection u, between the line
I, and the limit state function g(u) = 0, as depicted in Fig. 4.

Uy

gw)=0

Uy u;

0

Fig. 4. The intersection point u, between the line I, and
the limit state function g(u) = 0

In engineering applications, the limit state function
g(u) = 0 is usually implicit and nonlinear. Direct solution
of u, through g(u) = 0 and lines /; are not easy. However,
numerical iterative solutions are possible by means of the
secant method as shown in (10).

(2 = pril (tp+1 _tp) pH.
(g -g"°
up+2 — tp+2 *uo;
g =gur?);
g’ =g(0), g'=g(,);
=0, t'=1.

(10)

Where u, is a point chosen on the line /, 0is a zero vec-
tor with 1 X n.
Once the intersection u, is found, generate n random

point {ug‘”( j= 1...m)} around u, according to (11) as the

initial starts at the step k= Oth.
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u? =u, +C*y,,, *0, (11)

where o = [0,;, Oy, ..., Oy,] is the standard deviation of
random variables X; v,,,, is @ random value ranging from
—1 to I; Cis a coefficient being the value equal to 0.1 in
this paper.

The lines {/;(j = 1,..., m)} between origin and

{uff°>( Jj= 1...m)} can be obtained, shown as follows.

u u u

L= = ==y (j=1,...,m). (12)
(0) (0) (0)
u;; U, u;,
'y
u2
; (o)
u[”\\ “1“
\uioa
I
L \u{m g(u)=0
0 - »ul

Fig. 5. The points u\”, u\” on the boundary g(u) = 0
derived from random points u\” , u\” at the step

k = 0th in two-dimensional case

Likewise, the intersections {uf/°>( ji=1, ...,m)} around

the point u, can be also derived from lines {/;,(j = 1,...,
m)} and the limit state function g(u) = 0. The above pro-
cess is shown in Fig. 5 with the two-dimensional case. By
using the secant method shown in (13), the initial intersec-

tions points {uf,o)(j =1, ...,m)} can be computed.

@ =)

p+l

(gj _g;])

pHl.

p+2 __ 4p+l
1=t ol

J

A
2 pH2 g (0).
up =i el o)
gl =gy

gy =g(0), g)=g);

0 _ 1
=0, t;=1.
) g dg .
Sometimes, —> appears very unequal to —=, since
Ju Ju
there is no intersection between {/,(j=1,..., m)} and the

limit state function g(u) = 0. As shown in Fig. 6, the con-
tour line of g(u) is the example 2 with the parameter P = 1

in the further described example 2. The nl, = aa_g and

u,
n2, = aa_g* are the gradients of g(u) at the origin and the
u

MPP, respectively. Obviously, both are very unequal.
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There are no intersections u, between the limit state func-
tion g(u) = 0 and the line /, along the direction of n1,. In
other words, no solutions can be found in (10) for this
case. Hence, the above method cannot find the initial
points {ui.o)( j=1, m)} on the boundary of the limit state

function g(u) = 0.

4 \ Ve
".\ ".\ n2
2N
a “ .......
x\ MPP: o
0 \\, = /
\ o
A
glu)y=5.01
-4 . ) ; i
-4 -2 0 2 4

Fig. 6. No intersection points u, between the limit state
function g(u) = 0 and the line I, along the direction
ofnl;

This case directly generates random points

{ug.o) (= lm)} computed by (14) and work out the in-

tersections u” by the secant method. Repeat the above 2
steps, until n points {ug.‘”(j =1, ...,m)} on the limit state
function g(u) = 0 are found.

uffO) = C*’Yrand >ko-(,] = lm) (14)

Finally, the distance between the
{u(j‘”(j =1, m)} are acquired by (15).

origin and

BO = [u® |/ =1,....m). (15)

New strategies for searching the new MPP. The new
strategies for generating the new MPP is based on the lim-
ited information of the above initial points
{uﬁ-o)(jzl,...,m)} on the limit state function g(u) = 0.
The paper presents three methods for searching different
types of the new points as the newest MPP under different
situations at the k-th step.

The I-type point. At the k-th step, the available infor-
mation contains {u(/.")(j =1, ...,m)} , {B(j")(j =1, ...,m)} .

(k)

The middle point wu
{uh(j=1,...,m)} is figured out by (16).

as the average position of

—(k)
u =

SHES

Sud. (16)
Jj=1

Then follow the aforementioned secant method in Sec-
tion 3.1, the new line /*),,, the new intersection u{*
and the new reliability index B{*) , can be obtained, as il-

I-new
lustrated by Fig. 7.
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------

=ik}

ﬁ})

L-mew
4 T s
/ 2

0 sl

Fig. 7. The new MPP u" is derived from points u{®,

u'") on the boundary g(u) = 0 at the kth step in two-
dimensional case

Supposing B =max{B5-k’(j = 1,...,m)} , if the new
reliability index B{*),, corresponding to the new intersec-
*)

tion "), is smaller than B, then substitute u{" and

ﬁ(/ﬁ) for u(k) and (k)
q

I-new I-new

and {B(/k)(] =1, ,m)} .

The method concentrates on finding the local optimum
point within the local space (or called the internal space)

respectivelyin {u(j")(j =1, ...,m)}

covered by the existing points {u(j"’(j =1, ...,m)} .

The Il-type point.

From Fig. 8, we can find that there exists no I-type
point u([ffww, since the local optimum point cannot be
found within the internal space covered by u{* and u{".
Hence, for that case, the first method is infeasible.

u2 p®
new
(k) u(lk) (k)
Bl-new ul-new
(k)
u2

®
Pi

(k)
lII-new

) -
B> u®

(k) =
5, Yo gw=0

ul

0

Fig. 8. The second method for searching the new MPP
w\ .. based on points u, u® on the boundary

g(u) =0 at the k-th step in two-dimensional case

The second method is suggested for searching a new
MPP. In Fig. 8, it constructs a new hyperplane through
points {ug.’f)( j=1, ...,m)} at the k-th step. The equation of

the hyperplane P® is
u, u, 1
® LW
P — Uy Uy, 1 -0 (17)
Uy uy) 1

The expansion of (17) can be expressed as

46

DPu, +DPu, +...DWu, + D*) =0, (18)

n+l

where D{"(g=1,2,...,n) is the cofactor of the element
u(q=1,2,..., n), respectively in determinant P and is
defined as DIV = (~1)/*' M} . Here M|} is the minor of
the element u,, of determinant P®.

The new line ", through the origin and perpendicu-

lar to the hyperplane P® is

U, u,

® M —
M-new * (k) — (ky — °°° k)"
D D; D®

(19)

Also, using the secant method in (10), the new MPP
uit’ .. (called the II-type point) is available.
Supposing B :max{B‘j")(jzl,...,m)}, if the new

derived from u{’, is smaller
than () then

®, fuh(=1.,m} and
{B¥(j=1,...,m)} by substituting u(” and B for

(k)

1—new

reliability index

renew

(k)
u[lfnew and B

The Ill-type point.

In Fig. 9, the new MPP u!’ . searched by the second
method is obviously not the optimum point. Instead, the
optimum point lies in area A. Hence, the paper presents
the third method to find it.

(k)

—new >

respectively.

u2
k (k)
u(z ) ul-new
area A
aoN- -
’
| \
\
(k)
\\ R 7 Wipew
gu)=0
0 ul

Fig. 9. The new MPP u\? . searched by the second me-

thod is the optimum point in two-dimensional case

As can be seen from Fig. 10, two vectors are built

based on the best point ul*) , which are closest to the ori-

gin in {ug")(jzl,...,m)}. In Fig. 10, u{" closer to the

origin is better than u$"

in two-dimensional case and
uj,, =u{”’. One vector is 7" being from the MPP to the
origin of coordinate. The other is the normal vector n{"’ of
the hyper plane P® constructed by {u(j")(j =1, ...,m)}.
The resultant vector n® and its opposite vector n’;)
be acquired by the above two vectors.
Fig. 11 is partial enlargement of area 4 in Fig. 10.
Along the direction of n{", the u{%" is computed by (20).

new

can

wth =u, + on (=01, 20)

Where u%? is the iterative point at the h-thstep; C, is the

initial step length and can be chosen according to the ac-
tual problems.
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u2

0

Fig. 10. The third method to find the new MPP in
two-dimensional case

ul

)20
u2 (G
”—n AR nﬂ‘)
(k)
uhest
(k) (k)
n n
B Nk h+1)
new
(k)
new, (k)
111 — new ll(k’ h)
g(u) =0 new
0 ul

Fig. 11. The third method to find the new MPP in two-
dimensional case

Likewise, the u'%2) along the direction of n) can be

—new

also obtained by (21).

u®h = q® _&n(f‘n) (h=0,1,..). @n

—new best 2 h

Repeatedly compute (20) and (21) by increasing the
integer 4 until g(u%")<0 or g(u®"

new —new

) <0, which means

that a new point within the failure domain is found. After
(k)

new

that, builds the new line [{*) through the origin and u

(or u%" ") By means of the secant method presented abo-

ve, the IlI-type point uiﬁ)_new intersects between the limit
state function g(u) = 0 and the line /{*) can be found.

new

Supposing B =max{B(j")(j=1,...,m)}, if the new

reliability index B, derived from u{,, is smaller
than B, then {ug.")(jzl,...,m)} and

{B;")(j =1, ...,m)} by substituting u{ and B for uf;

1—new

rencw

and B .., respectively.

As for the second method, its jumping ability is rela-
tively larger than that of the third method. In other words,
the Il-type point i’ is usually far from the internal

—new
space covered by {ug.")(jzl,...,m)}, as can be seen in

Fig. 8. Hence, the external space neighboring the internal
space will be missed by the second method, while the third
method fills this vacancy. By combining both methods, the
ability of the external optimization in the external space
complementary to the internal space accelerates. There-
fore, the first method is responsible for the internal optimi-
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zation and the others for the external optimization. These
entire methods together carry out the global optimization
for searching the MPP.

The procedure for the proposed algorithm. The fol-
lowing process makes up the proposed algorithm for reli-
ability analysis, utilizing the above-described strategies
for searching the new MPP.

1. Generate initial points {ug.o’( j=1. .m)} properly
in standard normal space at the kth step = Oth.

2. By means of the method for searching different ty-
pes of the new points that was presented above, find the

new MPP based on the information {u(jk’( j :1,...,m)}
and {Bﬂk)(j =1, ---,m)} derived from the kth step.

3. If | ® fff& / Bin’?n <¢, the algorithm would have
converged. Here, BY) = min{l?)f/.")(j =1, ...,m)}, X =

= max{B(j")(j =1, ...,m)}.
For more details, please refer to Fig. 12.

- N
B =max{B’(j = 1...m)}

Generate Initial points

@ (j=1,....,m)}

Compute the new MPP

) — min(BO( = <
u?, by the first method k=k+1 B = min{B7(j =1...m)}
[BY, — Bkhal/Bihn < £2
4 ‘ A
[ B, < B= max {BP()j = 1...m)}? Yes, Renew {ul (j=1, ..., m)}and
No (B =1...m)} by uf=ufl,, |
and B |Jul |

Couple the new MPP
uff),., by the second method

. e (k)
No solutions of u(y,,

i ; o s N

exit solutions of W, Renew {u® (j=1, ..., m)}and
[ Biten < BY'= max{B(j = 1...m)}? BYG = 1...m)} by uP=uf,, |—]
¥No and B= fJuff,.|

Couple the new MPP
uff,., by the third method

N . . (k) . .
No solutions of Wi, | exit solutions of ul) .,
Renew {u (j=1, ..., m)}and
(k) (0 (Y. 19
Liew < By '= max =1...m)}? .
[ e <t mon i = 1. B0 = 1) by W= uil, ]
No and B [[uli |
Case 1: uf),,, Ui, and ufy, exit
e, = mmin | [l (Wi}

Let = max (B = 1...m)}
Renew {u? (j=1,...,m)} by

. o ©
Case 2: u),,. uff)., exit

i, = min L. [ sy
Case 3: )., Ui}, exit
uie, = min {[[uf, ||, [0/}

Fig. 12. The procedure for the proposed algorithm

Numerical example. A number of examples are used to
demonstrate the superiority of the presented method. To
show the accuracy and the computational effectiveness,
example 1 is used for comparing the results computed by the
JC method and the Monte Carlo method. While example 2
and 3 show that the presented method has excellent con-
vergence for high nonlinear limit state functions, which can’t
be solved by the JC method. Lastly, example 4 demonstrates
that the presented method is quite suitable for the complex
implicit reliability problems in engineering applications.
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Example 1. A cantilever beam made of isotropic mate-
rial, as shown in Fig. 13, is subjected to a distributed trans-
verse load [9].

Fig. 13. A cantilever beam

The performance function of the tip displacement is
expressed as

8 =G(X)=QL*@8EI) -4,

where X=[0, L, E, I]”, in which Q is the constant distrib-
uted transverse load acting on the beam, L symbolizes the
length of the beam, £ is the Young’s modulus of the beam
material, and 7 is the moment of the cross-section. O, L, E,
[ are normally distributed and their distribution parame-
ters are provided in Table 1.

Different methods are used to compute the example.
The sampling size for the Monte Carlo method is 107. The
results are shown in Table 2. The reliability results compu-
ted by the proposed method are quite close to those of the
others.

Example 2. Consider a highly nonlinear limit state
function [10]

G(x)=(1/P) ln{exp[P(l +x—x)]+
+exp [P(S —5x —x, )]} ,
where x; ~N(0, 1) and x, ~ N(0, 1). P is a parameter with
P =1 or P=10. As the limit state function is nonlinear as

shown in Fig. 14, the JC method cannot solve it due to
nonconvergence. A new method based on the explicit gra-

Table 1

The distribution parameters of the basic random
variables in example 1

Mean () Deitizrtlﬁilr(:o) Distribution
O N/m led 3e3 Normal
Lm 5 2e-3 Normal
E (NIm?) 7.3e10 1e9 Normal
I(m*) 1.067¢-3 le-7 Normal
Table 2
The reliability results of example 1
Method Pf Relative error
\[@ 0.02255 0.4 %
The proposed P;, 0.02255 0.4 %
Monte Carlo 0.02251-
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dient function of the limit state function was presented to
compute the example [10]. In this paper, only the output
response of limit state function rather than its explicit gra-
dient function is used. The results of the both methods are
the same. The reliability indices are 2.2995 and 1.8455,
respectively corresponding to P =1 and P = 10.

Fig. 14. The limit state function of example 2

Example 3. Consider another highly nonlinear limit
state function

G(x)=g(x)=x +x, -4,

where x; ~N(3, 1) and x; ~ N(2.9, 1). The JC method can-
not solve it as well. However, the presented method well
solves it with the result of the reliability index 2.3909. Be-
cause the difference between the mean of and is very
small. For the sake of approximate estimation, supposing
X, =X, =2.95, the MPPis u =u; =1.69, where y, and y,
are the standard normal variables transformed from x, and
x,. Fig. 15 shows the limit state function in the standard
normal space. The approximate reliability index is

B=\/§ =2.3902, which is almost the same as that
computed by the presented method.

uy

Fig. 15. The limit state function of example 3

Example 4. As for the turning machine, the drive-en-
abling reliability (DER) and the kinematic precision relia-
bility (KDPR) of the angle displacement errors Ay are in-
vestigated. The original data are taken from the paper wri-
tten by Lai, X. M. and Duan, J. [3]. As shown in Fig. 16,
the turning machine is assembled on the machine frame at
the assemblage Pointl and Point2.
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Sliding joint

Cylinderl f Cylinder2 Clearance
contact jointl

Clearance
contact joint2
Clearance
contact joinl3

Link1

Resistance force ;

Driving force Point2

. Link2
e

Pointl o

Global coordinate Resistance load
.\I\'!ﬂL'm

x4

Fig. 16. The turning machine

The driver (composed of Cylinderl and Cylinder2)
generates driving force to overcome the resistance force
(RF) derived from resistance loads. The driving speed is
about 0.015 m/s and last 8s. During the running process,
the mean values and standard deviations of the main influ-
ential factors are given in Table 3.

In the research of Lai, X. M. and Duan, J. [3], the the-
ory for computing the DER and KDPR was studied. As
for the mechanism, its limit state functions for DER and
KDPR are implicit, and they were solved by numerical
simulation [3]. Then it resorted to the Monte Carlo based
method, which is the important sampling method to com-
pute the DER and KDPR. In this paper, the output re-
sponses of the limit state functions are also solved by nu-
merical simulation. However, the DER and KDPR of the
mechanism are solved by the presented method. As shown
in Table 4, the reliability results of the proposed method
are quite close to those in the mentioned research [3].
Hence, this example shows the excellent accuracy and the
computational effectiveness of the proposed method for
implicit cases, which often are met in engineering appli-
cations.

Table 3
Influential factors of the turning machine
Nominal value R?Illlglel tOf ?i':rnd-
(or mean) of input p .
arameters parameters D§V1a—
p (A) tion

Dimensional L1=0.255m
size 12-0354m | *0-00Im

Pointl x=0.65m

. Pointl_ y=0.5m
Coordinate Point2 x = 0.99 m +0.001 m
Point2 y=1m
Friction
~ud = +
coefficient (1) ul ~u4=0.1 +0.01
Clearance size | C1 ~C3=0.0005m | £0.0001 m A3
Resistance
= +

Joads(RF) RF =5000 N +50 N
Velocity of V=0015m/s | +0.001/s
driver
Driving force DF =4260N 10N
Angle displace- 1o +0.2°
ment tolerance
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Table 4
The reliability results of DER and KDPR

Probability of failure (10~ ) DER KDPR
Method in Ref. 3 6.25 2.148
The proposed method 6.26 2.146

Conclusion. A general MPP-based method is present-
ed for computing the reliability problems. The concept
and the implementation of the presented method are ex-
plained in details. The method is constructed based on
searching the new MPP by merely resorting to the output
response of the limit state function. No explicit gradient
functions of the limit state function are used in the whole
searching process. Hence, the new method is applicable
to complex implicit engineering problems, which should
be solved by numerical simulation e.g. finite element
analysis. As shown by the examples, the presented ap-
proach has excellent convergence for nonlinear problems,
which are met in engineering design quite often. Since the
new method has no requirements (e. g. nonlinear or linear,
explicit or implicit) for the limit state functions, it is a
general method, which is suitable for most engineering
applications.
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Merta. [Ipu anami3i HAOIHHOCTI Y CKIaIHUX iHXKEHEp-
HUX 3aBJaHHAX, HETIHIMHICTH 1 HesBHICTh (QYHKIIN Trpa-
HUYHOTO CTaHy 3aBKIH CTBOPIOIOTH IIEPELIKOAH. 3 OTHOTO
00Ky, HCNIHIWHICTh BIUIMBA€ HA OOYMCIICHHS 301KHOCTI
JIeSKHUX 3aBJaHb 3a0e3MeYeHHs] HaIHOCTI P BUKOPH-
CTaHHI OUTBIIOCTI METO/IB aHAJI3y HAIIHHOCTI. 3 1HIIIOTO
00Ky, HEsIBHICTh O3Havae, 10 iH(GOpMALliIo 111010 pHUBaT-
HUX NOXITHUX (YHKIIT TPaHUYHOTO CTaHy HEMOXIIUBO
OTPHMATH, IIPOTE BOHA HEOOX1/THA [T OUTBIIOCTI METOIIB
3a0e3nedeHHs HauiitHoCTi. s mogonaHHs UHMX TPYIHO-
1B, y poOOTI 3aIpOIIOHOBAaHMI HOBH 3arajbHUAHN TiAXia
110 00YMCIIeHHs HaJiHHOCTI Ha OCHOBI HAHOIIBII BipoTiI-
Horo 3HaueHHs (MPP).

MeTtoauka. Y paMKax IPOIIOHOBAHOTO iTepamiiHOTO
aJTOPUTMY MH TPEACTABISIEMO HOBI CTpaTerii ISl MONTy-
Ky TPbOX THUIIB NMPHUOIM3HUX HAMBIPOTIJHILIMX 3HAYCHb,
BUKOPUCTOBYIOUM BXIiZIHY W BUXIiJHY iH(OpMamiro mpo
¢GyHKII{ TpaHWUYHOrO craHy. 3HaiJieHi HaWBiporimHimI
3HAYEHHS! MOXYTbh OyTH BHKOPHCTaHi JJIsi KOPUTYBaHHS
1o0y10BaHOT OBEPXHI BIATYKY (yHKIIi TPaHUYHOTO CTa-
HY, 1110, Y CBOIO 4epry, JloloMarae 3HaiTH HalO1IbII TOU-
HE HalBipOTiIHIIIC 3HAYCHHS.

PesyabTaTu. Sk mokazaHo Ha MpPUKIJIALax, MPOMOHO-
BaHUI cmoci0 3a0e3redye 9yIOBY TOYHICTH i 30DKHICTBH
pe3ynbTaTiB 00UHCIICHb.

HaykoBa HOBM3HA. Yrepiie TpeacTaBlIeHI TPH BUAN
MPUOIM3HUX HANBIPOTIAHIMKMX 3HAYEHD JUISI KOPUTYBAHHS
no0y10BaHOT HOBEPXHI BIATYKY (DYHKIII1 [PAHUYHOTO CTaHy
3a JIOCTATHBOI KUTBKOCTI BX1IHOT Ta BUX1IHOT iH(OpMAIIii.

IMpakTnuna 3nauumicTs. [lepeBara npornoHoBaHOTO
croco0y y BiZICYTHOCTI SIKUX-HEOY/Ib BUMOT JI0 JIETATBHO-
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ro ¢opmary Ta CkiaaHOCTi (QyHKIIT IPaHUYHOTO CTaHYy.
OTxe, BiH 0cOOJIMBO 100Ope 3aCTOCOBHHUHN y pa3i HEIBHUX
CKJIQJIHUX 1H)KCHEPHHX 3aBIaHb.

KuarouoBi caoBa: gyukyis epanuunozo cmany, Haugi-
PO2IOHIWE 3HAYEHHS, PO3PAXYHOK [HOEKCi8

Heas. IIpu ananuze HaJEKHOCTH B CIIOKHBIX HMHXKE-
HEpHBIX 33jauaX, HEJIMHEHHOCTh U HESBHOCTh (DYHKIMI
NPE/IENIbHOIO COCTOSTHHSI BCETrla CO3/AI0T MPEISITCTBHS.
C oHO# CTOPOHBI, HETMHEWHOCTD BIUSIET Ha BHIYNCIICHNE
CXOIMMOCTH HEKOTOPBIX 33/1a4 00ecTieueHNsl HaiEKHOCTH
IIPY WCIIOJIB30BAaHUU OOJIBIIMHCTBA METO/IOB aHA/IN3a Ha-
nexxHocTH. C Apyroi CTOPOHBI, HEIBHOCTh O3HAYAET, YTO
MH(OPMAIIMIO O YaCTHBIX MPOM3BOIHBIX (YHKIHUHU TIpe-
JIETTBHOTO COCTOSIHUSI HEBO3MOKHO TIOJIyIHTh, OHAKO OHA
HeoOXomuMa ISl OOJIBIITMHCTBA METOMOB OOECIICUEHUS
HaJEeKHOCTHU. 1 IpeonosieHns 3TUX TPyAHOCTEH, B pa-
0oTe MpeIyIoKeH HOBBIM OOIIMIA MOAX0A K BBIUYMCICHHUIO
HaJISKHOCTH Ha OCHOBE HanboJjiee BEPOSITHOrO 3HAYCHUS
(MPP).

Mertonuka. B paMkax npeanaraeMoro UT€palioOHHO-
TO JTOPUTMa MBI MPEACTABISIEM HOBBIE CTPATETHU JUIS
MIOMCKA TPEX TUIIOB NMPHOIM3UTENILHBIX HauboJIee BEeposiT-
HBIX 3HaYEHHI, NCTIOB3YsI BXOAHYIO M BBIXOIHYIO HH(OP-
Manuio o GpyHKIUH IpenesibHoro coctosianst. Halinennsie
Haubomee BEPOSTHBIC 3HAYCHUS MOTYT OBITH HCIIOJb-
30BaHbl AJIs1 KOPPEKTUPOBKH MOCTPOCHHOH MMOBEPXHOCTH
OTKJIMKA (DYHKIMU MPEIEIBHOTO COCTOSHUS, YTO, B CBOIO
odepernb, TOMOTraeT HaiTH OoJiee TOUHOE Hauboee Bepo-
ATHOE 3HAUCHHE.

Pe3yabrarbl. Kak niokazano Ha npuMepax, npejiara-
eMBIi Ccroco0 obecreunBaeT MPEBOCXOAHYI0 TOUHOCTh U
CXOJUMOCTb PE€3YJIbTATOB BHIYUCIICHUN.

Hayunas noBu3na. BriepBbie npe/icTaBiieHbl TPH BU-
Jla TIpUOJM3HUTENIFHBIX HauOoyiee BEPOSTHBIX 3HAYCHHN
JUIsl KOPPEKTHPOBKHU ITOCTPOSHHOM NOBEPXHOCTH OTKJIMKA
(DYHKIMH TIPECIBEHOTO COCTOSIHUS TIPH I0CTaTOYHOM KO-
JIMYECTBE BXOJHOM M BBIXOTHOHN NMH(OPMAIIUH.

IIpakTHuyeckas 3Ha4UMOCTb. [IpenmyiiecTBo npea-
JIaraeMoro crocoda B OTCYTCTBUH KaKUX-JIIMOO TpeboBa-
HUH K ToIpoOHOMY (hopMaTty U CIOKHOCTH (PyHKIMHA TIpe-
nesbHOro coctosHusa. CiaenoBaTeabHO, OH OCOOEHHO XO-
Ppo1Io NMpUMEHNUM B CJIyda€ HEABHBIX CJIOKHBIX MWHKCHEP-
HBbIX 3aJa4.

KiarwueBble ciioBa: @yrxyus npedeivHoeo cocmosi-
Husl, HauboNee seposmHoe 3HaveHue, paciém UHOeKcos.

Perxomendosano 00 nyonikayii 0okm. mexH. HaAyK

B. B. hamywenxom  [lama  HAOX00dceHHs — PYKONUCY
15.04.15.
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