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Purpose. For the problem of hybrid estimation, this paper proposes the self-adaptive generic interacting multiple-model
(IMM) data fusion algorithm for solving the model selection problem of IMM. To find the optimal solution of the hybrid esti-
mation problem, the history information of all the models was considered.

Methodology. According to the prior knowledge, the parameter space describing the model is mapped to the model set.
According to the similarity of the parameter variations, the parameter space is divided into several sub-spaces. Then, each sub-
space is mapped to a sub-model set. The model transition of each sub-model obeys the Markov Chain.

Findings. The center model of every sub-space was calculated out self-adaptively. The center models were organized as

the model set of the IMM algorithm.

Originality. The final output of the algorithm is the data fusion of the model set estimations using IMM algorithm. At last,
the simulation experiments showed that the proposed algorithm is superior to the traditional IMM algorithms under the condi-

tion of equivalent computation quantity.

Practical value. The experimental results show that the performance of the algorithm proposed was improved notably un-

der the condition of equivalent computation.

Keywords: hybrid estimation, Markov Chain, IMM, estimation fusion, adaptive generalized, model set

Introduction. The hybrid estimation problem is sourced
from the maneuvering target tracking. But for now, apart
from maneuvering target tracking, it is also used for fault di-
agnosis [1], target tracking [2], target location [3], online noise
identification, sectional linear filtering for a nonlinear sto-
chastic system and so on. Generally, the kinetic model of the
hybrid estimation system is constructed using the stochastic
hybrid system. As to the estimation of the system with an
unknown structure or with stochastically mutated structure, it
is hard to build a model with the time-varied parameters.
That is because it is required to identify the motion mode (or
the system structure) of the system at this moment when es-
timating the system states, to build an effective filtering
model. However, when the motion mode of the system is
uncertain or undergoes stochastic mutations, the convention-
al algorithms will delay or misreport the identification of the
system motion mode, resulting in severe deviations on the
estimations. This deviation will cause further misreport of
the identification of the system motion mode thus signifi-
cantly affecting the accuracy and stability of filtering. This is
the so described hybrid estimation problem [4].

To find the optimal solution of the hybrid estimation
problem, it is necessary to consider the history information of
all the models, which makes the complexity of the algorithm
grow exponentially [5]. Therefore, multi-model was devel-
oped out as a suboptimal solution in response to this kind of
problem. Currently, the multi-model estimation is the main-
stream for the research of hybrid estimation. Multi-model es-
timation, as the robust method for self-adaptive estimation,
can handle the situations of unknown structures, unknown
parameters or parameter variations and break down the com-
plex problem into several simple sub-problems. The basic
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idea of the multi-model estimation is: the parameter space (or
mode space) is mapped to model set; the filters based on the
models work in parallel; the system state estimation is just
the data fusion of the estimations of all the model filters.
Among the multi-model algorithms, the interacting multi-
model algorithm [6] by Blom and Bar-shalom is considered
as superior. The main idea of IMM is to design a series of
models to demonstrate the possible behaviors of the system.
The filters of the models work in parallel. The transition of
the models is based on Markov probabilistic matrix. The in-
teraction of the model filters is realized via the combinations
of the estimation states. By the weighted combination of the
model filter estimations, the final filtering state estimation is
obtained. For getting better performance in the use of IMM
algorithm, a model set containing more models and covering
more aspects is required. However, the addition of the model
count of the model set not only increases the complexity of
the computation but also lowers the performance of the algo-
rithm. This is because the overly detailed mode space may
destroy the completeness of the Bayesian interference and
the independence among the models. Excessive models will
cause unnecessary competitiveness, which makes the algo-
rithm performance drops. This makes the problem fall into
an awkward situation: on one hand, more models are neces-
sary in order to get better algorithm performance; on the oth-
er hand, excessive models will lower the performance of the
algorithm. For these reasons, researchers started to consider
the method to break the limitations of IMM algorithm. They
have attempted many modified methods. For now, there are
two effective methods for solving this problem: one is the
multiple-model estimation with variable structure [7] and the
other is model-set adaptive IMM algorithm [8]. By the analy-
sis of the above two algorithms, it can be known that these
two algorithms refine the IMM algorithm by using different
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model sets. The multiple-model estimation with variable
structure divides the whole model and forms the sub-model
sets. At each sampling moment, the sub-models are transi-
tioned based on different transitioning rules (including the
hard transitioning rule and the soft transitioning rule). At
each sampling moment, a specified sub-model set of the sub-
model sets is used [9]. The model-set adaptive IMM algo-
rithm self-adapts the model set according to the target varia-
tion at each sampling moment and it uses a self-adaptive
model set.

Based on the ideas of the multiple-model estimation with
variable structure and model-set adaptive IMM algorithm,
this paper proposes a self-adaptive generic interacting multi-
model algorithm. According to the prior knowledge, the pa-
rameter space describing the model is mapped into the model
set. Based on the similarity of the parameter variations, the
parameter space is divided into several sub-spaces. Each sub-
space is mapped to a sub-model set. The model transition of
each sub-model obeys the Markov Chain. According to the
self-adaptive method, the center model of each sub-model is
calculated out and the center models of the sub-model sets
are organized as the model set of the IMM algorithm. The
model transition of this model set also obeys to the Markov
Chain. The final output of the algorithm is data fusion of the
model-set estimations using IMM algorithm.

Self-adaptive generic IMM algorithm. The hypotheses
of the self-adaptive generic IMM algorithm are:

Hypothesis 1. In the self-adaptive generic IMM algo-
rithm, the model transition of the model set obeys the Mar-
kov Chain and the transition is irrelevant to the history meas-
urements.

Hypothesis 2. In the self-adaptive generic IMM algorithm,
the model set and the selection of the model meet the inde-
pendence and completeness of Bayesian Inference.

Assuming the model at timek—1of the self-adaptive
IMM algorithm ism,,m,,---m,, the corresponding model

probabili-ty is«', (k —1),u,(k —1),-+-,u, (k—1) . The model tran-
sition ob-eys the priori Markov Chain. The transitioning
probabilistic matrix is[P ], where P, denotes the probabil-
ity for model m, transferring tom . And the transition is ir-

relevant to the history measurements.

The self-adaptive generic IMM algorithm employs the
layered processing structure:

First Layer of the algorithm: according to the simila-
rity of the models, the modelm,,m,,---m, is divided to

m . The

My ey e, ey
m,.,---m, forms the sub-model sets 4, 4,,--- 4, . The predic-

tive probability of each model at time £ is calculated as
¢ = Pyl (k=1) j=12,n.

According to the idea of the self-adaptive model set, the
center model of each sub-model (4, 4,,-4,) at time k is

calculated by

m, =c,m +cym, +---+c,m,; i=12,-,q.
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In the above formula,/ denotes the corresponding model
count of each model set ( 4,, 4,,-- 4,).

Second Layer of the algorithm: the center models of the
sub-model sets 4, 4,,++ A, construct the model set M. The

probabilities of models in model set M at time k-/ are
wy (k=1),u,(k=1),---,u,, (k-1), respectively. The model

transition of model set M obeys the priori Markov Chain.
The transition probabilistic matrix is[ 7, ], where P, denotes

the transition probability fromm ,; to m,, . And the transition

is irrelevant to the history measurements.

The feature of the self-adaptive IMM algorithm is the
sub-model set and the center model will vary self adaptively
according to the system structure and characteristics. This
improves the generalization ability of the model set. From
time k—1tok the implementation steps of the generic IMM
algorithm are as follows:

Step I: Input interaction

Formodelm, (j=1,2,---q) Vm,eM .

Model predictive probability
9
cy :ZPU.uAl.(k—l). (1)

Model transition probability
5 (k=17 k=1 = Pl (k =1/, (k) 2") =

1
=—Fu,(k=1).
Cy

Hybrid input
q
k-1 k=)= Y & (k=1/ k=), ,(k=1/k-1);

9
Pk =1/k=1) =Y, (k=11 k=D){P (k=11 k~1)+

R k=1/k-1)=32" (k—-1/k-1)]
[ (k=1/k-1)—2"(k-1/k-D]}.
Step 2: Model conditional filtering
For modelm  (j=1,2,---q) Vm, eM , taken % (k—-1/
/k=1),P% (k—1/k-1) as the input, substitute it to the filter
based on modelm ,; and obtain the state estimation (k1K)

and the covariance P/ (k / k).

Step 3: Model probability update
The likelihood function

=1,2,--q) Vm, e M attime k is calculated as

of model m, (j=
Ay (k) = P((K) (), ) =
= P(z(k)/ m (k), & (k =1/ k—1);
PY(k-1/k-1))=
= N((z/ (k)— 2/ (k/ k=1))|0,SY (k)).
Where A (k) follows the normal distribution with

mean 0 and covariance S (k) .S (k) is the innovative in-
formation covariance matrix.
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The calibration probability of model
=12,---q) VmAjeMiS

m,; (=

() = P, (k) 2*) =

= lP(z(k)/mAj (k),zH)P(mA/. X
c
x(k)/zZ") = lAA/.(k)EAj.
¢

Wherec, is given by formula (1). ¢ is calculated by the
following formula.

¢= ZP(Z(k)/mAj (k), Z"’I)P(mAj (k)2 =

q
= ZAAJ' (O
J
Step 4: Output interaction
q
Rk 1 k)= % (k |y, (k);
J

Pk k)= Zq:uA,.(k/k){Pj(k/kH

F[X (k1 k) =%k ] R)[F %
x(k/k)y—=x(k/k)]"}.

The self-adaptive generic IMM algorithm utilizes the idea
of the multi-model estimation with variable structure, which
effectively reduces the model count of the model set and
avoids unnecessary model competitiveness affecting the al-
gorithm performance. The model set of the IMM algorithm is
obtained using the idea of the self-adaptive model set algo-
rithm. Therefore, the proposed algorithm has a certain degree
of self-adaptive ability.

The structure of the self-adaptive generic IMM algorithm

is shown as Fig.1.
Hybrid estimation
problem

Sub-model set4,

|

- | Center modelmAq
IMM model set M ‘
Estimate
Fusion output

Fig. 1. Structure of the self-adaptive generic IMM algorithm
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Experiments and analysis. In order to validate the ef-
fectiveness of the method, the experiments take the maneu-
vering target tracking as an example.
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The simulation track of the target is: the target is in moti-
on on a two-dimensional plane; from time 0 to 140s, it is in
uniformly accelerated motion (the accelerated velocity is
18m/s?); from time 141 to 320s, it is in uniform motion (the
velocity is300m / s ); from time 321 to 420s, it is in left-turn
motion (@ =4 deg/ s ); from time 421 to 500s, it is in right-
turn motion (w=4deg/s). The initial state value is
[30000 300 20 30000 0 0]' . The sampling period 7 =1s.

The observation noise variance R =10*m” . Three tracking
experiments are performed on the target. The first time uses
the standard IMM algorithm. The used model set contains 9
models, which is expressed as M, ={-8 -6 -4 -20
2 46 8 deg/ s} . The initial model probability is[1/91/9 1/9
1/91/91/91/91/91/9] . The model transition probabilistic
matrix is

[0.920.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 |
0.01 0.92 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.920.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.92 0.01 0.01 0.01 0.01 0.01
P={0.010.010.010.010.920.010.010.010.01
0.01 0.01 0.01 0.01 0.01 0.92 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.92 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.92 0.01
10.010.010.010.010.010.010.010.010.92 |

The second time uses the self-adaptive generic IMM al-
gorithm. In order to compare with the standard IMM algo-
rithm, the used model set also contains 9 models, which is
expressed asM, ={-8 —6 —4 —202 4 6 8deg/s}. The
initial model probability is [1/91/91/91/91/91/9

1/91/91/9].

The model transition probabilistic matrix is

[0.920.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 |
0.01 0.92 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.92 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.92 0.01 0.01 0.01 0.01 0.01
P={0.010.010.010.010.920.010.010.010.01
0.01 0.01 0.01 0.01 0.01 0.92 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.92 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.92 0.01
10.010.01 0.010.01 0.01 0.01 0.01 0.01 0.92

The third time used the two-stage IMM algorithm. In or-
der to compare with the standard IMM algorithm and the
proposed algorithm, the used model set also contains 9
models, which is described asM; ={-8 —6 -4 -20246
8 deg/s} . The 9 models are divided into 3 sub models. Mod-
el 1, 2, 3 belong to sub-model set 4;; Model 4, 5, 6 belong to
sub-model set 4,; Model 7, 8, 9 belong to sub-model set A;.
Then the center models 4,, 4, A; of are calculated
out. And the center models construct the model set
M_={m m, m;}. The initial model probability is
[1/3 1/3 1/3].The model transition probabilistic matrix is
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0.98 0.01 0.01
P=|0.010.980.01
0.01 0.01 0.98

The evaluation indices of the experimental results lie in
the state estimation quality and the computation complexity
[10]. The state estimation quality is decided by the root mean
square error (RMSE), which is defined as (k)=

- w2l

i=1

—%(k/ k))z . Where, N denotes the times of
the Monte Carlo simulation. i denotes the i th time of simu-
lation. x denotes the position, velocity or accelerated veloci-
ty of the motion state vector of the target. The computation
complexity is decided by the consuming of the CPU time. In
the experiment, the times of Monte Carlo simulation is 10.
The total step number of the simulation is 500. Fig. 1-3 re-
spectively show RMSEs of the position, velocity and acceler-
ated speed velocity estimations. Table 1 shows the mean er-
ror of the motion process of the target. Table 2 shows the
computation time.
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From Fig. 2—4 and Tables 1, 2, we can see the perfor-
mance of the self-adaptive IMM algorithm is superior to
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the standard IMM algorithm and the two-stage IMM algo-
rithm.

Conclusion. This paper proposed a self-adaptive generic
IMM data fusion algorithm for solving the model selection
problem of IMM. According to the prior knowledge, the pa-
rameter space describing the model is mapped to the model
set. Based on the similarity of the parameter variations, the
parameter space is divided into several sub-spaces. Then the
center models of the sub-model set are calculated out. The
final output is the data fusion of the model set estimations of
the IMM algorithm. The experimental results show that the
performance of the algorithm proposed in this paper is im-
proved notably under the condition of equivalent computa-
tion.

Table 1
The mean errors in the movement process
Self- Two.
Standard adaptive W
. stage
MM generic IMM
IMM
Position (m) 57.1753 55.1530 36.8845
Velocity (m/s)  32.2231 222074 254256
Accelerated
. > 6.6826 5.2968 6.6861
velocity (m/s”)
Table 2
The computation complexity of the algorithm
Standard Self-adaptive :;;Vgt
MM generic IMM IMM
Computation time (S ) 22.058 22.831 23.062
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Merta. J{;11 BUpIMIEHHS 3aBIaHb 3MIMTaHOI OIIIHKH B PO-
0OTI 3arpONOHOBAaHUI CaMOPETyJIbOBAHUI THIOBHIl airo-
PHUTM CILIbHOT 00pPOOKHM TAHKMX B3aEMOJIIF0UMX OaraTopiBHe-
BUX Mojeeit (IMM) 3 METORO BHPIIIIEHHS [TPOOJIEME BHOOPY
Mozieni B IMM. IpoanarizoBana XpoHosoriyna iHpopmartist
10 BCIM MOJEJISIM 3 METOIO BHU3HAYEHHS ONTHUMAJIBLHOTO Pi-
LIEHHS 3a/1a41 3MIIIAaHO] OIIHKH.

MeToauka. 3riTHO 3 TONIEPEAHIMI JaHUMH, TApaMETPH-
YHUH TIPOCTIP, 110 OIMUCYE MOJIENb, 3BOIUTHCS 0 MOICIIBHOT
oOe3miui. [TapamMeTprdHuiA IPOCTIP PO3NUTIETHCS HA JICKUTbKA
YacTHH 33 CXOXKICTIO XapakTepy 3MiHM Hapametpis. [lotim
KOYXEH HIANPOCTIP 3BOAUTHCS IO M MoziernbHoT Oesmidi. [le-
pexin miaMozeneli 3 OJHOTO CTaHy IO 1HIIOTO BiIOYBAa€ThCS
3a MOJIEJUTIO JIaHLtora Mapkosa.

PesynbTaTu. 3 ypaxyBaHHAM CaMOpETYJIALii po3paxo-
BaHa [EHTpaJIbHA MOJIEb KOXKHOTO TianpocTopy. LleHtpa-
JIbHI MOJIEITI CKJIAJIA MOJICJIbHY MHOXHHY IMM-aJIropuT™y.

HaykoBa noBu3Ha. KiHIeBUM pe3ysibTaTtoM 3arporio-
HOBAHOTO AJTOPHTMY € CITLTbHA 00pOOKa TAHUX OILIHKA MO-
JebHO1 Oe3mivi 3 BUuKopucTanasam IMM-anroputMy. Moze-
JIFOI0Y1 €KCTIEPUMEHTH JIOBEJHM TIEPEBAry 3alpOIOHOBAHOTO
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ITOPUTMY HaJ| TpaJuLidiHIM IMM-alIropuTMOM 32 YMOBH
PIBHOT KUTBKOCTI OOYHICIICHB.

[pakTiyna 3HaYUMicTb. Pe3ynpraTé eKcrieprMeHTIB
MOKa3aId, M0 poO0Yl XapaKTepPUCTHKU alNrOpUTMy Oyim
3HAYHO MOKPAIIEH] 32 OTHAKOBUX YMOB OOUMCIICHHSI.

KurwouoBi cnoBa: sviwana oyinka, nanyoe Maprosa,
83aemo0itoui bazamopisnesi mooeni (IMM), y3azanvHena mo-
OenbHa besniy

Henn. [l perenns 3a1a4 CMEIIAaHHOM OICHKH B pabo-
T€ TPEJIOKEH CaMOPErYJUPYIOLIMICS TUIIOBOW AJITOPUTM
COBMECTHOM 00pabOTKM [aHHBIX B3aMMOICHCTBYIOIINX
MHOTOYPOBHEBBIX Mojenei (IMM) ¢ Ienblo pelieHus po-
OseMbI BBIOOpa Moien B IMM. [IpoaHanmsupoBaHa XpOHO-
JIOTUYecKasi HHPOpPMAIHs 10 BCEM MOJCIISIM B IIEJISIX OTpe-
JIeTICHMsT OTITUMAJIFHOTO PEIeHHsT 3a1a9i CMEIIaHHOH O11e-
HKL.

MeTtomuka. CornacHO TpeaBapUTEeIbHBIM JaHHBIM, Ta-
paMeTpuyecKoe MPOCTPAHCTBO, OMICHIBAIOIIEE MOJIENb, CBO-
JIUTCSL K MOJIETIbHOMY MHOeCTBY. [lapameTpuyeckoe mpo-
CTPaHCTBO pa3ziessIeTCsl Ha HECKOJIBKO YacTell Mo CX0XKeCTH
XapakTepa M3MCHEHHSI TapaMeTpoB. 3aTeM KaKI0e TOAIpo-
CTPaHCTBO CBOJIUTCS K MOAMOICITFHOMY MHOKECTBY. Ilepe-
XOJI TIOJIMOJIETICH M3 OHOTO COCTOSIHHS B JIPYTOE€ IPOUCXO-
JIUT 110 MoJienH 1ienu Mapkosa.

PesyabTaThl. C y4eTOM CaMOPETYJISIIUM pacCuMTaHa
LEHTpaJIbHAasE MOJIENIb KaXKAOro TmoAanpocTpaHcTea. Llen-
TpaJTbHBIC MOJCITN COCTaBUITH MOJICITbHOE MHOXKeCcTBO IMM-
aropUT™MA.

Hayuynasi HoBu3Ha. KoHEeUHBIM pe3ysbTaToM Mpeyio-
YKEHHOTO aJITOPUTMA SIBJISIETCSI COBMECTHAsI 00paboTka JaH-
HBIX OIIEHKA MOJIETIBHOTO MHOXECTBa C HCIOJIb30BAaHUEM
IMM-anroprt™a. MoJEIUPYIOIIUE 3KCIICPUMCHTHI JI0Ka3a-
JI TIPEBOCXOJICTBO MPEUIOKEHHOI0 aJIrOpUTMa HaJl TPaJu-
IIHOHHBIM IMM-aJITOpUTMOM TIPH YCIIOBUH PABHOTO KOJIHYe-
CTBA BBIYMCIICHUH.

IpakTHyeckass 3HAYUMOCTh. Pe3ynbTaTel SKCIIepHMe-
HTOB TIOKa3aJd, YTO pabovre XapaKTEPUCTUKH aIrOpUTMa
OBUTH 3HAYUTEIILHO YITyYIICHBI MPU OJIMHAKOBBIX YCIIOBHSIX
BBIYHCIICHYIS.

KuroueBsble ciioBa: cvewannas oyenxa, yens Maprosa,
83aumooelicmayroujie MHo20yposHegvie moodenu (IMM), ada-
NMUBHBLL, 0O0OUEHHOE MOOETIBHOE MHOMCECMEO

Pexomenoosarno 0o nybnikayii O0okm. mMexH. HAYK
M.O. Anexceesum. JJama naoxooxcenns pyxonucy 17.01.15.
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