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Purpose. There are two types of uncertainties, reducible and irreducible. The uncertainties not only include the uncertainty
of the noise signal, but also include the uncertainty of system parameters. In the research, the control problem of the stochastic
nonlinear systems with unknown parameters was considered. The neural network was used to solve the control and learning
problem in a class of nonlinear systems with unknown parameters. The objective is to control the stochastic, single-input sin-
gle-output, affine nonlinear system.

Methodology. RBF neural networks were used to approximate the nonlinear function. The optimal linear parameters re-
quiring learning appeared linearly in the output equation.

Findings. The estimated value is substituted into the control law. Then the weight is optimized to make the control
achieve the compromise between control and learning performance.

Originality. The controller developed can control the system output towards the desired output, and it can learn the un-
known parameters in the system. The controller is implemented easily.

Practical value. The simulation results have proved that the control law obtained is effective, and it is better than the pre-
vious control strategy.
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Introduction. The world is full of uncertainties. There
are two types of uncertainties, reducible and irreducible. The
uncertainties not only include the uncertainty of the noise
signal, but also include the uncertainty of system parameters.
These make the control problem not simply use a determinis-
tic model to describe and control in actual industrial process-
es, as well as social, economic and other fields [1, 2].

There exist two types of learning strategies to reduce re-
ducible uncertainties, active leaning and passive learning [2,
3]. Except for a few ideal situations, an optimal control usual-
ly pursues two often conflicting objectives: to drive the sys-
tem toward the desired state, and to perform active learning
to reduce the systems reducible uncertainty, as pointed by
Feldbaum A.A. in his seminal work more than thirty-five
years ago [1]. The dual roles of an optimal control, optimiza-
tion, and estimation, in common situations, cannot be sepa-
rated. This coupling between optimization and estimation
makes an analytical form of optimal control, in most situa-
tions, unattainable. Previous efforts in dual control have thus
mainly been devoted to the development of certain subopti-
mal solution schemes, such as certainty equivalence scheme
and open-loop feedback control, by passing this essential fea-
ture of coupling in dual control [4]. Most resulting subopti-
mal control laws are of a nature of passive learning, since the
function of future active probing of the control is purposely
deprived in order to achieve an analytical attainability in the
solution process. Recent work on a class of dual control
problems where there exists a parameter uncertainty in the
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observation equation of the linear quadratic Gaussian prob-
lem. An analytical active dual control law is derived by a
variance minimization approach [2].

In addition, in recent years, with the rapid development
of the neural network, it has been effectively used in nonlin-
ear system identification and control. Compared to the other
nonlinear identification methods, neural network does not
depend on model function, and not need to know the mathe-
matical relationship between input and output in the nonline-
ar system (measured system) [5, 6].

In this research, the neural network is used to solve the
control and learning problem in a class of nonlinear systems
with unknown parameters.

Problem statement. Control object. The objective is to
control the stochastic, single-input single-output, affine non-
linear system. Its general form is

y(k) = HLx(k = D]+ GLx(k—DJu(k—1)+e(k—1). (1)

Where u(k) is control signal, namely system input; y(k)
is system output. e(k) is a zero-mean Gaussian noise signal
with known variance 5> . H[x(k —1)] and G[x(k —1)] are un-
known nonlinear functions. And x(k —1) includes known
system states, and its form is x(k —1) =[y(k —n),..., y(k —1),
u(k—1-m),--u(k-2)],and m<n.

Assume that y, (k) is desired output, /(k) is available sys-

tem input and output information from the beginning to k
time, and the form is
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1(k) =[y(k), =, y(D),u(k =1),---,u(0)].

Objective function. For the stochastic system, controller
aims at system output y(k) that tracks desired output y, (k) .

Thus, the objective function is defined as
J = E{[y(k+1)~y,(k+ DT [ 1(k)}. @)

Here, E{|I(k)} is mathematical expectation.

For the objective function (2), because dynamic pro-
gramming cannot obtain analytical solutions, a modified ob-
jective function is proposed from a random sub-optimal
point of view

(P)J = J, + exp”, 3)

here
J.= E{[y(k+1)—y,.(k+1):|2 +qu?
(k)| 1(K)};

Ji =E{[e*(k+ D[ 1(k)},

here, e(k+1)=y(k+1)—(k +1),9(k +1)is system estimated

output.
On the basis of the original object function./ ,J, adds a

qu’(k). g is a weight, clearly, higher q induces a penalty
for a large control signal, and reflects that in practice the con-

trol amplitude needs to be constrained. It is called control ob-
jec-tive. AndJ, expresses learning requirements of unknown

no-nlinear functions, is called learning object. Therefore, us-
ing objective function (3), the controller has a dual property,
can implement the balance between control and learning.

RBF neural network. First, the design of controller ne-
eds to learn the nonlinear functions. RBF neural networks can
be used to approximate the nonlinear function [7]. The struc-
ture of RBF neural network is shown in Fig. 1.

Input Hidden Output

layer layer layer

Fig. 1. Structure of RBF neural network

RBF neural network can be used to approximate functions
H[x(k—1)]and G[x(k —1)]. Assume that network approxi-

mation errors are negligibly small, RBF neural network can
be used to approximate nonlinear function and network's li-

near parameter vectors are equal to optimal value ), , and
O .
H{x(k=1)]= @, [x(k-D];
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GLx(k ~1)] = @, ® ,[x(k - )],

here @, [x(k —1)], @, [x(k —1)] are Gaussian basis function
vectors, whose element is given by

@, [x(k-1)]=ex _HX_mH‘ H2 ;
H; - p 262[ >

O, [x(k—-1)]=ex ——Hx—mq Hz
G - P 20(2;

Here m,, ,m,, are center of the basis function and o, ,

2 .
O are variances.

The basis functions are centered on points of a regular
square sampling mesh where the mesh spacing and variance
of basis functions are chosen a priori, so that only linear pa-
rameters are unknown, need to be learned.

Hence from (1), it follows that

o (k+1) =" (k);
y(k) = " (K)®[x(k —1)]+e(k 1),

where
" (k) = [, (k), 0 (k)];

Ox(k=D] =[P, [x(k -1)], P
[x(k =DJu(k ~1)].

The optimal linear parameters requiring learning appear
linearly in output equation so that well-established technique
based on Kalman filtering [8] can be used if we assume that
initial optimal parameter vectorw,has a Gaussian distribu-

tion with meanm and covariance R .
Defining d(k) = E{w(k)|I(k)} and using Kalman filter
theory [8], we obtain the following recursive parameter lear-

ning rules
ok +1) = a(k)+ K (k)e(k),

K- PU)®[x(k=D)]
@ [x(k - D)]P(O)®[x(k—-1)]+ o

P(k+1) = P(k)I - K(k)®" [x(k —1)]P(k).

Here K (k)is filter gain and P(k+1)is covariance with
initial conditions &(0) =m, P(0) =R, .&(k) = y(k)— & (k)P x
x[x(k —1)] denotes the innovation at time k .

Control law. The problem (P) is very difficult to be sol-
ved directly, so a multiobjective optimization problem (MOP)
is constructed as follows

minl.J, (k). ~J, (b))
Defination 1. Suppose that (k) is the feasible solution of

problem (MOP), if there is no feasible solutionu(k), which

makes

S (k) < J, (u(k));
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J (k) 2 J; (u(k)).

At least one inequality was strictly established. And
u(k) is the non-inferior solution of the problem (MOP).

Theorem 1. The optimal solution of problem (P) must be
in the non-inferior solution set of problem (MOP).

Proof. Reduction to Absurdity. Suppose thatu” (k) is the
optimal solution of the problem (P), but is not noninferior so-
lution of the problem (MOP). Then, there is a feasible solu-
tionu” (k) , which makes

T (B) |y < .0 |

u(k) {u‘(k)};

Ji () |y = S (R |

“U\')} {u’(k)} .

At least one inequality strictly established. Obviously,
J(k) monotonically increase onJ_ (k) , monotonically decre-
ase onJ, (k) . And then according to Defination 1, it is obtai-
ned that

T | S T(0)|

k) {u‘(k)} .

There is a conflict between this inequality and u's opti-
mality. Therefore, the optimal solution u” (k) of the problem
(P) is in noninferior solutions set of the problem (MOP).

This theorem shows that finding optimal solution of the
problem (P), only focuses on noninferior solutions set of the
problem (MOP). The noninferior solutions set can be ob-
tained from the following Lagrange problem (LOP).

(LOP)min[J (k) + AJ; (k).

It is relatively easy to optimize this problem with respect
to u(k) by differentiation and equating to zero, using Kalman

filter equation, which results in the following control law.

_ O, (kD) FP(k+1)GP (K +1)
G*(k+1)+q+(1+ A)vy,
) 1+ A, “)
G k+)+q+(1+ vy,

u’ (k)

Here, H[-]and G[-]are respectively[x(k), &, (k +1)] and
[x(K), O (kK +1)] . vy = DE[x(K)IPgy, (k + DD, [x(k)] and v, =
O [x(K)]P, (k + DD [x(k)]. Py, and P, are submatrices of
matrix P(k +1), and matrix P(k + 1) is repartitioned as

P, (k+1) Pl (k+1)
P, (k+1) P (k+1) )

In the control law, parameter A is acting as a weight.

The caser=-landq =0, corresponds to a controller
de-signed on a heuristic certainty equivalence basis [2]. The
pa-rameter estimates (k) are used as if they were the opti-

mal parameters ®’ by replacing the actual nonlinear system
func-tions, completely disregarding the approximation un-
certainty.
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The case L = 01is equivalent to a cautious controller with
the disadvantages normally associated with this kind of subo-
ptimal controller [4]. Strong emphasis is given to the uncerta-
inty of the parameter estimates and the controller is very cau-
tious on using them.

The case —1{A{0 provides a compromise between two
extremes, being neither too cautious nor too bold. This is si-
milar to Simon's controller. It takes A as a fixed value in the
whole control process, and A may not be the optimal compro-
mise [9]. So we need to find the optimal compromise A .

Theorem 2. The corresponding X’ non-inferior solution is
the problem (P) of the optimal solution, then

A(ky=—exp™ ™| . e

Proof. The optimal solution ((k,%)) of problem (LOP)
substitutes into the objective function of problem (P). If X is
optimal, then

‘UC(k)| exp i ® ‘U,-(k)‘
i+ dr 7

For problem (LOP), corresponding to the optimal solution
at, , according to [10], it has

RGYR LS

. .=0.
da : dA :

Combined the above two equations, we can obtain
N(k)=—exp ™|

NON

This theorem gives the optimal weight factor at each
stage.

Then, we will derive the searching optimal modified
formulas, to seek out problem (P)'s optimal solution in prob-
lem (MOP)'s non-inferior solution set.

For problem (P), the gradient of T(k) is
T

VI = { oy (k) a}(k)}

oJ (k) aJ, (k)

-/,(k)]T'

=[l,—exp

Assuming o =[1,A]", we construct the following direc-
tion vector

V(w) =V (o),V,(0)] =
VIK)

T
a @

=-VJ(k)+
According to Cauchy-Schwarz in equality, it has

VIV (@) =~ |-VI k)| +
7T 2
REAZID
o @
This shows that V() is a T(k)'s descent direction. Obvi-
ously, V(o) =0, it shows that the optimal condition is estab-
lished, namely A = —exp™ ™.

Supposing that sth iteration's A denotesx’. Using the al-
gorithm of gradient search, the formula is
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A= 1 (). ©)

Where, puis the searching step length. V, (o) =0 ends se-

arching A , means we have find the optimal dual control. And
the optimal dual control is named by Weight Optimal Dual
Control (WODC).

To sum up, the procedures of solving the control signal
u(k)(k=0,1,---,N—1) are:

Step 1: Using Kalman filter equation, calculate RBF net-
works parameter vectors @ , estimate variance P(k).

Step 2: Given a \ , solving problem (LOP), we can obtain
control u(k) from equation (4).
Step 3: Judging‘x+exp’1‘(k" <eg, if control u(k) meetine-

quality, it means u(k) is optimal control, and continue next

step. Otherwise, L need to be modified using equation (5),
then switch Step 2.

Step 4 : Judgingk = N -1, if it meet the condition, proce-
dure is end; if not, k =k +1, and switch Step 2.

Simulation analysis.

The simulation plant is given by

y(k+1) =sin(3y(k))+cos(y(k))+
+(3+2cos(y(k))u(k) +e(k).

Where the noise variances” =0.01and x(k) = y(k).
H[x(k)] =sin(3x(k)) +cos(x(k)) and  G[x(k)]=3+2x
xcos(x(k)) respectively is an unknown nonlinear func-

tion. The reference input is obtained by sampling a unit
amplitude, 0.1Hz square wave filtered by transfer func-
tion1/(s+1). A Gaussian RBF network is implemented in

this example. For unknown output amplitude and priori
knowledge, the H network is chosen to have Gaussian
basis functions of variance 1 placed on a mesh of spacing
1, whilst the G network basis functions have variance of
3.6 and a mesh spacing of 2. The Kalman filter initial pa-
rameter covariance was set to P(0) =100I.

We can compare the proposed algorithm and former al-
gorithms on learning and control performance by a loss func-
tion. And the form is

M N
J'= 2w 2 -y, OF.
j=l =l

Where, N is simulation step, and is equal to 100. M is the
number of Monte Carlo trial, and is equal to 200.

Fig. 2 shows that cautious, dual, and weight dual control
output curves respectively. Obviously, after about 10 steps,
WODC tracks the reference output; oscillation amplitude is
small, short duration; while, at the DC and CC it lasts about 17
steps, output tracks the reference output.

Based on the results shown in Table, we can clearly
prove the proposed algorithm has a remarkable improvement
comparing with the former algorithms.

Conclusion. The research was focused on the unknown
parameters of nonlinear stochastic system of learning and
control. The weight optimal dual control algorithm was pro-
posed. RBF neural networks are used to approximate non-
linear functions online. The estimated value is substituted in-
to the control law. Then the weight is optimized to make the
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control achieve the optimal compromise between control and
learning performance. The simulation results showed that the
proposed control algorithm is better than the former.
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Fig. 2. Reference output and actual output

Table
Comparison of loss function
CC DC WwWODC
AVerage 149799 136879 11.5245
value
Minimum 4.4922 4.1830 3.1547
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Merta. IcHye 1Ba THUIM HEBHU3HAYCHOCTI — Ta 0 yCyBa-
€TBCS TA HE YCyBaeThCsl. HeBM3HAUEHICTh BKITFOYAE HE JIHIIIE
HEBM3HAYCHICTh CHTHAJTY MEPEIIKO/L, ajle i HEBIIOMICTb Ia-
pameTpiB cucTeMu. Y poOOTI pO3IIISIHYTE 3aB/IaHHs YIIPaB-
JIHHS CTOXaCTUYHWUMH HEJHIMHAMH CHCTEMaMH 3 HEBIJIO-
MHUMH TapaMeTpamu. [I1s BUIMICHHS 3aBAAHHS KOHTPOJIO
Ta HABYAaHHS KJIACY HEJiHIITHIX CHCTEM 3 HEBIIOMIIMH Tapa-
METpaMu BUKOPHCTaHAa HEMpOHHA Mepexa. MeTa nosisirae B
KOHTpOJII CTOXACTUYHOI, OJIHOPI/HOT, HEJIIHIHHOT CHCTEMHU 3
OJTHMM BXOJIOM 1 OJTHMIM BHXOJIOM.

Mertoauka. Anpoxcumaris HenmiHiHHOT (yHKIii Oyna
TIPOBEZICHA 3a JIOTIOMOTOIO PalialbHO-0a3uCHOI HEHPOHHOT
Mepexi. OnTrManbHI JHIHHI TapaMeTpy, M0 BUMAararoTh
BU3HAYCHHSI, TIOCTIIOBHO (JIIHIHHO) 3'SIBIIIOTHCS B PIBHAHHI
BHUXOZY.

Pe3ysibTaTi. Po3paxyHKOBE 3HAYEHHS INiJCTABIISETHCS
JI0 anroputMy ynpasiiHas. [TotiM Bara onTumizyeTbest st
JIOCSITHEHHSI CHCTEMOIO KOHTPOJIIO KOMIIPOMICY MDK TTOKa3-
HHMKaMH KOHTPOJTIO Ta HAaBYaHHSL.

HaykoBa HoBH3HA. Po3poOmneHmii KOHTpomep I03BO-
JIsI€E CKOpEryBaTH BHIXi (BHXiZHI XapaKTePUCTHKH) CHCTE-
MH 10 O2)KaHOTO Ta BM3HAYMTHA HEBIIOMI MapaMerpu CH-
cTeMH. 3arporiOHOBAaHMI KOHTPOJIEP JIETKUH Yy BUKOPUCTAH-
Hi.

IpakTuyna 3HaYMMicTb. Pe3ynbTat MozETHOBaHHS
TIOKa3aITH, 0 PO3POOJICHHI aTOPUTM YIIPaBIiHHS e(PeKTH-
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BHHII 1 IEPEBEPIIIyE CTPATETIF0 KOHTPOITIO, III0 PAHIIIE BUKO-
PHUCTOBYBAJIACSL.

KuarouwoBi cioBa: padianvha daszucna Qyuryis, HeupoH-
Ha mepedica, aneopumm YupagaiHHa, CIoXacmuyHuLl, HeliHi-
UHULL, 3a80AHHS YRPABTIHHA, Hesi0oMI napamempu

Henanb. CymecTByeT /1Ba THITA HEOTPEAEICHHOCTH — yCT-
paHnMasi M HeycTpaHuMas. HeorpeneneHHOCTh BKIFOYaeT
HE TOJIbKO HEOIPE/ICNICHHOCTh CHTHANA MTOMEX, HO M HeH3Be-
CTHOCTb T1apaMeTpoB cHCTeMbl. B pabote paccmoTtpeHa 3a-
Jlava yIpaBJIeHNsI CTOXaCTHYCCKHIMH HEITMHEHHBIMH CHCTE-
MaMH ¢ HEM3BECTHBIMHM ITapameTpamu. JJist perenust 3a1aqu
KOHTPOJISI M OOYYEeHHs KJlacca HEIMHEWHBIX CHCTEM C HEU3-
BECTHBIMH IIapaMeTpaMH HCIOJb30BaHA HEHPOHHAsI CETb.
Lenpb 3akirouaercss B KOHTPOJIE CTOXaCTUUECKOM, OHOPO/I-
HOM, HEJIMHEHHOM CHUCTEMBI C OTHUM BXOJIOM M OJTHUM BBI-
XOJIOM.

Mertoauka. ArnmpokcuMalysi HEMMHEHHOW (YHKIMH
ObUTa TIpOBeCHa  TOCPEACTBOM  PaJHaIbHO-O0A3MCHOM
HelipoHHON cetu. Tpebyrommue onpeaeteHns ONTHMAaTbHbBIC
JIMHEHHBIE TapaMeTphl TOCTIEAOBATENILHO (JIMHEHHO) IMOSIB-
JISTIOTCSI B YpaBHEHNH BBIXO/IA.

PesyabTaThl. PacueTHoe 3HaUeHMeE MO/ICTABIISIETCS B aJl-
TOPUTM YIIPaBJICHHs. 3aTeM BEC ONTHMH3UPYETCS ISl J0-
CTIDKEHHMSI CHCTEMON KOHTPOJISI KOMIPOMHCCA MEXTy MOKa-
3aTeIIMH KOHTPOIIS U O0YUCHUS.

Hayunas noBu3Ha. Pa3paboTaHHBIA KOHTPOIIIEP I03-
BOJIICT CKOPPEKTUPOBATH BBIXO/] (BBIXOAHBIE XapaKTEPHUCTH-
KH) CHCTEMBI JI0 )KEITAEMOT'0 | OIIPE/IEIUTh HEM3BECTHBIE Ma-
pameTpbl cucteMbl. [IpemioxeHHbIH KOHTPOIUIEp JIEroK B
MPUMEHEHUH.

IIpakTHyeckasi 3Ha4YUMOCTb. Pe3ynbraTsl Momenmpo-
BaHMs IOKa3ajM, 4TO Pa3pabOTaHHBIM aIrOpUTM yIpaBlie-
HEst 3 (GEKTHBEH ¥ TIPEBOCXOAUT PAHEE HCIIOIb30BABIILYIOCS
CTPATEruio KOHTPOJIA.

KaroueBsle c1oBa: paduanvras 6azuckas yHkyusi, He-
UpOHHAs Cemb, ANOPUMM YRPAGIEHUS, CIOXACMUYECKUL,
HeNUHENHbIT, 3a0a4a YNpasieHus, Heuseecnnvle napamem-
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