Segmentation of aggregated elements in dispersive formations using the Voronoy diagram
- Details
- Category: Information technologies, systems analysis and administration
- Last Updated on 11 July 2014
- Published on 11 May 2014
- Hits: 4487
Authors:
Т.А. Ruzova, Cand. Sci. (Tech.), O. Gonchar Dnepropetrovsk National University, Senior Research Scientist of Research Laboratory of Fluid Mechanics and Heat-Mass Exchange Processes Modeling, Dnipropetrovsk, Ukraine
V.I. Yeliseyev, Cand. Sci. (Phys.-Math.),Senior Research Scientist, Dnepropetrovsk National University of O. Gonchar, Senior Research Scientist of Research Laboratory of Fluid Mechanics and Heat-Mass Exchange Processes Modeling, Dnepropetrovsk, Ukraine
A.P. Tolstopyat, Cand. Sci. (Tech.), Senior Research Fellow, O. Gonchar Dnepropetrovsk National University, Senior Research Scientist of Research Laboratory of Fluid Mechanics and Heat-Mass Exchange Processes Modeling, Dnipropetrovsk, Ukraine
L.A. Fleyer, O. Gonchar Dnepropetrovsk National University, Senior Research Scientist of Research Laboratory of Fluid Mechanics and Heat-Mass Exchange Processes Modeling, Dnipropetrovsk, Ukraine
Abstract:
The presence of aggregated structures is one of the main problems arising in determining dispersion degree of emulsions and other fine-grained materials.
Purpose. To create a method for segmentation of aggregated structures of spherical particles in dispersive formations, allowing us to process aggregates including internal objects, which contours are located entirely within the aggregate; without restrictions on components number; and without using the concept of aggregate convexity deficit; it makes it possible to process units of complex configuration.
Methodology. The new method includes several steps: filtering the image and converting it to monochrome mode; evaluating coordinates of aggregate’s boundary points; contour correcting to eliminate possible contour discontinuities at image binarization; particles markers setting according to glares on particles surfaces; and aggregate’s area distribution between the forming particles according to the Voronoy diagram. Particles centers and radii are determined by the area of corresponding diagram cell.
Method operation was illustrated on model aggregates. We presented the graphic of dependence of aggregate separation accuracy on components overlap degree. The processing of aggregates in case of internal objects was also illustrated. We showed an example of processing of the image fragment of real emulsion type II (water in oil).
Findings. The method allows segmentation of aggregated structures of spherical particles (emulsion drops) in dispersive formations.
Originality. We have designed the method for aggregated elements of dispersed formations decomposition by means of investigated objects marking.
Practical value. The method may be used to design systems for measuring dispersion degree of emulsions and other fine-grained mediums.
References:
1. Оценка связности дисперсного материала из агрегированных частиц / М.В. Василевский, К.В. Некрасова, А.С. Разва, Е.Г. Зыков // Заводская лаборатория. Диагностика материалов. – 2009. – т. 75. – № 5. – С. 32–36.
Vasylevskiy, M.V., Nekrasova, K.V., Razva A.S. and Zykov, Ye.G. (2009), “Cohesion estimation of dispersed material of aggregated particles”, Zavodskaya Laboratoriya. Diagnostika materialov, Vol. 75, no. 5, pp. 32–36.
2. Дубровский В.В. Определение дисперсного состава капель при распыливании жидкости из центробежной форсунки / В.В. Дубровский, А.М. Подвысоцкий, А.И. Баштовой // Технологія і техніка друкарства. – 2004. – № 2–3(4–5). – С. 94–99.
Dubrovskiy, V.V., Podisotskiy, A.M. and Bashtovoy, A.I. (2004), “Drops dispersity evaluation when liquid spraying out of centrifugal nozzle”, Texnologiya i texnika drukarstva, no. 2–3(4–5), pp. 94–99.
3. Ударцева О.В. Определения дисперсности аэрозольных пестицидов методом пьезорезонансного микровзвешивания / О.В. Ударцева // Фундаментальные исследования. – 2011.– № 12. – С. 383–384.
Udartseva, O.V. (2011), “Determining aerosol dispersion of pesticides by piezoresonance microweighing”, Fundamentalnyye issledovaniya, no. 12, pp. 383–384.
4. Honkanen, M. (2007), “Analysis of the overlapping images of irregularly-shaped particles, bubbles and droplets”, papers of International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, pp. 370–382.
5. Kutalik, Z., Razaz, M. and Baranyi J. (2004), “Occluding convex image segmentation for e.coli microscopy images” papers of the XII European Signal Processing Conference EUSIPCO, Viena, pp. 937–940.
6. Декомпозиция изображений агрегированных элементов дисперсных образований по их структуре / Т.А. Рузова,
А.П. Толстопят, В.И. Елисеев, Л.А. Флеер // Науковий вісник Національного гірничого університету. – 2013. – № 6. –
С. 117–124.
Ruzova, T.A., Tolstopyat, A.P., Yeliseyev, V.I. and Fleer, L.A. (2013), “Images decomposition of aggregated elements in dispersive formationes by their structure”, Naukovyi visnyk Natsionalnoho hirnychoho universytetu, Dnipropetrovsk, no. 6, pp. 117–124.
7. Adiga, P.S.U., Malladi, R., Baxter, W. and Glaeser, R.M. (2004), “A binary segmentation approach for boxing ribosome particles in cryo EM micrographs”, Journal of Structural Biology, Vol. 145, Issue: 1–2, pp. 142–151.
8. Алгоритмические основы растровой машинной графики / [Д.В. Иванов, А.С. Карпов, Е.П. Кузьмин и др.] // Бином. Лаборатория Знаний, Интернет-Университет Информационных Технологий – 2007.– 283 с.
Ivanov, D.V., Karpov, A.S., Kyzmin, Ye.P., Lempitskiy, V.S. and Khropov A.A., (2007), Algoritmicheskie osnovy rastrovoy mashinnoy grafiki [Algorithmic foundations of raster computer graphics], Binom. Laboratoriya Znaniy, Internet-Universitet Informatsionnykh Tekhnologiy, Russia.
9. Карабцев С.Н. Построение диаграммы Вороного и определение границ области в методе естественных соседей /
С.Н. Карабцев, С.В. Стуков // Вычислительные технологии. – 2008. – т. 13. – № 3. – С. 65–81
Karabtsev, S.N. and Stukov, S.V. (2008), “The Voronoy diagram making and determinating area boundary at natural neighbors method”, Vychislitelniye texnologii, Vol. 13, no. 3, pp. 65–81.
2014_2_ruzova | |
2014-07-11 447.03 KB 1327 |