Strength analysis of the model 918 wagon under non-typical bulk loads
- Details
- Category: Content №4 2024
- Last Updated on 28 August 2024
- Published on 30 November -0001
- Hits: 2334
Authors:
O.V.Fomin*, orcid.org/0000-0003-2387-9946, The State University of Infrastructure and Technologies, Kyiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
P.M.Prokopenko, orcid.org/0000-0002-1631-6590, Branch “Scientific-research and design and technological institute of railway transport” JSC “Ukrainian railways”, Kyiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
A.M.Fomina, orcid.org/0000-0002-9810-8997, Volodymyr Dahl East Ukrainian National University, Kyiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
A.O.Klymash, orcid.org/0000-0002-4055-1195, Volodymyr Dahl East Ukrainian National University, Kyiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
S.V.Kuzmenko, orcid.org/0000-0003-0871-9864, Volodymyr Dahl East Ukrainian National University, Kyiv, Ukraine, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2024, (4): 067 - 072
https://doi.org/10.33271/nvngu/2024-4/067
Abstract:
Purpose. Highlighting the results of the analysis of the stress-deformed state of the wagon body of the 918 model under non-typical loads with bulk cargo. Such an analysis was carried out with the aim of investigating the possibility of transportation of various types of bulk cargo (for example, various types of raw materials, agricultural products, construction materials, etc.) in the existing design of the section of the refrigerated wagon.
Methodology. In order to ensure uninterrupted railway transportation in today’s difficult conditions, it is proposed to use scientific and applied approaches to develop the possibility of using existing models of wagons for types of transportation that are not typical for them. Namely, to consider the possibility of using refrigerated wagons for the transportation of bulk cargo. A systematic approach is used to conduct such research. This included: determination of the study of the specifics of the impact of bulk cargo on rolling stock structures; analysis of design and technological documentation to create a spatial 3D model of the wagon under investigation; creation of a calculation model using a modern software complex; checking the adequacy of the developed model and the accuracy of the data obtained with its help; application of non-typical design loads; obtaining and analyzing pictures of stress-strain states by the finite element method.
Findings. A 3D model of the body module of the model 918 wagon was developed. The results of the analysis of the equivalent stress plot according to the first mode proved that the greatest stresses are 800 MPa, that is, they significantly exceed the permissible ones. According to the third mode, the highest stresses are 320 MPa and also exceed the permissible ones. The results of the analysis of the plot of equivalent stresses, which occur during expansion, proved that the loads are excessive. The cladding, supported only by racks, cannot hold the load from the bulk cargo.
Originality. A strength analysis of the existing design of a refrigerated wagon section was conducted under non-typical bulk cargo loads.
Practical value. The obtained results of the analysis of the stressed-deformed state of the body of the model 918 wagon when loaded with bulk cargo made it possible to assess the potential possibilities of such transportation. It is expedient to use such results when carrying out research and development works on the improvement (modernization) of the existing sections of refrigerated wagons to ensure the possibility of transporting bulk cargo in them. This, in turn, will increase the efficiency of the domestic fleet of freight wagons.
Keywords: mechanical engineering, freight wagons, strength calculations, bulk loads
References.
1. Koshel, O., Sapronova, S., & Kara, S. (2023). Revealing patterns in the stressed-strained state of load-bearing structures in special rolling stock to further improve them. Eastern-European Journal of Enterprise Technologies, 4(7(124)), 30-42. https://doi.org/10.15587/1729-4061.2023.285894.
2. Horobets, V. L., Miamlin, S. V., & Yanhulova, O. L. (2015). Prospects for the development of methods for estimating the service life of railway rolling. Visnyk sertyfikatsii zaliznychnoho transportu, 8, 44-47.
3. Li, X., Fang, J., Zhang, Q., Zhao, S., & Guan, X. (2020). Study on Key Technology of Railway Freight Car Body Fatigue Test. Journal of Failure Analysis and Prevention, 20(1), 261-269. https://doi.org/10.1007/s11668-020-00828-7.
4. Poveda-Reyes, S., Rizzetto, L., Triti, C., Shi, D., García-Jiménez, E., Molero, G. D., & Santarremigia, F. E. (2021). Risk evaluation of failures of the running gear with effects on rail infrastructure. Engineering Failure Analysis, 128, 105613. https://doi.org/10.1016/j.engfailanal.2021.105613.
5. Milenković, M., Bojović, N., & Abramin, D. (2023). Railway freight wagon fleet size optimization: A real-world application. Journal of Rail Transport Planning & Management, 26, 100373. https://doi.org/10.1016/j.jrtpm.2023.100373.
6. Rakshit, U., Malakar, B., & Roy, B. K. (2018). Study on Longitudinal Forces of a Freight Train for Different Types of Wagon Connectors. IFAC-PapersOnLine, 51(1), 283-288. https://doi.org/10.1016/j.ifacol.2018.05.074.
7. Sokolov, V., Porkuian, O., Krol, O., & Stepanova, O. (2021). Design Calculation of Automatic Rotary Motion Electrohydraulic Drive for Technological Equipment. In: Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering, 1, 133-142. Springer, Cham. https://doi.org/10.1007/978-3-030-77719-7_14.
8. Krol, O., & Sokolov, V. (2020). Modeling of Spindle Node Dynamics Using the Spectral Analysis Method. In: Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering, 1, 35-44. Springer, Cham. https://doi.org/10.1007/978-3-030-50794-7_4.
9. Lai, J., Xu, J., Wang, P., Yan, Z., Wang, S., Chen, R., & Sun, J. (2021). Numerical investigation of dynamic derailment behavior of railway vehicle when passing through a turnout. Engineering Failure Analysis, 121, 105123. https://doi.org/10.1016/j.engfailanal.2020.105132.
10. Clarhaut, J., Hayat, S., Conrard, B., & Coquempot, V. (2010). The concept of the smart wagon for improving the safety of a railroad transportation system. IFAC Proceedings, 43(8), 638-643. https://doi.org/10.3182/20100712-3-FR-2020.00102.
11. Fomin, O., & Lovska, A. (2021). Determination of dynamic loading of bearing structures of freight wagons with actual dimensions. Eastern-European Journal of Enterprise Technologies, 2(7(110)). https://doi.org/10.15587/1729-4061.2021.220534.
12. Vega, B., & Perez, J. (2023), Comparative analysis of fatigue strength of a freight wagon frame. Welding in the World, 68, 321-332.
13. Melnyk, O., Onyshchenko, S., Onishchenko, O., Lohinov, O., & Ocheretna, V. (2023). Integral Approach to Vulnerability Assessment of Ship’s Critical Equipment and Systems. Transactions on Maritime Science, 12(1). https://doi.org/10.7225/toms.v12.n01.002.
14. Yakovlieva, A., & Boichenko, S. (2020). Energy Efficient Renewable Feedstock for Alternative Motor Fuels Production: Solutions for Ukraine. Studies in Systems, Decision and Control, 298, 247-259. https://doi.org/10.1007/978-3-030-48583-2_16.
15. Rudavsʹkyy, D., Shefer, M., Kanyuk, Yu., Shpak, Z., & Ripak, N. (2021). Calculation model for the evaluation of tired defect development in the freight wagon side frame. Ukrainian Journal of Information Technology, 3(2), 15-20. https://doi.org/10.23939/ujit2021.02.015.
16. Płaczek, M., Wróbel, A., & Baier, A. (2015). Computer-aided strength analysis of the modernized freight wagon. IOP Conference Series Materials Science and Engineering, 95(1), 012042. https://doi.org/10.1088/1757-899X/95/1/012042.
17. Łukasik, Z., & Ushakov, A. (2020). Concept “Smart freight wagon”. Journal of Civil Engineering and Transport, 2(1), 19-33. https://doi.org/10.24136/tren.2020.002.
18. Pɫaczek, M., Wróbel, A., & Buchacz, A. (2016). A concept of technology for freight wagons modernization. IOP Conference Series: Materials Science and Engineering, 161, 012107. https://doi.org/10.1088/1757-899x/161/1/012107.
19. Patrascu, A., Hadar, A., & Pastrama, S. (2019). Structural Analysis of a Freight Wagon with Composite Walls. Materiale Plastice, 57(2), 140-151. https://doi.org/10.37358/MP.20.2.5360.
20. Fomin, O., Lovska, A., Píštěk, V., & Kučera, P. (2019). Dynamic load computational modelling of containers placed on a flat wagon at railroad ferry transportation. Vibroengineering Procedia, 29, 118-123. https://doi.org/10.21595/vp.2019.21132.
21. Fomin, O., Lovska, A., Radkevych, V., Horban, A., Skliarenko, I., & Gurenkova, O. (2019). The dynamic loading analysis of containers placed on a flat wagon during shunting collisions. ARPN Journal of Engineering and Applied Sciences, 14(21), 3747-3752.
22. Gubarevych, O., Goolak, S., Melkonova, I., & Yurchenko, M. (2022). Structural diagram of the built-in diagnostic system for electric drives of vehicles. Diagnostyka, 23(4), 2022406. https://doi.org/10.29354/diag/156382.
23. Okorokov, A. M., Fomin, O. V., Lovska, A. O., Vernigora, R. V., Zhuravel, I. L., & Fomin, V. V. (2018). Research into a possibility to prolong the time of operation of universal semi-wagon bodies that have exhausted their standard resource. Eastern-European journal of enterprise technologies, 3/7(93), 20-26. https://doi.org/10.15587/1729-4061.2018.131309.
24. Kondratiev, A., & Slivinsky, M. (2018). Method for determining the thickness of a binder layer at its non-uniform mass transfer inside the channel of a honeycomb filler made from polymeric paper. Eastern-European Journal of Enterprise Technologies, 6(5(96)), 42-48. https://doi.org/10.15587/1729-4061.2018.150387.
25. Kondratiev, А. (2019). Improving the mass efficiency of a composite launch vehicle head fairing with a sandwich structure. Eastern-European Journal of Enterprise Technologies, 6(7(102)), 6-18. https://doi.org/10.15587/1729-4061.2019.184551.
Newer news items:
- Research on stochastic properties of time series data on chemical analysis of cast iron - 28/08/2024 03:24
- On the issue of load’s external ballistics under low-speed transportation - 28/08/2024 03:24
- Designing the predictive control of a drum dryer using multi-agent technology - 28/08/2024 03:24
- Cumulative triangle for visual analysis of empirical data - 28/08/2024 03:24
- The right to a safe environment: economic and legal guarantees of provision in Ukraine - 28/08/2024 03:23
- Floristic and ecological structure of the landfill vegetation in the Western Forest Steppe of Ukraine - 28/08/2024 03:23
- The effect of petroleum products pollution on environmental soil condition at airport adjacent territory - 28/08/2024 03:23
- Features of the assessment of occupational risks under hazardous working conditions - 28/08/2024 03:23
- Environmental toxicity assessment of mining waste from an abandoned Zn-Pb mine - 28/08/2024 03:23
- Application of modern mathematical apparatus for determining the dynamic properties of vehicles - 28/08/2024 03:23
Older news items:
- Justification of the criterion for optimal control of the self-grinding process of ores in drum mills - 28/08/2024 03:23
- Combined roasting and leaching treatment for reducing phosphorus, aluminum and silicon in oolitic iron ore - 28/08/2024 03:23
- Enhanced oil recovery of deposits by maintaining a rational reservoir pressure - 28/08/2024 03:23
- Implementation of a mathematical component in the device development for operational control of the dump truck - 28/08/2024 03:23
- Assessment of the contamination degree of gas pipeline branches during mined-out space degasification - 28/08/2024 03:23
- Influence of disperse-hardening additive chrome diboride on the structure of carbide matrixes of PDC drill bits - 28/08/2024 03:23
- Sorption capacity and natural gas content of coal beds of Donbas - 28/08/2024 03:23
- Influence of rock shear processes on the methane content of longwall faces - 28/08/2024 03:23
- Study of geodynamic and hydrogeological criteria for assessing the hydrocarbon potential of the Alakol depression - 28/08/2024 03:23