Geo-energetics of Ukrainian crystalline shield

User Rating:  / 0
PoorBest 

Authors:

O.Ye.Khomenko, Dr. Sc. (Tech.), Prof., orcid.org/0000-0001-7498-8494, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

M.M.Kononenko, Cand. Sc. (Tech.), Assoc. Prof., orcid.org/0000-0002-1439-1183, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract:

Purpose. To develop an analytical method which allows investigating the energy condition of rocks within the Ukrainian Crystalline shield.

Methodology. Analytical research on the energy condition of rocks has been conducted by means of a new method of research – the entropy one. The research on processes of redistribution of potential energy in the massif of rocks was conducted by analogy with an open thermodynamic system. The accepted methodological approach allowed investigating processes of energy exchange in rocks and natural transformations of some types of energy to others.

Findings. The analysis is conducted and systematization of geodynamic conditions by underground mining of ore fields of Ukraine is executed. The ways of development of new hypotheses, theories and methods of research of the energy condition of rocks are given. The description perspective in world practice of a natural condition of rocks is enclosed. Components of redistribution of energy in the massif of rocks are defined: entropy, potential stresses and angles of their action. An inspection of the results obtained on convergence is conducted and corresponding conclusions on their application are drawn.

Originality. The thermodynamic balance in rocks of the Ukrainian Crystalline shield is formed due to equilibration of vertical and horizontal power streams which, with increasing mining depth, enhance components of a tensor of stress on sedate dependence, rejecting them from hydrostatic ones during increasing in mining depth.

Practical value. The entropy method of research which allows investigating natural state of rocks with increasing depth is developed. Classification of methods of research on the stress-strain state of rocks due to introduction of a synergetic group which includes entropy, thermodynamic and energy methods is improved. It is established that distribution of entropy in rocks of the Ukrainian Crystalline shield proceeds in mutually perpendicular directions, which correspond to vertical and horizontal energy streams.

References.

1. Khomenko, О., Sudakov, А., Malanchuk, Z., & Malanchuk, Ye. (2017). Principles of rock pressure energy usage during underground mining of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2(158), 35-43.

2. Ilin, S. R., Samusya, V. I., Kolosov, D. L., Ilina, I. S., & Ilina, S. S. (2018). Risk-forming dynamic processes in units of mine hoists of vertical shafts. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5(167), 64-71. DOI: 10.29202/nvngu/2018-5/10.

3. Belmas, I., & Kolosov, D. (2011). The stress-strain state of the stepped rubber-rope cable in bobbin of winding. Technical and Geoinformational Systems in Mining: School of Underground Mining 2011, 211-214.

4. Hrinov, V., & Khorolskyi, A. (2018). Improving the process of coal extraction based on the parameter optimization of mining equipment. E3S Web Of Conferences, 60, 00017. DOI: 10.1051/e3sconf/20186000017.

5. Bondarenko, V. I., Kharin, Ye. N., Antoshchenko, N. I., & Gasyuk, R. L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5(137), 24-30.

6. Gornostayev, S., Walker, R., Hanski, E., & Popovchenko, S. (2004). Evidence for the emplacement of ca. 3.0 Ga mantle-derived mafic-ultramafic bodies in the Ukrainian Shield. Precambrian Research132(4), 349-362. DOI: 10.1016/j.precamres.2004.03.004.

7. Babets, D. V., Sdvyzhkova, O. O., Larionov, M. H., & Te­reshchuk, R. M. (2017). Estimation of rock mass stability based on probability approach and rating systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2(158), 58-64.

8. Physical Sciences. (1976). Science News109(17), 267. DOI: 10.2307/3960928.

9. Gzovskiy, M. V., Turchaninov, I. A., Markov, G. A., & Batugin, S. A. (1973). Napryazhennoe so-stoyanie zemnoy kory po dannym izmereniy v gornykh vyrabotkakh i tektonofizicheskogo analiza. In Napryazhennoe sostoyanie zemnoy kory (p. 50).

10. Dreus, A. Yu., & Lysenko, K. Ye. (2016). Сomputer simulation of fluid mechanics and heat transfer processes at the working face of borehole. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5(155), 29-35.

11. Khomenko, O., Kononenko, M., & Bilegsaikhan, J. (2018). Classification of Theories about Rock Pressure. Solid State Phenomena, 277, 157-167. DOI: 10.4028/www.scientific.net/ssp.277.157.

12. Prigozhin, I. (2001). Vvedenie v termodinamiku neobratimykh protsessov.

13. Khomenko, O. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4(130), 44-54.

14. Lavrinenko, V. F., & Lysak, V. I. (1977). Metod opredeleniya nachal’nogo napryazhennogo sostoyaniya massivov skal’nykh gornykh porod. Razrabotka rudnykh mestorozhdeniy, (24), 16-20.

15. Khomenko, O., & Maltsev, D. (2013). Laboratory research of influence of face area dimensions on the state of uranium ore layers being broken. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2(134), 31-37.

16. Bazarov, I. P. (1983). Termodinamika.

17. Khomenko, O., & Rudakov, D. (2010). The first Ukrainian corporative university. New Techniques And Technologies In Mining, 203-206. DOI: 10.1201/b11329-34.

18. Kovalenko, A. D. (1970). Osnovy termouprugosti.

19. Khomenko, O., Kononenko, M., & Petlovanyi, M. (2015). Analytical modeling of the backfill massif deformations around the chamber with mining depth increase. New Developments In Mining Engineering 2015, 265-269. DOI: 10.1201/b19901-47.

20. Glensdorf, P., & Prigozhin, I. (1973). Termodi­namicheskaya teoriya struktury, ustoychivosti i fluktua­tsii.

21. Dortman, N. B. (1976). Fizicheskie svoystva gornykh porod i poleznykh iskopaemykh: spravochnik geofizika.

22. Khomenko, O., Kononenko, M., & Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Mining Of Mineral Deposits, 231-235. DOI: 10.1201/b16354-43.

23. Kozhevnykov, A., Dreus, A., Baochang, L., & Sudakov, A. (2018). Drilling fluid circulation rate influence on the contact temperature during borehole drilling. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1(163), 35-42. DOI: 10.29202/nvngu/2018-1/14.

24. Khomenko, O., & Barna, T. (2019). Zonal-and-Wave Structure of Open Systems on Micro, Mega- and Macrolevels of the Universe. Philosophy And Cosmology22, 24-32. DOI: 10.29202/phil-cosm/22/3.

25. Prigogine, I. (1947). Etude thermodynamique des phenomenes irréversibles.

26. Sudakov, A., Dreus, A., Khomenko, O., & Sudakova, D. (2017). Analytical study of heat transfer in absorptive horizons of borehole at forming cryogenic protecting of the plugging material. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3(159), 38-42.

27. Shashenko, O. M., Sdvyzhkova, O. O., & Babets, D. V. (2010). Method of argument group account in geomechanical calculation. In 12th International Symposium on Environmental Issues and Waste Management in Energy and Mineral Production SWEMP 2010, (pp. 488-493).

28. Sdvizhkova, Ye. A., Babets, D. V., & Smirnov, A. V. (2014). Support loading of assembly chamber in terms of Western Donbas plough longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5(143), 26-32.

29. Sudakov, А., Khomenko, О., Isakova, M., & Sudakova, D. (2016). Concept of numerical experimentof isolation of absorptive horizons by thermoplastic materials. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5(155), 12-16.

30. Sdvyzhkova, O. O., Babets, D. V., Kravchenko, K. V., & Smirnov, A. V. (2016). Determining the displacements of rock mass nearby the dismantling chamber under effect of plow longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2(152), 34-42.

31. Khomenko, O., Kononenko, M., & Petlyovanyy, M. (2014). Investigation of stress-strain state of rock massif around the secondary chambers. Progressive Technologies Of Coal, Coalbed Methane, And Ores Mining, 241-245. DOI: 10.1201/b17547-43.

32. Khomenko, O., Kononenko, M., & Myronova, I. (2017). Ecological and technological aspects of iron-ore underground mining. Mining Of Mineral Deposits11(2), 59-67. DOI: 10.15407/mining11.02.059.

33. Obert, L. (1962). In situ determination of stress in rock. Mining Engineering, 14(8), 51-58.

34. Zhanchiv, B., Rudakov, D., Khomenko, O., & Tsen­dzhav, L. (2013). Substantiation of mining parameters of Mongolia uranium deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4(136), 10-18.

35. Stupnik, M., Kalinichenko, V., Pysmennyi, S., Fedko, M., & Kalinichenko, O. (2016). Method of simulating rock mass stability in laboratory conditions using equivalent materials. Mining Of Mineral Deposits10(3), 46-51. DOI: 10.15407/mining10.03.046.

36. Khomenko, O., Tsendjav, L., Kononenko, M., & Janchiv, B. (2017). Nuclear-and-fuel power industry of Ukraine: production, science, education. Mining Of Mineral Deposits, 11(4), 86-95. DOI: 10.15407/mi­ning11.04.086.

37. Pivnyak, G., Dychkovskyi, R., Smirnov, A., & Che­red­nichenko, Y. (2013). Some aspects on the software simulation implementation in thin coal seams mining. Energy Efficiency Improvement Of Geotechnical Systems, 1-10. DOI: 10.1201/b16355-2.

38. Stupnik, N. I., Fedko, M. B., Pismenniy, S. V., & Kolosov, V. A. (2014). Development of recommendations for choosing excavation support types and junctions for uranium mines of state-owned enterprise skhidhzk. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5(143), 21-25.

39. Myronova, I. (2015). The level of atmospheric pollution around the iron-ore mine. New Developments In Mining Engineering 2015, 193-197. DOI: 10.1201/b19901-35.

40. Khomenko, O., Kononenko, M., Myronova, I., & Su­dakov, A. (2018). Increasing ecological safety during underground mining of iron-ore deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2(164), 29-38. DOI: 10.29202/nvngu/2018-2/3.

41. Mironova, I., & Borysovs’ka, O. (2014). Defining the parameters of the atmospheric air for iron ore mines. Progressive Technologies Of Coal, Coalbed Methane, And Ores Mining, 333-339. DOI: 10.1201/b17547-57.

42. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., & Malanchuk, Y. (2018). Analytical Research of the Stress-Deformed State in the Rock Massif around Faulting. International Journal Of Engineering Research In Africa, 35, 77-88. DOI: 10.4028/www.scientific.net/jera.35.77.

 повний текст / full article



Visitors

7564952
Today
This Month
All days
4234
87438
7564952

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.

Contacts

D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (056) 746 32 79.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home Archive by issue 2019 Contens №3 2019 Mining Geo-energetics of Ukrainian crystalline shield