The method for determination of a combustible gase composition during its combustion
- Details
- Category: Power supply technologies
- Last Updated on 04 February 2016
- Published on 04 February 2016
- Hits: 4009
Authors:
A.I. Brunetkin, Cand. Sci. (Tech.), Assoc. Prof, State Higher Educational Institution “Odessa National Polytechnic University”, Odessa, Ukraine
M.V. Maksimov, Dr. Sci. (Tech.), Prof., State Higher Educational Institution “Odessa National Polytechnic University”, Odessa, Ukraine
Abstract:
Purpose. Creation of a method of determination of the variable composition and the energy content (enthalpy) of gaseous fuel during its combustion. The time required for definition of composition should be unaffected by the number of components included in the fuel. The instruments required should be included in the regular tool set of the equipment serviced.
Methodology. Based on the known methods of determination of the combustion products composition and their temperature at a given fuel composition and its enthalpy (direct problem), we have suggested the way of determination of the fuel composition and its enthalpy (inverse problem) by the technological parameters (temperature of the combustion products and the fuel and oxidizer consumption) that can be measured in the combustion process.
Findings. Based on the proposed method a model and algorithm were developed for solving the inverse problem. In order to test their ability to work a number of direct problems were solved in the process of combustion of methane, ethane, ethylene and their mixture in air. The obtained results were compared with known data on the composition and temperature of the combustion products. On this basis, for solving the inverse problem, we generated the output data that simulate measurements of process parameters. The inverse task was solved. The determined fuel composition and its enthalpy were compared with known values.
Originality. The method and solution algorithm to determine the composition and enthalpy of gaseous fuel during its combustion in air were developed. The stability of the problem solution was shown. The adequacy of the results to output data has been proved by solving direct and inverse problems.
Practical value. The proposed method and algorithm can serve as a basis for the development of automated complex that determines the composition of gaseous fuel during its combustion. The data produced by the complex, in its turn, may be used for automatic operational adjustment of the burner device according to changes in the fuel composition during combustion.
References:
1. Сайт подразделения «GE Energy» компании General Electric [Электронный ресурс] – Режим доступа: www. URL: http://www.ge-energy.com/ products_and_services /products/gas_engines_power_generation/gas_engines_jenbacher_type_2.jsp
“GE Energy” Company General Electric, available at: http://www.ge-energy.com/products_and_services/products/ gas_engines_power_generation/gas_engines_jenbacher_type_2.jsp
2. Казаринов Л.С. Способ экстремальной автоматической системы регулирования процессами горения в топке парового котла при использовании смеси газов: материалы 67-й науч.-технич. конф., 2009 г. Магнитогорск / Л.С.Казаринов, А.В. Кинаш // ГОУ ВПО «МГТУ». – 2009. − Т.2. − С. 138–139.
Kazarinov, L.S. and Kinash, A.V. (2009), “Method extreme automatic combustion control systems in the furnace of the boiler using a mixture of gases”, Proc. of the 67th Scientific and Tech. Conf., Magnitogorsk, 2009, Vol.2, pp. 138−139.
3. Межгосударственный стандарт ГОСТ 31371.6-2008 (ИСО 6974-6:2002) Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности. Часть 6. Определение водорода, гелия, кислорода, азота, диоксида углерода и углеводородов С1−С8 с использованием трех капиллярных колонок – Введ. 2010-01-01. − М.: Стандартинформ, 2009.
Intergovernmental Standard GOST 31371.6-2008 (ISO 6974-6: 2002) Natural gas. (2009), Definition of the composition by gas chromatography with an estimate of uncertainty. Part 6: Determination of hydrogen, helium, oxygen, nitrogen, carbon dioxide and C1-C8 hydrocarbons using three capillary columns. Valid since January 1, 2010. Standartinform, Mockow, Russia.
4. Дорофеев А.А. Основы теории тепловых ракетных двигателей (Общая теория ракетных двигателей) [Электронный ресурс] / А.А.Дорофеев. − М.: МГТУ им. Баумана, 1999. – Режим доступа: http://www.engineer. bmstu.ru/res/dorofeev/MAIN.HTM
Dorofeev, A.A. (1999), Osnovy teorii teplovykh raketnykh dvigateley [Fundamentals of the Theory of Thermal Rocket Engines], Moscow, Russia, available at: http://www.engineer.bmstu.ru/res/dorofeev/MAIN.HTM
5. Брунеткин А.И. Идентификация количественного состава неизвестного газообразного горючего и его продуктов сгорания на основе измеренных технологических параметров процесса сжигания топлива / Брунеткин А.И., Максимов М.В., Бондаренко А.В. // Вісник Національного технічного університету «ХПІ». Збірник наукових праць. Серія: Енергетичні та теплотехнічні процеси й устаткування. – Харьков: НТУ «ХПІ», 2014. – № 12(1055). – 194 с. – ISSN 2078-774X.
Brunetkin, A.I., Maksimov, M.V. and Bondarenko, A.V. (2014), “Identification and quantitative composition of an unknown gaseous fuel and its combustion products on the basis of measured process parameters combustion”, Visnyk Natsionalnoho Technichnoho Universytetu “KhPI”, no.12(1055), p. 194, ISSN 2078-774X.
6. Руководство по показателям пожаровзрывоопасности веществ и материалов [Электронный ресурс] // Министерство российской федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий. Федеральное государственное учреждение «Всероссийский ордена "Знак Почета" научно-исследовательский институт противопожарной обороны». – М.: 2002. − 25 с. − Режим доступа: http:// www.doc01.ru/rukovodstvo-2-1/14
Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters. Federal State Institution “All-Russian Research Institute for Fire Protection”, available at: http://www.doc01.ru/rukovodstvo-2-1/14
7. Росляков П.В. Эффективное сжигание топлива с контролируемым химическим недожогом / Росляков П.В., Ионкин И.Л., Плешанов К.А. // Теплоэнергетика. − М., 2009. − №1. − С. 20−23.
Roslyakov, P.V., Ionkin, I.L. and Pleshanov, K.A. (2009), “Efficient combustion with controlled chemical unburnt”, Teploenergetika, Moscow, no.1, pp. 20−23.
2015_05_brunetkin | |
2016-02-03 291.03 KB 1004 |