The component choice for the induction motor field oriented control system
- Details
- Category: Electrical complexes and systems
- Last Updated on 05 November 2015
- Published on 05 November 2015
- Hits: 3320
Authors:
A.V. Bakutin, State Higher Educational Institution “National Mining University”, Postgraduate Student of the Department of Electric Drive, Dnipropetrovsk, Ukraine.
Abstract:
Purpose. The component choice foundation for the field-oriented induction motor control implementing of the metal cutting machine tool main motion electromechanical system.
Methodology. The component choice was performed on the requirement analysis to the real-time computing facilities; generating control signal devices and the power circuit elements for the implementation and to ensure reliable operation and control algorithm execution.
Findings. Recommendations on the microprocessor device choice, which satisfied the requirements extended by the field-oriented induction motor control system; mathematical relations for the correct choice of the generating control signal devices and for the parametric choice of power switches were obtained. The experimental investigation, which confirmed the result accuracy, was carried out.
Originality. The generalized technique for the component choice foundation for the field-oriented induction motor control system was obtained.
Practical value. The requirements to the microprocessor device by the field-oriented control system on the key parameters were considered: the productivity, the number of analog-to-digital conversion channels, and the number of pulse-width modulation outputs, data memory and program memory, the number of inputs and outputs for the information exchange between the digital system and operator. The parameters and mathematical relations for the correct choice of the generating control signal devices and power switches were given. The circuit parameter influence on the power element performance graphs is presented.
References:
-
Бешта О.С. Використання регульованого електропривода в задачах підвищення енергоефективності технологічних процесів / О.С. Бешта // Науковий вісник НГУ. – 2012. – №4. – С. 98–108.
Beshta, O.S. (2012), “Electric drive adjustment for improvement of energy efficiency of technological processes”, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, no. 4, pp. 98–108.
-
Алексеев К.Б. Микроконтроллерное управление электроприводом / К.Б. Алексеев, К.А. Палагута. – М.: МГИУ, 2008. – 298 с.
Alekseyev, K.B. (2008), Mikrokontrollernoye upravleniye elektroprivodom [Microcontroller Electric Drive Control], MGIU, Moscow, Russian Federation.
-
Клиначев Н.В. Цифровые управляющие системы для электропривода [Електронний ресурс] / Клиначев Н.В. – Код доступу: www.model.exponenta.ru/k2/ Jigrein /dcs_knv.htm
Klinachev, N.V. (2011), “Digital control systems for electric drive”, available at: www.model.exponenta.ru/k2/ Jigrein/dcs_knv.htm
-
Hermwille, M. (2007), “IGBT Driver Calculation”, Application Note AN-7004, SEMIKRON.
-
Wintrich, A., Nicolai, U. and Tursky, W. (2011), Application Manual Power Modules, ISLE.
-
Соколовский Г.Г. Электроприводы переменного тока с частотным регулированием / Соколовский Г.Г. – М.: Academa, 2006. – 266 с.
Sokolovskiy, G.G. (2006), Elektroprivody peremennogo toka s chastotnym regulirovaniyem [Frequency Controlled AC Electric Drives], Academa, Moscow, Russian Federation.
-
Bose, Bimal K. (2001), Modern Power Electronics And AC Drives, Prentice Hall PTR, Upper Saddle River.
-
Бешта О.С. Вибір інтервалу дискретизації для обробки даних / О.С. Бешта // Науковий вісник Національної гірничої академії України. 2000. – №6. – С. 92–95
Beshta, O.S. (2000), “Sample time choice for data processing”, Naukovyi Visnyk Natsionalnoi Hirnychoi Akademii Ukrainy, no.6, pp. 92–95.
-
Mohan, N., Undeland, T.M. and Robbins, M.P. (2002), “Power electronics: converters, application and design”, John Wiley & Sons Inc.
2015_04_bakutin | |
2015-11-03 593.41 KB 1179 |