Synthesis of optimal temperature regulator of electroarc holding furnace bath

User Rating:  / 0


D.A. Demin, Cand. Sci. (Tech.), Associate Professor, National Technical University «Kharkiv Polytechnic Institute», Professor of the Department of Foundry, Kharkiv, Ukraine


Purpose. To choose a procedure of synthesis of optimal regulator of melting temperature in electroarc holding furnace, obtain mathematical description that will provide the solution of regulator synthesis problem, and design the melting temperature evaluation methods to use during the process before the melt handling over on the casting conveyor.

Methodology. To solve the problem of optimal control we have chosen the principle of Pontryagin’s maximum. To evaluate the parameters describing the control object, the procedure of regression equation obtaining was used.

Findings. The article defines the problems to solve for synthesis of optimal temperature regulator of the electroarc furnace bath, working along with casting conveyor. The problems include the lack of mathematical description of the control object and the complexity of immediate estimation of the parameters describing the process. The procedure of estimation of the bath temperature based on the plotting of the regression equation has been suggested. It takes place during the temporary thermic process of melt treatment in a holding furnace. It describes the temperature profile of the bath and allows to surmount the main complexity of the synthesis of optimal regulator associated with the inability to measure the parameters describing the control object.

Originality. The suggested pattern of mathematical description of the control object allows solving the problem of synthesis of optimal temperature regulator when the parameters describing the process are not subject to direct measurement. The use of the obtained optimal regulator allows getting optimal transients in the control object.

Practical value. The application of the suggested regulator in industrial electroarc furnaces, operating as an electric shaker on the melting-priming area of a workshop, provides the possibility of bringing the melt chemical composition to the designated in the shortest time with minimal power expenses. This results in the reduction of possible downtime of casting conveyor caused by the absence of the melt of the proper quality, and the reduction of power expenses at the stage of thermothemporal processing of the melt. 


1. Демин Д.А. Методология формирования функционала для задачи оптимального управления электроплавкой / Демин Д.А. // Технологический аудит и резервы производства. – 2011. –№1. – С.15–24.
Demin, D.A. (2011), “Methodology of functional formation for the problem of electrosmelting optimal control”, Technologicheskiy audit i rezervy proizvodstva, no.1, pp. 15–24.
2. Серая О.В. Оценивание параметров уравнения регрессии в условиях малой выборки / Серая О.В., Дёмин Д.А. // Східно-Європейський журнал передових технологій – 2009. – №6/4(42). – С. 14–19.
Seraya, O.V. and Demin, D.A. “Estimation of parameters of the regression equation in the conditions of small sample”, Eastern European journal of enterprise technologies, 2009. – № 6/4 (42). – P. 14–19.
3. Daviers, R. and Hutton, B. (1975), “The effect of errors in the independent variables in linear regression”, Biometrika, Vol.62, pp. 383–396.
4. Durbin, I. (1954), “Errors in variables”, Rev. Int. Stst. Inst, Vol.22, pp. 23–41.
5. Fuller, W. (1980), “Properties of some estimators for the errors in variables model”, Ann. Stat., Vol.8, pp. 407–418. 
6. Дюбуа Д. Теория возможностей. Приложение к представлению знаний в информатике: пер. с франц. В.Б. Тарасова / Д. Дюбуа, А. Прад; под ред. С.А. Орловского. – М.: Радио и связь, 1990. – 286с.
Dubois, D. and Prad, A. (1990), Teoriya vozmozhnostey. Prilozheniye k predstavleniy znaniy v informatike [Possibility Theory. Application to Knowledge Representation in Computer Science], transl. from French. By V.B. Tarasova, edited by S.A. Orlovsky, Radio and communication, Moscow, Russia.
7. Леоненков А.В. Нечеткое моделирование в среде MATLAB и fuzzyTECH / А.В. Леоненков – СПб.: БХВ–Петербург, 2003. – 736 с.
Leonenkov, A.V. (2003), Nechetkoye modelirovaniye v srede MATLAB i fuzzyTECH [Fuzzy Modeling in MATLAB and fuzzyTECH Environment], BHV–Petersburg, St. Petersburg, Russia.
8. Раскин Л.Г. Нечеткая математика: моногр. / Л.Г. Рас-кин, О.В. Серая. – Харьков: Парус, 2008. – 352 с.
Raskin, L.G. and Seraya, O.V. (2008), Nechetkaya matematika [Fuzzy Math], monograph, Parus, Kharkiv, Ukraine.
9. Демин Д.А. Синтез систем управления технологическими процессами электродуговой плавки чугуна / Демин Д.А. // Восточно-Европейский журнал передовых технологий – 2012. – №2/10(56). – С. 4–9.
Demin, D.A. (2012), “Synthesis of the control systems of technological processes of electroarc cast iron melting”, Eastern European journal of enterprise technologies, no.2/10 (56), pp. 4–9.
Date 2013-12-24 Filesize 667.33 KB Download 683


This Month
All days

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.


D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (056) 746 32 79.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home Archive by field of science Physical processes Synthesis of optimal temperature regulator of electroarc holding furnace bath