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FLAT PROBLEM TO DETERMINE THE FORCES OF DESTRUCTION 
OF PIECES IN DISINTEGRATORS WHILE BEING GRABBED IN THICK LAYER

Purpose. Research on analytical dependences of destructive stresses, acting on a piece of non-isometric shape at quasi-static 

deformation of a relatively thick layer of rock mass in disintegrators, on parameters of the piece shape, the piece’s spatial orienta-

tion, also on the relative piece size in layer, taking into consideration the discrete nature of contact force application.

Methodology. The fl at scheme of a non-isometric shaped piece contacts in a thick layer of rock mass is obtained by composi-

tion of the central rectangular piece and the round pieces of average size for the given layer. The distribution of stress components 

in the layer of loose rock mass is accepted on the basis of the classical theory of elasticity and the theory of loose medium. The 

geomechanics criterion showing relationship of equivalent destructive stress and ultimate compressive strength of rock is used as a 

criterion of piece destruction in complex stress state. All force schemes of the piece loading are reduced to three-point bending 

schemes and two-point shear schemes, both across the long and the short sides of the piece. The most dangerous loading scheme 

is determined from the analysis of the mentioned schemes for each particular case. Dimensionless parameterization is applied both 

to specify the geometric parameters of pieces and to analyze the resulting destructive stresses.

Findings. Analytical dependences of equivalent destructive stresses for an oblong piece are obtained depending on the piece 

relative length, the relative piece size in the rock layer, the angle of piece orientation relative to the direction of the maximum main 

stress and the side thrust coeffi  cient in the layer. It has been set that lamellar pieces, especially those smaller than the average size 

for the layer, are destroyed mainly from the implementation of bending schemes across the long side, the shape of their fragments 

is improved by reducing the pieces’ relative length. Increasing the uniformity of the force fi eld in the working zone of disintegrator 

also leads to improvement in the shape of fragments. On the other hand, as the shape of the piece approaches the isometric one, 

as well as when the piece relative size in layer raises, the probability of implementing shear schemes increases and the probability 

of implementing bending schemes decreases, including with a deterioration in the fragments shape compared to the original piece. 

At the same time, larger values of destructive stresses for the lamellar smaller pieces are proved analytically compared to the iso-

metric bigger ones, all other things being equal.

Originality. The versatility of application of the three-point bending scheme of a non-isometric shaped piece in combination 

with the two-point scheme of its shear for analysis of its destruction in the thick layer of rock mass is substantiated. For the fi rst 

time, the dependences of equivalent destructive stresses for the non-isometric piece on its relative length, its relative size in layer, 

the angle of deviation of the piece’s main axis from the main stress direction and on the side thrust coeffi  cient in the layer have been 

obtained.

Practical value. The results obtained allow making reasonable choice of parameters of disintegrators’ operational parts for de-

struction of materials in the thick layer, as well as predicting the change in lamellar pieces fraction during disintegration process. 

They give the possibility to determine key parameters of operational parts for new designs of disintegrators. This creates the basis 

for the development of calculation techniques for operational parts of modern samples of crushing and grinding equipment.

Keywords: disintegrator, thick layer, complex stress state, lamellar piece, bend, shear, side thrust coeffi  cient

Introduction. Disintegrators of various designs are used for 

processing rock mass and technogenic rock raw materials [1].

Analysis of destruction features for pieces of rocks in op-

eration area is of particular interest when determining rational 

parameters of operational parts of disintegrators. Usually, it is 

necessary to establish a way for applying a load to material 

from operational parts of a disintegrator for a given source ma-

terial, determine a suffi  cient level of destructive forces, and, 

based on this, design an operational part.

In a broader sense, it is necessary to justify a promising de-

sign of a disintegrator by synthesizing a force fi eld of such a con-

fi guration, which is best suited for processing a given material.

Therefore, various models of rock pieces and models of 

their loading are used for this.

Models of a single piece deformation between two rigid 

operational surfaces are very common, which are relevant for 

some types of crushers, for example, jaw crushers [2]. A com-

pression of an isometric piece is considered here when two 

plates located at an angle to each other approach each other. 

The purpose of this is subsequent determination of a limiting 

destructive force for a given piece size.

However, there are many other confi gurations of capturing 

and destroying the pieces, especially deformation of pieces of 

a non-isometric shape, destruction by shear and bending, de-

struction due to forces of inertia upon impact with a rigid bar-

rier, as well as the so-called “destruction in the layer”. In the 

latter case, it is about a deformation of a relatively thick layer of 

rock mass, when a piece size is noticeably smaller than a layer 

thickness (hereinafter simply “thick layer”). Considering these 

confi gurations makes it possible to simulate the physics of a 

process of mass destruction of pieces more accurately and is 

especially relevant for calculation models of new units of 

crushing and grinding equipment.

In particular, destruction in a thick layer is typical for dis-

integrators operating with fi ne-grained and fi ne-dispersed 

material, when it is impossible or undesirable to clamp mate-

rial with a thickness of one particle between the operational 

surfaces. The literature describes the eff ects of a decrease in 

lamellar particles in the output observed in this case and selec-
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tive destruction along the grain boundaries of various minerals 

[3]. However, there is a scientifi c problem of establishing a de-

pendence between the infl uence of layer parameters and force 

fi eld parameters on characteristics of the obtained products, 

which will allow eff ective control of the process.

Literature review. It is known that the quality of crushed 

stone increases with a decrease in lamellar particle yield in the 

output, in accordance with the standard DSTU B V.2.7-75-98. 

In this regard, the disintegrators, which ensure the primary 

destruction of specifi cally lamellar particles compared to iso-

metric ones, are more suitable for crushed stone production. It 

is known that cone crushers with a special design of a crushing 

chamber, in which loads are implemented in a multilayer mass 

of pieces, for example, “Girodisk” [2], provide a lower output 

of lamellar particles than traditional cone crushers, have an 

increased degree of crushing and a reduced specifi c energy in-

tensity of the process. The explanation for this positive eff ect is 

that when crushed in a thick layer, one piece is in contact with 

several pieces surrounding it, instead of two operational sur-

faces when crushing in one layer using traditional crushers, 

and a multiplicity of options for destruction planes to pass 

through a piece ensures, at least, a better destruction of lamel-

lar particles.

It should be noted, that these eff ects are only described 

qualitatively, without a detailed study on a mechanism of in-

fl uence of a stress state in a thick layer on destruction of a piece 

of a given (non-isometric) shape.

In this regard, there is a need for further study on the fol-

lowing aspects of the problem:

1) distribution of stresses in a layer of loose material;

2) criteria for destruction of pieces in a three-dimensional 

stressed state;

3) justifi cation of the most dangerous type of load for piec-

es (compression, shear, bending) for random piece orientation 

relatively to an operational part of a disintegrator;

4) consideration of a discrete character of loading the piec-

es at several points in comparison with a continuous medium 

model;

5) justifi cation of a comparative level of destructive loads 

for pieces of diff erent sizes (selection function).

Movement of crushing elements of machines with quasi-

static action can almost always be reduced to compression of a 

layer, optionally combined with application of transverse shear 

forces. Presence of a shear increases the destruction effi  ciency 

of pieces and reduces the energy consumption for crushing [3].

Confi guration of a force fi eld inside the operation zone of 

disintegrators, limited by their operating surfaces, has a non-

uniform character and, under a purely compressive load, can 

be determined in accordance with [4] by the following ex-

pression

 3  (0, 1)1, (1)

where 1 is maximum main stress acting along the direction of 

compression; 3 is minimum main stress acting in the trans-

verse direction; 0 is the initial coeffi  cient of layer porosity; 

(0, 1) is side thrust coeffi  cient.

The side thrust coeffi  cient in loose material depends on 

the coeffi  cient of internal friction, which, in turn, depends on 

a presence of moisture in the material [5], but consideration of 

these issues is not the subject of this article.

In the presence of a shear load, external shear stresses ad-

ditionally act on opposite operating surfaces, usually equal in 

magnitude and opposite in direction. In this case, components 

of a stress state can also be reduced to the values 1 and 3 in 

accordance with the laws of elasticity theory, for example [6] 

or [7]. Here equality (1) will be fulfi lled, but the direction of 1 

will no longer coincide with the direction of compression.

The paper [8] is of particular interest in terms of a fracture 

criterion in relation to real rocks. This paper gives a relation of 

equivalent destructive stress with parameters of complex stress 

state and compressive strength of the material
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where Rc is material compressive strength;  is the plasticity 

coeffi  cient.

This criterion is deduced in conformity to a small element 

of rock mass, located inside a fairly large massif. Based on this 

criterion, an analysis, for example, of a crack initiation in a 

rock mass is performed [9].

In a case when a space is fi lled with individual rock pieces, 

even if they are densely packed, a stressed state of a piece can 

no longer obey the laws of continuum mechanics. So, some 

average piece of rock mass is characterized by a coordination 

number, which is equal to the number of pieces that are in 

contact with it. The densest packing can only be obtained by 

fi lling a space with pieces of diff erent sizes with a defi nite ratio 

of their number, while a coordination number is large enough 

and a load on a surface of a particular piece approaches the 

load that is applied to an element of a continuous medium. 

However, in reality, a number of contacts is small due to a 

rather large layer porosity, so each contact acts as a stress con-

centrator, which makes it necessary to consider the discrete-

ness of load application to pieces.

In addition to the latter circumstance, the pieces also diff er 

signifi cantly in size, so a stress level depends on a ratio of sizes 

of the considered piece and pieces around it. The action of this 

factor is called the “selection function” in the literature [10].

Unsolved aspects of the problem. Thus, it is necessary to 

fi nd a response to issues regarding the model representation of 

geometry of a calculated piece, the distribution of stresses in a 

layer, the model representations of application of a discrete 

load to a piece, the determination of destructive stresses con-

sidering the selected fracture criterion, the size and shape of a 

piece, the piece orientation relatively to directions of main 

stresses, as well as the comparative probability of destruction 

of a given piece in the thick layer of rock mass.

Main part. Scheme justifi cation for piece bending in a thick 
layer. In paper [11], the problems of bending with longitudinal 

compression of elongated pieces in diff erent types of force 

fi elds, typical for roller and centrifugal disintegrators, are con-

sidered. It is shown that bending deformations lead to occur-

rence of destructive stresses several times greater than the 

stresses during simple compression of a piece between two op-

erational surfaces. Dependences of equivalent destructive 

stresses on a relative piece length are established

,ca
ck
a



where the minimum, average and maximum dimensions of a 

piece with corresponding values a, b and c are previously des-

ignated.

Thus, for a case of deformation of a piece in the thick layer, 

it is necessary to establish a mechanism for implementing a 

force scheme associated with bending.

First, let us introduce basic assumptions for fl at calcula-

tion schemes:

1) a deformable piece of rock mass has a rectangular shape, 

determined by the thickness a and length c;

2) a piece is in contact only with pieces of average size for 

a given layer, having shape of a circle of Dav diameter;

3) average-sized pieces are densely packed around the cen-

tral piece.

Selection of shapes of pieces must be described separately.

A considered rectangular piece shape, on the one hand, 

makes it possible to take into account its real elongated shape, 

and, on the other hand, is quite simple and convenient for 

analysis. Shape complication does not make much sense due 

to the diversity of a real geometry of pieces. A transition from 
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the model to the real piece shape is performed using the fi lling 

coeffi  cient [11]

,f
Vk

a b c


 

where V is particle volume.

A round shape of an average-sized piece is chosen due to 

the uniformity of a generatrix radius vector in all directions 

and the absence of a need to consider the orientation of the 

longitudinal axis of each average-sized piece in space, in order 

to simplify the analysis.

In general, a composition of a rectangular piece surround-

ed by several round pieces simulates a satisfactory model of 

relative position of pieces in a layer, whose main parameter, 

from the point of view of the bending force scheme, is a dis-

tance between adjacent contacts of a considered piece. We will 

compare the latter value with the piece dimensions.

Consider a three-point piece bending on the long side 

(Fig. 1, a) for the case of layer compression along the x-axis, 

corresponding to the relative piece size in a layer   1, which 

is determined by the expression

.
av

c
D

 

Here, three middle pieces are involved in a deformation of 

the central piece, having loading areas with the corresponding 

lengths z1, z2 and z3

1 2 ;
2

avD
z z 

z3  Dav,

on which contact forces depend
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where b is width along y-axis, which is equal for all pieces; n is 

layer porosity of the deformed rock mass.

The maximum bending moment in this scheme is ob-

served in the cross-section of a piece along xy-plane and is 

equal to
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It should be noted, that the scheme shown in Fig. 1, a, cor-

responds to the maximum possible bending moment under the 

given conditions. If the contacts at the piece bottom are dis-

placed by an amount (c/2), so that there are two contacts at 

the bottom, we obtain a completely symmetrical scheme with 

zero bending moment. Thus, the whole variety of cases of 

bending can be simplifi ed to the case with a bending moment 

Mf, max and to the case with zero bending moment, implement-

ed with a probability of 1/2 each.

For a parameter value   2 we have a fi ve-point bending 

scheme (Fig. 1, b), where the following relations are true

1 3 ;
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avD
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It can be concluded from expressions (3, 4) that the maxi-

mum bending moment is directly proportional to an axial stress 

x, to a square of the value Dav, and is inversely proportional to 

a layer porosity n and does not depend on a parameter  .

A seven-point bending scheme is considered similarly for 

  3, nine-point scheme for   4 etc., with the same conclu-

sions.

The case when   1, shown in Fig. 2 is of particular interest.

Here, contact forces from the fi rst and second pieces of the 

size Dav, same as in Fig. 1, a, are applied at particle corners, 

but they have additional horizontal components P1, z  P2, z, 

that do not contribute to creation of a bending moment. The 

lengths of loading areas no longer depend on a value Dav and 

are determined in the following way

1 2 3; .
2

cz z z c  

a

b

Fig. 1. Schemes of piece bending:

a – three-point; b – fi ve-point
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Accordingly, we obtain the following

1, 2, 3

2 2
2
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; ;
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Thus, for a central piece of small size   1, the bending mo-

ment is also directly proportional to a square of a parameter .

The most important conclusion from the analysis of 

schemes discussed above is a possibility of reducing bending 

schemes with any number of points to a three-point scheme, 

the analysis of which is the main focus further on.

Three-point scheme of a piece destruction along xy-plane. 
Fig. 3 indicates a generalized three-point calculation scheme 

for a piece destruction along xy-plane (y-axis is perpendicular 

to the fi gure plane) in an inhomogeneous force fi eld for the 

maximum possible horizontal displacement of contact forces 

by a characteristic value (zx  /2). This value is equal to half the 

width of a central zone of a discrete load, which, in accordance 

with the above considerations, is determined from the expres-

sion

 
, 1

.
, 1

x
av

c
z

D
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 (5)

The location of a destruction plane is close to a real one, 

since it passes through point A with the highest tensile stresses 

for the piece upper plane, and also near the point of contact 

C3, where the maximum tensile stresses occur for the piece’s 

lower plane. This leads to a formation of surface cracks with 

their subsequent development into the main crack, dividing 

the piece into two parts.

In this case, we will ignore contact stresses in favor of non-

local strength criteria [12], in particular, using the fact that 

dangerous tensile stresses from bending in a piece of rock 

(point A), determined using the beam scheme, practically co-

incide with the ultimate strength for uniaxial tension of the 

piece.

From a standpoint of continuum mechanics, normal 

stresses are applied to the horizontal and vertical faces of a 

piece x and z, as well as the tangent stresses , the angle of 

deviation of the maximum main stress from x-axis is .

From the condition of equality of the discrete and equiva-

lent continuous loads on the area zx, the relations are obtained

 ;
cos sin

x x x
x

x x

bz bz
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Characteristic values in a piece loading diagrams (Fig. 3) 

are as follows:

- transverse force
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- longitudinal force

1 2sin ; sin .
2 2

z zx x
x x

ab abP P
N N

n n n n
 

     

The most dangerous point in the cross-section along xy-

plane is point A.

Stresses along z-axis near point A from the action of bend-

ing in combination with longitudinal compression:

- from the left

1 2
,

,

;zA L
xy y xy

N M
F W

  

- from the right

32
,

,

,zA R
xy y xy

MN
F W

  

where Wy, xy is section modulus of a piece relatively to y-axis in 

xy-plane, which, considering the facts described in [11], for a 

given shape of pieces is determined as follows

Fig. 2. Three-point scheme of piece bending at   1

Fig. 3. Generalized three-point scheme of a piece destruction 
along xy-plane
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2

, ;
32

y xy f
a bW k 



Fxy is a cross-sectional area of a piece

2 3
.

4
xy f

abF k 


Here, as in expression (2), tensile stresses have a “minus” 

sign, and compressive stresses have a “plus” sign to simplify 

the notation, since all equivalent destructive stresses are re-

duced to compressive strength of a rock.

For point A, the following relations are true

xA  0; A  0,

therefore, the main stresses at point A have the form

1A  zA; 3A  0.

Equivalent destructive stress at point A for this calculation 

case is determined considering (2)

eA  max(eA, L; eA, R).

Two-point scheme of a piece destruction along xy-plane.
A destruction scheme, considered in Fig. 3, is only one of 

the possible variants of a force scheme, with the maximum 

relative horizontal displacement of contact forces by the value 

(zx /2). In this case, bending moment from vertical compo-

nents of contact forces also reaches the maximum, which is 

important for pieces with a large relative length kca.

When decreasing a parameter kca, the infl uence of bending 

is reduced in favor of a shear along the path between the con-

tact points on a piece surface. The shortest trajectory of shear 

is at zero horizontal displacement of contact forces, which is 

shown in Fig. 4. This corresponds to a two-point scheme of a 

piece destruction along xy-plane.

Relations (5, 6, and 7) are also true here.

Characteristic values in a piece loading diagrams (Fig. 4) 

are as follows:

- transverse force

4 ;
abQ
n




- bending moment

4 sin ;
2 2

x x
x

P a abz
M

n n


  

- longitudinal force

4 .zab
N

n




The highest tensile stresses on the piece upper plane are 

observed near (to the right) of point С1, and on the lower 

plane – near (to the left) of point С2. Therefore, the main 

crack practically coincides with the cross-section С1С2, which 

is considered to be the most dangerous.

The maximum horizontal normal stresses in the vicinity of 

points С1 and С2 are determined by the formula

4

,

.z
zC

y xy

M
n W

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The equivalent destructive stress for a case of a piece shear 

is determined from the expression [8]

2 2 2( 1) (1 ) 4
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where average shear stress is determined by the formula
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Three-point scheme of a piece destruction along yz-plane. 
The scheme in Fig. 3 is relevant in a case when the direction of 

the maximum main stress in a layer 1 deviates from the x-

axis by an angle less than or slightly greater than 45 degrees. In 

a case when the direction of 1 is close to z-axis, a possibility 

of destroying a piece along the cross-section in the yz-plane 

should also be considered, especially for a piece shape close to 

the isometric one and at high values of the side thrust coeffi  -

cient .

The force scheme of piece destruction along a cross-sec-

tion in yz-plane is shown in Fig. 5. Here, the contact points are 

displaced relatively to each other vertically by the maximum 

possible value (xz /2), which is determined according to the ex-

pression

,
.

,
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D k
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From a condition of equality of a discrete and an equiva-

lent continuous load at the area zx, the following relations are 

obtained
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Characteristic values in a piece loading diagrams (Fig. 5) 

are as follows:

- transverse force
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    Fig. 4. Generalized two-point scheme of a piece destruction 
along xy-plane
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- longitudinal force

5 6sin ; sin .
2 2

z zx x
z z
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N N

n n n n
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The most dangerous point in a cross-section along yz-

plane is point B.

Stresses along x-axis near point B from the action of bend-

ing in combination with longitudinal compression are:

- from the left

5 6
,

,
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where Wy, yz is section modulus of a piece relatively to y-axis in 

yz-plane, which is defi ned as follows
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For point B, the following relations are true

zB  0; B  0,

therefore, the main stresses at point B have the form

1B  xB; 3B  0.

The equivalent destructive stress at point B for this calcu-

lation case is determined considering (2)

eB  max(eB, L; eB, R).

Two-point scheme of a piece destruction along yz-plane.
Similar to the case of destruction by a shear across the long 

side of a piece (Fig. 4), Fig. 6 indicates a scheme of destruction 

by a shear along the shortest path between contact points lo-

cated on the short sides of a piece.

Characteristic values in a piece loading diagrams (Fig. 6) 

are as follows

- transverse force
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The maximum horizontal normal stresses in the vicinity of 

points C1 and C2 are determined by the formula
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The equivalent destructive stress for a case of a piece shear 

is determined from the expression [8]
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where average shear stress is determined by the formula
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Fig. 6. Generalized two-point scheme of a piece destruction 
along yz-planeFig. 5. Generalized three-point scheme of a piece destruction 

along yz-plane
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Main research results. The force schemes of piece destruc-

tion given above have a random and competing character of 

implementation. Therefore, the maximum equivalent destruc-

tive stress and a condition for piece destruction for the prede-

termined parameters such as the side thrust coeffi  cient , the 

angle of piece orientation , the relative piece size kca and the 

relative piece size in layer  is determined by the formula

 e  max(eA, eC, eB, eC, 2)  Rc. (8)

Fig. 7 indicates relative dependences for the main compo-

nents of formula (8), depending on the angle of piece orienta-

tion in space when   0.22 and values kca  1.5 (а) and kca  2.0 

(b) for pieces of small size (  1).

For the case in Fig. 7, a, bending destruction across the 

long side is more likely in a range of approximately 0 to 45 de-

grees, shear destruction across the long side at angles of 45 to 

70 degrees. Also, bending destruction across the short side is 

more likely at angles of 70 to 90 degrees, and shear destruction 

across the short side is not realized. At the same time, in a 

range from 0 to 70 degrees, when destruction occurs along the 

cross-section in xy-plane, fragments with a lower coeffi  cient 

kca than in the original piece are obtained, i. e. the shape of 

fragments improves and gets closer to the isometric shape. In a 

range from 70 to 90 degrees, on the contrary, the shape of frag-

ments worsens, they become more elongated than the original 

piece.

For the case in Fig. 7, b, there is destruction only from 

bending across the long side for any values of , the shape of 

fragments always improves compared to a shape of the original 

piece. This conclusion is particularly true for even larger val-

ues of kca.

In practice, rock pieces with kca values less than 1.5 are 

very rare, and the share of pieces in a range of kca up to 2.0 even 

for cube-shaped crushed stone is about 40–50 %, i. e. slightly 

less than half. In addition, as follows from the graphs in 

Fig. 7, a, (above), even if a piece shear scheme is implement-

ed, the destructive stresses still approximately correspond to 

the values for a bending scheme. Therefore, the maximum im-

pact on a destruction of small pieces is exerted by the cases of 

their loading specifi cally by bending loads.

Fig. 8 indicates relative dependences for the main compo-

nents of formula (8) depending on the angle of piece orienta-

tion in space when   0.22 and kca  2.0 for large pieces (  

 3  kca).

Here, the destruction occurs in the shear force schemes, 

not the bending schemes, at almost any values of . Also, it is 

true in a range from 0 to approximately 70 degrees along the 

cross-section in xy-plane, with a decrease in kca for fragments, 

and in a range from 70 to 90 degrees along the cross-section in 

yz-plane, with a deterioration in shape of fragments.

The graphs of destructive stresses with an increase in the 

side thrust coeffi  cient, for example, up to   0.5 are of par-

ticular interest, what occurs when the rock mass layer is 

compacted in a process of its deformation, both for small 

pieces (  1, Fig. 9, a), and for large pieces (  3, Fig. 9, b). 

Here kca  2.0.

As seen from the analysis of graphs, small pieces are de-

stroyed exclusively by bending across the long side, and the 

large ones are destroyed by shear across the long side over the 

entire range of angles , with a decrease in the parameter kca 

for fragments, i. e., increasing the uniformity of a force fi eld 

improves the shape of pieces, bringing it closer to the isometric 

shape.

Conclusions. An analytical model of destruction of pieces 

with random shape in disintegrators under loading in a thick 

layer of rock mass has been created. The considered piece has 

a rectangular shape, while the particles around it are modeled 

in a round shape.

Formulas for equivalent destructive stresses in a piece are 

obtained for variants of bending and shear force schemes, 

when discrete contact forces are applied to the long or the 

short sides of a piece.

Dependences in relative values of equivalent destructive 

stresses on an angle of piece orientation relative to direction of 

the maximum main stress in a rock layer are obtained.

It was established that the destruction of pieces occurs as a 

result of implementation of predominantly bending destruc-

tion schemes, which is especially important at high values of 

relative piece length kca, small relative piece size in a layer  

and application of the main load across the long side. In this 

case, the shape of piece fragments usually improves, their rela-

tive length kca is smaller compared to the original piece.

Increasing a uniformity of a force fi eld with an increase in 

side thrust coeffi  cient  also improves the shape of piece frag-

ments.

Fig. 7. Equivalent destructive stresses for various force schemes 
depending on the angle of piece orientation at   1 and 
  0.22:

1 – eA; 2 – eC; 3 – eB; 4 – eC, 2

a

b

Fig. 8. Equivalent destructive stresses for various force schemes 
depending on the angle of piece orientation at   3 and   
 0.22:

1 – eA; 2 – eC; 3 – eB; 4 – eC, 2
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In the case of a piece shape close to the isometric one 

kca  1, a high relative piece size in a layer  and application of 

the main load across the short side, the probability of imple-

menting shear schemes increases compared to bending 

schemes, a signifi cant share of fragments worsens their shape 

compared to the original piece.

Thus, it has been analytically proven, that disintegration 

in a thick layer leads to a lower level of destructive stresses for 

destruction of small lamellar pieces compared to large iso-

metric ones, which explains the eff ects of improving the 

shape of pieces and accelerated destruction of smaller frac-

tions.
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Плоска задача визначення зусиль 
для руйнування шматків у дезінтеграторах 

при захопленні товстим шаром
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Д. Л.  Колосов1, В. Ю. Кухар1
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2 – Інститут геотехнічної механіки імені М. С. Полякова, 

м. Дніпро, Україна

Мета. Встановлення аналітичних залежностей руй-

нівних напружень, що діють на шматок неізометричної 

форми під час квазістатичної деформації відносно тов-

стого шару гірничої маси в дезінтеграторах, від параме-

трів форми шматка, просторової орієнтації шматка, а 

також відносної крупності шматка у шарі, з урахуван-

ням дискретного характеру прикладання контактних 

зусиль.

Методика.  Плоска схема контактів шматка неізоме-

тричної форми в товстому шарі гірничої маси отримана 

через композицію центрального прямокутного шматка 

та круглих шматків середнього для даного шару розміру. 

Розподіл компонентів напружень у шарі гірничої маси 

прийнято на основі класичної теорії пружності й теорії 

сипкого середовища. В якості критерію руйнування 

шматка у складному напруженому стані використано 

критерій геомеханіки, що показує зв’язок еквівалентно-

го руйнівного напруження й межи міцності породи на 

стиск. Усі силові схеми навантаження шматка зведені до 

триточкових схем вигину й двоточкових схем зрізу, як 

поперек довгої, так і поперек короткої сторін шматка, з 

аналізу яких находимо найбільш небезпечний у кон-

кретному випадку варіант. Застосована безрозмірна па-

раметризація як для завдання геометричних параметрів 

шматків, так і для аналізу сумарних руйнівних напру-

жень.

Результати. Отримані аналітичні залежності еквіва-

лентних руйнівних напружень для шматка витягнутої 

форми в залежності від відносної довжини шматка, від-

носної крупності шматка у шарі, кута орієнтації шматка 

відносно напряму максимального головного напружен-

ня й коефіцієнта бічного розпору у шарі породи. Уста-

новлено, що лещадні шматки, особливо ті, що є дрібні-
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шими за середній розмір у шарі, руйнуються переважно 

від реалізації схем вигину поперек довгої сторони, фор-

ма уламків поліпшується за рахунок зменшення віднос-

ної довжини шматка. Підвищення однорідності силово-

го поля в робочій зоні дезінтегратора також призводить 

до поліпшення форми уламків. З іншого боку, у міру на-

ближення форми шматка до ізометричної, а також 

збільшення відносної крупності шматка у шарі, зростає 

ймовірність реалізації схем зрізу та зменшується ймо-

вірність реалізації схем вигину, у тому числі з погіршен-

ням форми уламків порівняно з вихідним шматком. 

При цьому доведена аналітично наявність більших ве-

личин руйнівних напружень для лещадних дрібних 

шматків порівняно з ізометричними великими, за ін-

ших рівних умов.

Наукова новизна. Обґрунтована універсальність за-

стосування триточкової схеми вигину шматка неізоме-

тричної форми в поєднанні зі двоточковою схемою його 

зрізу для аналізу руйнування в товстому шарі гірничої 

маси. Уперше отримані залежності еквівалентних руй-

нівних напружень для неізометричного шматка від його 

відносної довжини, його відносної крупності у шарі, 

кута відхилення головної осі шматка від напрямку го-

ловного напруження й коефіцієнта бічного розпору у 

шарі.

Практична значимість. Отримані результати дозво-

лять здійснювати обґрунтований вибір параметрів робо-

чих органів дезінтеграторів для руйнування матеріалів у 

товстому шарі, а також прогнозувати зміну частки ле-

щадних шматків у процесі дезінтеграції. Вони дають 

змогу визначити ключові параметри робочих органів 

для нових конструкцій дезінтеграторів. Це створює 

основу для розробки методик розрахунку робочих орга-

нів сучасних зразків дробарно-подрібнювального об-

ладнання.

Ключові слова: дезінтегратор, товстий шар, складний 
напружений стан, лещадний шматок, вигин, зріз, коефіці-
єнт бічного розпору
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