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SYNTHESIZING MODELS OF NONLINEAR DYNAMIC OBJECTS
IN CONCENTRATION ON THE BASIS OF VOLTERRA-LAGUERRE STRUCTURES

Purpose. Enhancing energy efficiency and quality of automated control of the technological concentration line, increasing
extraction of the useful component into concentrate while processing iron-bearing ores of various mineralogical and technological
types through developing principles and approaches to distributed optimal control over interrelated processes in concentration
production on the basis of the dynamic space-time model.

Methodology. Based on the assumption that final results of concentration plant operation depend on a set of input parameters
and results of functioning of interrelated nonlinear dynamic objects, the authors suggest an improved approach to simulating con-
centration processes for iron ore materials on the basis of Volterra-Laguerre structures by using input signals of certain techno-
logical stages characterizing granulometric composition of processed ore.

Findings. It is found that while synthesizing models of nonlinear dynamic objects of concentration, it is expedient to apply
Volterra structures with the simulation error not exceeding 0.039 under the mean square deviation of 0.0594. Volterra models
projected onto orthonormal basis functions enable simplifying parameterization and reducing sensitivity of models to noises.
Among other orthonormal functions, Laguerre functions are reasonable to use. All this allows minimizing the number of model
parameters in the course of their identification.

Originality. The method of identifying nonlinear dynamic objects of concentration on the basis of the space-time Volterra
model is improved. This model is different from available ones by its projection onto orthonormal Laguerre basis functions to in-
crease its robustness to noises.

Practical value. Testing results enable deducing efficiency of the space-time Volterra model in the condition space by means of
the Laguerre network, thus increasing accuracy of simulation under noises as compared to the Volterra model through reducing
the simulation error by 18.11 % under 40 iterations of identification. The experimental check of identification accuracy by means
of the Volterra-Laguerre model in the iron content control system in various points of the technological concentration line con-

firms efficiency of the given method.

Keywords: nonlinear dynamics, Volterra- Laguerre model, concentration, identification

Introduction. Although all basic industrial processes are
nonlinear in dynamics, in practice, most control systems are
based on linear control methods. For soft nonlinearity, linear
approximation of process dynamics around the working point
is satisfactory in general. If there are great deviations from this
working point, both the model and the control system should
be readjusted.

If such readjustments are required too often, adaptive con-
trol is expedient to be used. It is evident that awareness of non-
linearity of the process combined with application of the
method for controlling nonlinear dynamic objects could elim-
inate the necessity for adaptive control.

In case of nonlinear systems, when their dependencies on
previous input data reduce quickly in time, the dependency of
output signals on input ones is described by the Volterra integro-
power series which characterize the control object’s properties
(its condition) as a sequence of multi-dimensional weight func-
tions (Volterra kernels) invariant to the type of the input signal.
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Application of models with Volterra series to identifying
and simulating nonlinear systems can be explained by the fol-
lowing essential benefits as is indicated in the works by
Soni, A.S., Parker, R.S. and [1, 2]:

- invariance as to the type of the input influence (i.e. possible
solution of a problem for determined and random input signals);

- consideration of nonlinear and inertia (dynamic) proper-
ties of an object;

- universality, i.e. potential investigation into nonlinear
continuous and nonlinear impulse systems, stationary and
non-stationary stochastic systems with centred and distributed
parameters as well as multidimensional systems with multiple
inputs and outputs;

- interpretation of linear systems as a subclass of nonlinear
ones to apply time and spectral methods developed in the the-
ory of linear systems to nonlinear systems;

- potential research from the analytical and calculation
standpoints.

Literature review. Identification of an object in the form of
the second-order Volterra model implies the following. There

30 ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2020, N 2


mailto:morkunv@gmail.com
nmorkun @gmail.com
mailto:vtron@ukr.net
sts.1811@ukr.net
https://doi.org/10.33271/nvngu/2020-2/030

are L pairs of normalized values of “input-output” (y(k),

B¢(k)) that determine parameters Be, o,(i), ay(i, ) of the sec-
ond-order model considering disturbances [3]

B )=+ (ol 323 e 0o~ e(k). )

i=0 j=0

where {e(k)} is a sequence of random values of the zero mean
value which is statistically independent of the input sequence
{w(k)}.

The problem of identifying is reduced to formation of
equations to assess parameters of model (1) to ensure the min-
imum mean square error admitting at the same time that the
input sequence {w(k)} is stationary as is indicated by
Doyle F.J., Pearson R.K., Ogunnaike B.A. and [3, 4]. The
advantage of this approach is the fact that it produces simple
evaluation equations with certain correlations that can be as-
sessed by means of available data. To assess parameters of the
second-order Volterra model, it is necessary to calculate the
autocorrelation function of the input signal

R (m) = E{y(k — m)y(k)}, (2)

the intercorrelation function of ‘input-output’ signals
ryp(m) = E{y(k — m)B(k)}, (3)
and the inter-bi-correlation function of ‘input-output’ signals
typ(m, n) = EQu(k — m)y(k — n)B“(k)). 4)

While calculating the above mentioned correlation func-
tions (2—4), the mathematical expectation operator E{-} is re-
placed by the mean value formula of the available sequence. As
a result of this, under m, n =0, 1, ..., M the correlation func-
tions are written down as [3]

Equations of parameter evaluations are synthesized on the
basis of the mean square error expression

2

B (k)% - oo (1w ) -

MSE=E =0 )

DX (v(k-)ol)

The equations aimed at assessing parameters Ba, o(i),
a,(i, j) are obtained by differentiating the expression MSE (5)
for each parameter and equaling the obtained result to zero.

According to the recommendations of Doyle F.J., Pear-
son R. K., Ogunnaike B.A., [3, 4] in particular, the following
calculations are greatly simplified under the following condi-
tions

E{\y(k)} =0;
Efu(k=i)v(k~1)v(k-m)} <0

Conditions (6) impose requirements of the third-order
symmetry of the input sequence and, as a result, the linear
component of the second-order Volterra model (o;(7)) main-
tains this unpaired symmetry, while constant and quadratic
terms reveal paired symmetry.

(6)

Differentiation of MSE with respect to the linear parame-
ter (a,(¢)) leads to the following system of linear equations [3]

M
a(O)ra) 2R (- ))=0
(=0,1,...,.M.

The given system (7) is the Dzig-Walker equation system
applied to identifying linear systems and is more concise as
R,a = r,, where a = [0,(0),...., o (M)]" is a vector of linear
parameters of the model; R,,, is the symmetric Toeplitz matrix
of (M1) - (M + 1) size where the elements with indices 7, j are
intercorrelation functions of the input signal R, (i - j); r,, =

= [ry,(0), ..., 1y, (M) 7] is a vector of the intercorrelation input-
output functlon

Purpose. The research aims at enhancing energy efficiency
and quality of automated control of the technological concen-
tration line, increasing extraction of the useful component
into concentrate while processing iron-bearing ores of various
mineralogical and technological types through developing
principles and approaches to distributed optimal control over
interrelated processes in concentration on the basis of the dy-
namic space-time model.

The given research aim conditions the necessity to solve
the problem of developing and investigating into the space-
time mathematical model of nonlinear dynamic objects of
concentration as structures with distributed parameters.

Methods. To simulate nonlinear systems with distributed
parameters, the authors suggest the space-time Volterra model
considered by Han-Xiong Li, Chenkun Qi, Stephen Boyd, in
[5, 6] in particular, in the form of

y(xi)=Y

r=1

T 1

...j...J...Jg,xal &y, )X

0

x]_[u(gv,z—rv)drvdgv.
v=I

ot—

For better visualization, we provide a simple example of
the three-dimensional kernel model under R =2

B (x.1) ngl & (g1, )dE +

07,=0
+_”Z Zgz x&l’&stl’TZ) (il’t_Tl)‘l’(‘tazat_'fz)dgd&z-
007=01,=0

The object’s dynamics should be first decomposed into the
kernel series resulting in the space-time distribution of kernels.

After assessing unknown parameters, the kernels are sub-
jected to transformation through space-time synthesis. The
quality of simulation will be improved as a result of increasing
the number of kernels. As a set of kernels is used, a wide range
of nonlinear integrated systems with distributed parameters
can be approximated.

The lumped system is generally described by

BU(r) = N({w()}) + d(@),

where {y(t)} = {y(t)|t=1,..., £} is an input signal; 7 is the dis-
crete time; y is an output; d is stochastic disturbances, N is the
operator with the extinct memory function approximated by
the discrete Volterra model [6]

p(1)=3 - zm, ) ®

r=l1,=0 v=1
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Transformation (8) for the system with distributed param-
eters as is shown in the work by Chenkun Qi enables [5]

Bix, 1) = N({w(C, D)} +d(x, 1)),

where {y(C.1)}={w(¢,1|CeQ,1=11} isan input.
The space-time Volterra model is created through adding
spatial variables to the conventional Volterra model

B 1) -
z’:erCp R % S - ©)

7, =0 v=I

T

r=1

where v, is the #* order function of the space-time Volterra
kernel that denotes the change at the input in space ¢, ..., C,
and time 74, ..., T,

Model (9) can be applied both to time-variable and sta-
tionary systems. For the system, which is currently invariant,
the kernel will be invariant and, as is shown in the work by
Chenkun Qi, can be presented in the following way
yr(x,gl,...,(;,,t,rl,...,r,):yr(x,gl,...,(;,,t—tl,...,t T,). (10)

Similarly to (9), according to Chenkun Qi, the model can
also function in the space of the variable or space-invariant
systems. If the model is homogenous in the spatial domain,
there is

yr(x,(;,, ...,Cr,t,rl,...,t,):yr(x—gl,...,

Substituting (10) into (9), we obtain

‘(x0)=2[- IZ Zv,xf;l, Ly TioeensT, )X

r=lqg Qmu= (11)

X HW(C’v’t_TV)dC
v=1

Model (11) is not used because of its infinite order. In
practice, according to Han-Xiong Li, Chenkun Qi, Stephen
Boyd, in [5, 6], terms of higher order can be neglected and
only the first R of the kernel is considered

()= o 3t (5t )

r=lg Q7= 7,=0 (12)
xH\u(Cv,t—tv)de+u(x,t),
v=I

x=C,.t,1, ...,‘rr).

where the last term v(x,7) contains dynamics that is not simu-
lated and noises. Accuracy of simulation and complexity of the
model can be controlled through the R order. If we assume
that kernels in (12) are fully integrant in the time domain [0,
o0) at any point of space x and ¢, it means that the correspond-
ing space-time Volterra model is stable and can be presented
by orthonormal time basis functions. The kernels should be

applied to the input base {\u,-(x)}:il , the output base {q),-(x)}:,:l
and the time base {(pi(l )}j:]

()
q r (13)
0 (2T 00 ()

n

3% 3

i=l j Jr=1k

MQ

1

where 9(” Sk is a corresponding constant ratio.
Parameters n and ¢q (13) should be infinite for systems with
distributed parameters. In fact, for most parabolic systems, the
finite values of » and g are quite realistic assumptions, accord-
ing to Han-Xiong Li, Chenkun Qi and Stephen Boyd in [5, 6].
It is evident that they depend on required accuracy of simula-
tion. On the other hand, n also depends on the frequency

mode and the type of spatial basis functions, while ¢ is associ-
ated with complexity of system dynamics.

The need to calculate a great number of ratios of the mod-
el, according to Soni A.S., Parker R.S., and others [2], is the
factor that greatly complicates application of Volterra models.

fj(M“‘lJ (14)

i=1 !

where N is the order of the Volterra model under study; M is
the memory depth of the system. The scheme of the techno-
logical line of a concentration plant considered in this paper
contains L = 15 testing points of technological parameters. Ac-
cording to the approach suggested, at each of L points, the
granulometric composition of ore materials according to D =9

size classes y[(d ),d =1,70,lf =L7 and the useful component

content in size classes B, (d),d =1,D,0=1,L are controlled.
After considering one controlling influence for each techno-
logical aggregate, the number of model signals will increase up
to 270 + 15 =285.

The results of the research on dynamic properties of concen-
tration in [5] indicate that while forming mathematical models,
one should take account of 3—4 delayed values of signals.

Assessment of the number of parameters of the Volterra
model by methods suggested by Abhishek S.Soni with the
above number of signals including the delayed ones reveals the
number of parameters of the Volterra model being over 11.500.
Besides, under given conditions, sensitivity of the Volterra
model to measurement noises is more evident.

One of the ways of simplifying parameterization and atten-
uation of sensitivity in Volterra models to noises is their projec-
tion onto a set of orthonormal basis functions. Various basis
functions are under consideration: Laguerre functions for ap-
proximation of the linear block [6], Taylor series — for nonlin-
ear term [7], radial basis functions for estimation of the solution
of Volterra integral equations [8], Laguerre functions basis for
expansion of transfer function [9], Laguerre and Kautz’s basis
functions [10]. Unlike the Volterra model, Laguerre and
Kautz’s orthonormal functions are composed of a set of smooth
exponential functions. These models are noted for noise filtra-
tion. Orthonormal basis functions differ in their complexity and
quality characteristics. For example, only one parameter (pole)
is required to determine dynamics of the Laguerre model, while
there should be two poles for the Kautz model.

The Kautz model can simulate oscillatory behavior due to
its complexity when two poles are selected as combined ones.
Considering the specific character of iron ore material con-
centration and taking account of the fact that a single param-
eter simplifies identification of Laguerre models, this model
should be studied to solve the set tasks.

Nonlinear functions can be presented by linear combina-
tion of Laguerre filters. The basis Laguerre function, accord-
ing to Abhishek S. Soni, in the discrete time is determined by

9,(i)=\i-a? f(_a)k[j:][izl:l]x . a3

ol U (i-j+k)

where o is the Laguerre pole; U(*) is a unit-step function. The
parameter o in (15) determines the exponential frequency of
attenuation of Laguerre functions and dynamic behavior of the
Laguerre model. It is within 0 <o < 1.

The output of the Laguerre model is presented by the for-
mula

MS

(k) =60 e (k) 220 ()1 ()

s i=l j=1 (16)
35S (k) (k)0
i=l j=1n=
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where [3}1 (k ) is the output of the Laguerre model; c is Laguerre
ratios; , is the length of the input sequence .

The benefit of the Laguerre basis is its efficiency as instead
of the infinite sum used in (16, 17), it can be reduced to a rela-
tively small number of elements [3]. Through increasing the
number of filters included in the model, the simulation error
caused by the final number of Laguerre filters decreases. Also,
according to Dumont G.A., Fu Y., for the set accuracy of the
Laguerre model, the simulation error can be reduced by select-
ing the parameter .. The total number of parameters N, of the
third-order Laguerre model with L filters is set through the ratio

N,=(L+1)(L+2)(L+3)/6.

The Laguerre model can be also written down as a state-
space. In case of the third-order discrete presentation of the
model as is shown in the works by Dumont G.A., Fu Y., we
obtain

((k+1) = A() (k) + B(o)y(k); (18)
L

ﬁ;‘(k):CTZ(k)JrfT(k)DE(k)+Z(Z(k) Ez(k)) J(k), (19

i=1

where parameters A(a), B(a) depend on a, i.e. the dynamic
behavior of the system in (18)—(19) is conditioned by the value
of the parameter o

a 0 0 ... 0
(1-a?) a 0 ... 0

Ala)=| (-a)(1-0?) (- a .. 0;
)t 21-0?) (-)t31-a?) ... ... «

1

B(a)=1-e)) o | €7 <[eoa ]

(_a)L—l
Gy S Gy G
D=|: . |, E=|: ° :

i Cu Cri 7 CLn

Thus, the Laguerre model like the Volterra one belongs to
Wiener models, i.e. consists of a linear dynamic element fol-
lowed by the static nonlinear non-memory output.

Findings. As the Laguerre basis is orthonormal within the
interval [0, o) and complete in the space L,[0, ), the following
statement is true. The kernel of the N order can be expanded to
the Laguerre series in the following way, if it is stably separable
and strictly proper, according to Zheng Q., Zafiriou E.

i) = 2 ey (1

Q= gyl

IN)(PJI(II) (ij(iN)’ (20)

where

0 0

CN(jlg..-,jN):Z"'th(il,...,iN

The separability condition of the kernel in (21) looks like

iy (i ) = Z"u(’l)"zj(’z) Vg (i ) (22)

)(pfl(il)"'(p/‘N(iN)' (21)

where ¢ is some finite number; v,(i,) is the actual function of a

variable g =1, N. The kernel is stably separable if v,;(i,) satisfies
the condition

0
Z|ng (lg )| < 00
lg

The symmetric kernel is strictly proper if

hN(ila"'aiN):Oa il;"'v

This implies that the Volterra model output is not a func-
tion of the current input value as it depends on previous inputs
only. As Volterra kernels satisfy the above conditions, they can
be projected onto the Laguerre basis.

As is shown above, instead of the infinite sum in (20), L
elements can be used and the following expression is applied

(ll’ ! ) Z ZCN(]I’ 7JN)(P/1(11) (ij(iN)7

J=l dy=l

iN:O.

where cy(Jj|, ..., jy) are Laguerre ratios obtained by means of
Volterra kernels applying the following expression

CN(jl""’jN) Z Zh (’1’ )cpjl(il)...cij(iN).

= iy=1

The main advantage of the Laguerre basis is adequate de-
scription of the system obtained at L <« M. Thus, the number
of parameters required to describe the Laguerre model is
greatly reduced. To describe the Volterra-Laguerre model ap-
proximating the Volterra model, only two variables oo and L are
required. As parameters o and L are interrelated, the simula-
tion error is the function of these parameters.

To determine the compromising size of the model (the
number of Laguerre filters) and the model quality (the number
of Laguerre filters and the Laguerre pole) the informational
criterion Akaike is used as metrics. It is calculated as a qua-
dratic error between inputs of the Volterra model and the Volt-
erra-Laguerre model

AIC= Klog (SSE(a, L)/K) + 2N, (23)

The first element of (22) considers accuracy of the model,
while K'is the volume of data applied to identifying the model.
The second element penalizes complexity of the obtained
model. In the scope of the current research, Kis the number of
ratios of the Volterra models subjected to projection, SSE is a
sum of error squares between the input Volterra model and
outputs of the Volterra-Laguerre model projected, and Np is
the number of parameters in the obtained Volterra-Laguerre
model. Under the given set of data, SSE depends on both the
number of Laguerre filters and the corresponding Laguerre
pole. Each pair of o and L characterizes the Volterra- Laguerre
model which has a unique value AIC associated with it. The
model with the smallest AIC value is an optimal balance be-
tween the number of parameters and the model quality. In the
given research, the optimal Laguerre pole for the given L is
calculated to obtain the complete nonlinear Volterra model.
The SSE term in the AIC expression is set as follows

SSE(0.L)= (B, (k)b (kL)'

where B and B, (a,L) are outputs of the Volterra and Volter-
ra-Laguerre models respectively.

Dynamics of the Volterra-Laguerre model is set by the pa-
rameter o in (15), while L determines the size of matrices C, D,
and E. Thus, the problem of optimization looks like

~ A 2
k)-B, (koL 24
b)), o9

J(oc,L)=miLnKlog[(
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The given problem is the nonlinear optimization problem
with constraints under nonlinear dependency of Laguerre fil-
ters on the parameter o.

According to the method described in [11], there is per-
formed assessment of relative quadratic errors of four various
approximations of the discrete Laguerre model within 8—32
with the sampling period of 7, = 0.5 sec. The method based on
reduction of the quadratic error calls for inversion of the R x R
matrix where R is the order of the desired concise model.
Laguerre poles are calculated by the method developed by
Moodi H. and Bustan D. These four Laguerre models are then
used to calculate rational sixth-order models.

The research results reveal that for larger matrices, the
minimal quadratic error can be obtained by applying the algo-
rithm of singular value decomposition [12].

Fig. 1 presents comparison of the quadratic error areas ob-
tained by different inversion methods. The obtained results
indicate that the SVD algorithm is more accurate as compared
to the pseudo-inverse matrix and the recursive least square
method.

The efficient value of the error for the above methods
(Fig. 1) makes: a) 3.65; b) 0.45; ¢) 2.37.

Relative quadratic errors calculated during the first 100 im-
pulse responses are given in Table 1. The obtained results dem-
onstrate that quality of the approximated model greatly de-
pends on the quality of the initial model applied to its building.

1500

1000 [ B

500 H 4

0 | | L | | |
0 50 100 150 200 250 300
ts

I L L
350 400 450 500

a

1 | Y | i \ | . |
0 50 100 150 200 250 300 350 400 450 500
ts

c

Fig. 1. Errors of the Volterra- Laguerre model identification:

a — pseudo-inverse matrix; b — SVD algorithm; ¢ — recursive
least-square method

The models obtained through applying this method are
convincingly stable and maintain the first Laguerre R ratios of
the input system.

Thus, the analysis of the results reveals potential consider-
able reduction of the order of the Volterra- Laguerre model ac-
companied by the retained practically identical response of the
reduced model as compared to the input one.

Due to significant variability of the characteristics of the
raw ore [13], nonstationarity and large spatial extent of con-
centrating production [14] and nonlinearity of its dynamic
properties [15], to obtain model parameters, nonlinear opti-
mization was used. To solve the problem of nonlinear optimi-
zation, the following methods are under study: the interior
point method, iteration quadratic programming, and the ac-
tive set method. The conducted analysis results in selecting the
active set method. In particular, this method reveals better re-
sults of searching for the most efficient solution under various
initial conditions, while other studied methods call for extra
calculations to determine initial conditions.

Table 2 demonstrates the analysis of the results of compar-
ing the Volterra and Volterra-Laguerre models in the absence
of noises and under noises of 10 % amplitude of the useful sig-
nal.

With the increased number of identification iterations, the
benefit of applying the Volterra-Laguerre linear identification
reduces as compared to the standard Volterra model. One of
the factors affecting the number of iterations is characteristics
of the simulated process. It should be noted that under 30—
40 iterations, the Volterra-Laguerre model reveals better re-
sults as compared to the Volterra model.

The identification result according to normallized “input-
output” data is in Fig. 2.

Adequacy of the model is checked by the Cochren criteri-
on according to the following conditions: the number of paral-
lel experiments per series is 9, the number of series is 24, the
significance level is 0.05. The results of experimental data pro-
cession reveal that the calculated Cochern criterion makes
0.4325, which is less than the table value of 0.4748. Thus, the
conducted analysis confirms replicability of obtained results.

Thus, while using the Volterra-Laguerre model under
noises, the simulation error reduces by 18.11 % as compared to
the Volterra model under 40 identification iterations. Experi-
mental testing of identification accuracy of the Volterra-
Laguerre model applied to controlling the iron content at vari-
ous points of the technological concentration line confirms
efficiency of the method.

Conclusions. The approach to simulating iron ore materi-
als concentration on the basis of Volterra-Laguerre is im-
proved after considering granulometric composition of ore
materials at the output of particular technological stages.

Itisindicated that Volterra structures applied to simulating
iron ore materials concentration enable reduction of the simu-
lation error up to 0.039 under the mean square deviation of
0.0594.

Volterra models were projected onto a set of orthonormal
functions to simplify their parameterization and attenuation of

Table 2
Increasing accuracy of the Volterra-Laguerre model as

Table 1 compared to the Volterra model
Relative quadratic error calculated for the 0—5 min interval Tteration Frror reduction Error reduction
Laguerre model | Laguerre model | Error of the approximated number (absence of noises), % | (presence of noises), %
order error sixth-order Laguerre model 20 9.87 50.01
8 1.32-107 1.32- 1072 40 4.32 18.11
16 4.24-1073 4.75-1073 60 0.96 9.72
24 5.97-10* 6.34-10 80 0.54 5.79
32 1.98- 107 2.18-107 100 0.12 2.95
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Fig. 2. Identification results of the Volterra-Laguerre model of
the iron content in the second-stage crushing product:

----- — the experiment data; — — the identification result

sensitivity to noises. It is shown that among basis functions,
Laguerre functions are the most expedient to be applied to
minimizing the number of parameters for identifying models
of ore concentration.

Testing results enable drawing the conclusion that the
space-time Volterra model is efficient in the state-space
through applying the Laguerre network, which allows increas-
ing the accuracy of simulation under noises as compared to the
Volterra model through reducing the simulation error by 18.11
under 40 % identification iterations. Experimental testing of
identification accuracy of the Volterra-Laguerre model ap-
plied to controlling the iron content at various points of the
technological concentration line confirms efficiency of the
given method.
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Mera. IligBuieHHs1 eHeproeeKTUBHOCTI Ta SKOCTi aB-
TOMAaTH30BAaHOTO KEPYBAaHHS TEXHOJIOTIYHOIO JIiHi€l0 30ara-
YeHHsI, 30UTBIIIEHHsI BUTyYeHHSI KOPUCHOTO KOMITOHEHTA Y
KOHLEHTpAT MpU MepepobeHHI 3a1i30BMICHUX Py, Mpe-
CTaBJIGHUX  MiHEpaJoro-TeXHOJIOTIYHUMU  Pi3HOBHUIAMM,
LJISIXOM pO3pOO0JICHHS MMPUHLIMITIB i MiIXOIIB 10 pO3Ioiie-
HOTO ONTUMAJILHOTO KE€PYBaHHS B3a€EMOIIOB’SI3aHUMM TPO-
1ecaMu 30arauyBajibHOTO BUPOOHUIITBA HA OCHOBI JMHAMIU-
HOI MPOCTOPOBO-YaCOBOI MOJIEJi.

MeTtomuka. [ pyHTyIOUMChH Ha TOMY, L0 KiHLIEBi pe3yJIbTa-
TA poOOTH 30arayyBaibHOI (HaOpUKHU 3ajexaTb Bill CyKyIl-
HOCTI BXiIHMX IapaMeTpiB i pe3yabTaTiB (PYyHKIIOHYBaHHS
KOMILJIEKCY B3a€EMOIOB’SI3aHUX HEJIHIMHUX JUHAMIYHUX
00’€KTiB, 3alpONOHOBAHO YIOCKOHAJIEHUI TiAXiA 10 Mojae-
JIIOBaHHS TMPOIIECiB 30arayeHHs 3a1i30pyJAHOT CUPOBUHU Ha
ocHOBI cTpyKTyp Bosnbreppa-Jlareppa, i3 3acTocyBaHHSIM BU-
XiTHUX CUTHAJIiB OKPEMUX TEXHOJIOTIYHUX CTaliii, 1110 XapakK-
TepU3YIOTh I'PaHYJIOMETPUYHUN CKIad Pyau, 11O TIepepooIsi-
€TBCS.

PesyabraT. BcTaHoBI€HO, 1110 TPpU CUHTE31 MOneIeit He-
JIHITHUX IMHAMIYHUX 00’€KTiB 30arauyBaJlbHOTO BUPOOHU-
LITBa JOLJIBHO BUKOPUCTOBYBAaTM CTPYKTYypu BonbTeppa,
MpHY 1IOMY MOMWIKAa MOJIeNoBaHHSI He TepeBuinye 0,039
NpU cepeTHbOKBaapaTuYHOMY BinxuieHHi 0,0594. Bukopuc-
TaHHS TIPOeIiloBaHHs Mojesieli BonbTeppa Ha opToHOPMO-
BaHi 0a3ucHi QYHKIIT 103BOJIMIO CIIPOCTUTU MPOLIEC Tapa-
MeTpu3allii Ta 3HU3UTU YYTIUBICTb Mojeselt no mymis. [To-
Ka3aHo, 110 3 OPTOHOPMOBAaHUX (PYHKLUIH JOLIBHO 3aCTOCY-
Batu (¢yHKii Jlareppa. 3a3HaueHe HO3BOJISIE MiHIMi3yBaTh
KiJIbKIiCTh MapaMeTpiB MojieJield y mpolieci ineHTudikartii.

HaykoBa HOBM3HA. YIOCKOHaJIEHO MeTOn imeHTUdiKaIii
HEeNHIMHUX IMHAMIYHUX 00’€KTIB 30arauyyBajibHOrO BUPOO-
HUIITBA HA OCHOBI MPOCTOPOBO-YacoBOi Monesi Boibreppa,
SIKUI BiIPi3HSIETHCS Bill HASSBHUX TUM, 110 JUIS MiIBUILIEHHS
pobacTtHocTi Mozesi BosibTeppa a0 1yMiB 3aiiicHeHe ii mpo-
ellitoBaHHsI Ha Habip OPTOHOPMOBAaHUX 0a3UCHMUX (DYHKIIiK
Jlareppa.

IIpakTiyna 3naunmicTb. PesynbraTi anmpoballii 103BosIsI-
I0Th 3pOOMTU BMCHOBOK IIOAO AOLIIBHOCTI peajtizallii mpo-
CTOpPOBO-4acoBOi Mojesi BoabTeppa y npocropi craHiB 3a
nornoMorolo Mepexi Jlareppa, 1o 103BoJIsI€ MiABULIUTYA TOY-
HIiCTbh MOJICJIIOBAaHHSI B YMOBaX Jii LIyMiB y MOPiBHSIHHI 3 MO-
nemnmio Bonbreppa 3MeHIIEeHHSIM TTIOMIIKY MOJIETIOBAaHHSI Ha
18,11 % nipu 40 iTepanisix ineHtudikanii. EkcriepumeHTab-
Ha TiepeBipKa TOYHOCTI ineHTrdiKallil i3 3aCTOCYBaHHSIM MO-
nenti Boasreppa-Jlareppa B cucteMi KOHTPOJIIO BMICTY 3atiza
B Pi3HMX TOYKaAX TEXHOJIOTIYHOI JIiHil 30arayeHHs IMiaTBep-
KY€ TOUTBHICTD JAHOTO METO/Y.

KumouoBi cnoBa: neainiiina ounamika, modeas Boavmeppa-
Jlazeppa, 36aeauysanvhe 6upobHUUmMe0, ioenmugixayis
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Ieaw. [ToBbieHne 3HeProaMGHEKTUBHOCTH M KadyecTBa
aBTOMATM3UPOBAHHOTO YIIPABJICHUS TEXHOJOTUYECKOM JIM-
HHUell oOoramieHus, YBEJIWYEHUE W3BJICUYCHUS ITOJIE3HOTO
KOMITOHEHTa B KOHLIEHTPAT IPU MepepaboTKe Keae30Conep-
KAIIUX pyH, MPEACTaBICHHBIX MHWHEPAIOro-TeXHOJOTHYe-
CKMMM Pa3HOBUIHOCTSIMM, IIyTeM pa3pabOTKU MTPUHIIAIIOB 1
MOAXOJ0B K pacIpeneeHHOMY ONTHMAaJIbHOMY YIIPaBJICHHUIO
B3aMMOCBSI3aHHBIMM MPOLIECCAMM 00OTaTUTEIBHOTO MPOMU3-
BOJICTBA Ha OCHOBE JMHAMMUYECKOM MPOCTPAHCTBEHHO-BpE-
MEHHOU MOJEIIN.

Metoauka. OCHOBBIBAsICh Ha TOM, YTO KOHEYHBIC pe-
3yJIbTaThl pabOTHI 000raTUTEIbHONI (padPUKU 3aBUCST OT CO-
BOKYITHOCTH BXOJIHBIX ITAPAMETPOB 1 pe3yJIbTaTOB (PYHKIINO-
HUPOBAHUSI KOMIUIEKCA B3aMMOCBSI3aHHBIX HEJIMHEHHBIX
ITUHAMHAYECKUX OOBEKTOB, MPEIIOXKEH YCOBEPIIEHCTBOBAH-
HBI MOAXOM K MOAEJMPOBAHUIO TMPOIECCOB OOOTaIEHUS
JKEJIe30PYIHOTO ChIpbsS Ha OCHOBE CTPYKTYp BosnbTeppa-Jla-
reppa ¢ IpUMMEHEHHMEM BBIXOIHBIX CUTHAJIOB OTACJbHBIX TEX-
HOJIOTMYECKUX CTaOWii, XapaKTePU3YIOIIUX T'paHyJIOMETPH-
YEeCKUI cocTaB NepepadaThbIBAEMOM PyIbl.

Pe3yabTaThl. YCTaHOBJICHO, UTO MPHW CUHTE3E MOIECH
HEJIMHENWHBIX AMHAMUYECKUX OOBEKTOB OOOTraTUTEIHLHOIO
MMPOM3BOJICTBA IIEJIECOO0OPAa3HO MCIIOJIb30BaTh CTPYKTYPHI
Boabreppa, npu 3ToM O1IMOKa MOAEJIUMPOBAHUS HE MPEBbI-
maet 0,039 mnpum cpemHEeKBaApPaTUUYECKOM OTKJIOHECHUU
0,0594. Mcnonb3oBaHue TpoelMpoBaHust Mojeseir Bosb-
Teppa Ha OPTOHOPMUPOBAHHBIE 0a3MCHBIE (PYHKIIUU ITO3BO-
JIMJIO YIIPOCTUTD MPOLIECC MapamMeTpu3alud U CHU3UTb YyB-
CTBUTEJBHOCTh MozeJiell K mymaM. [TokazaHo, 4To B Kade-
CTBE OPTOHOPMUPOBAHHBIX (DYHKIIMI 1IeJeCO00pa3HO MpU-
MeHSITh (yHKIMM Jlareppa. DTO MO3BOISICT MUHUMU3UPO-
BaTh KOJMYECTBO MapaMeTPOB MOJEIM B Mpolecce UIEHTH-
duxkauuu.

Hayunas HoBU3HA. YCOBEpIIEHCTBOBAH METON UAEHTH-
(pyKanmy HEeTMHEHHBIX TMHAMUYECKUX 00BhEKTOB 000TraTH-
TEJILHOTO ITPOM3BOCTBA HA OCHOBE IIPOCTPAHCTBEHHO-Bpe-
MEHHOI Moaenu BoabTeppa, KOTOpBI OTIMYAETCs OT Cy-
LIECTBYIOIINX TEM, YTO JJIS TTOBBILICHNUST POOACTHOCTH MO-
nenu BonbTeppa K IIymaM OCYIIECTBICHO €€ IpoeInpoBa-
HHUE Ha HabOp OPTOHOPMMPOBAHHBIX 0Aa3MCHBIX (DYHKIIMIA
Jlareppa.

IIpakTHyeckas 3HAYMMOCTb. Pe3ynbraThl anpodauuu
MO3BOJIAIOT CIEJaTh BBHIBOI O 1IEJI€CO00Pa3HOCTU pean3a-
LIMA MPOCTPaHCTBEHHO-BpeMeHHOM Moaeiau Boibreppa B
MPOCTPAHCTBE COCTOSTHUI ¢ TOMOIIIbIo ceTu Jlareppa, 4To
IMO3BOJISIET MOBBICUTh TOYHOCTH MOJCTUPOBAHUS B YCIIOBH -
SIX IeMCTBMS IITYMOB IO CPaBHEHUIO ¢ Mojielibio BonbTeppa,
yYMeHBIIeHUeM OIMOKM MomeaupoBaHus Ha 18,11 % mipu
40 wTepauusgx WACHTU(UKALUU. ODKCIEepUMEHTalbHas
MMpOBepKa TOYHOCTH UACHTU(DUKALIUY C TPUMEHEHUEM MO-
nenu Boabreppa-Jlareppa B cucTteMe KOHTPOJISI coaepxKa-
HUS XeJie3a B Pa3IMUHBIX TOYKAX TEXHOJOTMYECKON JTMHUN
oboraileHusl MOATBEPKAAET 1IeJeCOO0pPa3HOCTh JaHHOIO
MeToja.

KioueBble ciioBa: neauneiinas ounamuxa, mooenvb Boaw-
meppa-Jlaceppa, o60eamumenvrHoe npou3eo00cmeo, uoeHmugdu-
Kauus
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